Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
Biomolecules ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38672424

ABSTRACT

Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.


Subject(s)
Calcium , Chagas Disease , Homeostasis , Leishmaniasis , Phosphorylcholine , Phosphorylcholine/analogs & derivatives , Humans , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chagas Disease/metabolism , Calcium/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Homeostasis/drug effects , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects , Leishmania/drug effects , Leishmania/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
2.
Front Cell Dev Biol ; 11: 1201200, 2023.
Article in English | MEDLINE | ID: mdl-37727505

ABSTRACT

The mineralization of the extracellular matrix (ECM) is an essential and crucial process for physiological bone formation and pathological calcification. The abnormal function of ECM mineralization contributes to the worldwide risk of developing mineralization-related diseases; for instance, vascular calcification is attributed to the hyperfunction of ECM mineralization, while osteoporosis is due to hypofunction. AnnexinA6 (AnxA6), a Ca2+-dependent phospholipid-binding protein, has been extensively reported as an essential target in mineralization-related diseases such as osteoporosis, osteoarthritis, atherosclerosis, osteosarcoma, and calcific aortic valve disease. To date, AnxA6, as the largest member of the Annexin family, has attracted much attention due to its significant contribution to matrix vesicles (MVs) production and release, MVs-ECM interaction, cytoplasmic Ca2+ influx, and maturation of hydroxyapatite, making it an essential target in ECM mineralization. In this review, we outlined the recent advancements in the role of AnxA6 in mineralization-related diseases and the potential mechanisms of AnxA6 under normal and mineralization-related pathological conditions. AnxA6 could promote ECM mineralization for bone regeneration in the manner described previously. Therefore, AnxA6 may be a potential osteogenic target for ECM mineralization.

3.
Cells ; 12(15)2023 07 28.
Article in English | MEDLINE | ID: mdl-37566036

ABSTRACT

MicroRNAs (miRNAs) are important regulators of embryonic stem cell (ESC) biology, and their study has identified key regulatory mechanisms. To find novel pathways regulated by miRNAs in ESCs, we undertook a bioinformatics analysis of gene pathways differently expressed in the absence of miRNAs due to the deletion of Dicer, which encodes an RNase that is essential for the synthesis of miRNAs. One pathway that stood out was Ca2+ signaling. Interestingly, we found that Dicer-/- ESCs had no difference in basal cytoplasmic Ca2+ levels but were hyperresponsive when Ca2+ import into the endoplasmic reticulum (ER) was blocked by thapsigargin. Remarkably, the increased Ca2+ response to thapsigargin in ESCs resulted in almost no increase in apoptosis and no differences in stress response pathways, despite the importance of miRNAs in the stress response of other cell types. The increased Ca2+ response in Dicer-/- ESCs was also observed during purinergic receptor activation, demonstrating a physiological role for the miRNA regulation of Ca2+ signaling pathways. In examining the mechanism of increased Ca2+ responsiveness to thapsigargin, neither store-operated Ca2+ entry nor Ca2+ clearance mechanisms from the cytoplasm appeared to be involved. Rather, it appeared to involve an increase in the expression of one isoform of the IP3 receptors (Itpr2). miRNA regulation of Itpr2 expression primarily appeared to be indirect, with transcriptional regulation playing a major role. Therefore, the miRNA regulation of Itpr2 expression offers a unique mechanism to regulate Ca2+ signaling pathways in the physiology of pluripotent stem cells.


Subject(s)
MicroRNAs , Animals , Mice , MicroRNAs/metabolism , Thapsigargin/pharmacology , Cell Differentiation/genetics , Embryonic Stem Cells , Homeostasis
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220162, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37122213

ABSTRACT

Skeletal and cardiac muscle excitation-contraction coupling commences with Nav1.4/Nav1.5-mediated, surface and transverse (T-) tubular, action potential generation. This initiates feedforward, allosteric or Ca2+-mediated, T-sarcoplasmic reticular (SR) junctional, voltage sensor-Cav1.1/Cav1.2 and ryanodine receptor-RyR1/RyR2 interaction. We review recent structural, physiological and translational studies on possible feedback actions of the resulting SR Ca2+ release on Nav1.4/Nav1.5 function in native muscle. Finite-element modelling predicted potentially regulatory T-SR junctional [Ca2+]TSR domains. Nav1.4/Nav1.5, III-IV linker and C-terminal domain structures included Ca2+ and/or calmodulin-binding sites whose mutations corresponded to specific clinical conditions. Loose-patch-clamped native murine skeletal muscle fibres and cardiomyocytes showed reduced Na+ currents (INa) following SR Ca2+ release induced by the Epac and direct RyR1/RyR2 activators, 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate and caffeine, abrogated by the RyR inhibitor dantrolene. Conversely, dantrolene and the Ca2+-ATPase inhibitor cyclopiazonic acid increased INa. Experimental, catecholaminergic polymorphic ventricular tachycardic RyR2-P2328S and metabolically deficient Pgc1ß-/- cardiomyocytes also showed reduced INa accompanying [Ca2+]i abnormalities rescued by dantrolene- and flecainide-mediated RyR block. Finally, hydroxychloroquine challenge implicated action potential (AP) prolongation in slowing AP conduction through modifying Ca2+ transients. The corresponding tissue/organ preparations each showed pro-arrhythmic, slowed AP upstrokes and conduction velocities. We finally extend discussion of possible Ca2+-mediated effects to further, Ca2+, K+ and Cl-, channel types. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Subject(s)
Dantrolene , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Dantrolene/pharmacology , Feedback , Muscle, Skeletal , Action Potentials , Calcium/metabolism
5.
Cells ; 12(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-37048150

ABSTRACT

Disuse atrophy of skeletal muscle is associated with a severe imbalance in cellular Ca2+ homeostasis and marked increase in nuclear apoptosis. Nuclear Ca2+ is involved in the regulation of cellular Ca2+ homeostasis. However, it remains unclear whether nuclear Ca2+ levels change under skeletal muscle disuse conditions, and whether changes in nuclear Ca2+ levels are associated with nuclear apoptosis. In this study, changes in Ca2+ levels, Ca2+ transporters, and regulatory factors in the nucleus of hindlimb unloaded rat soleus muscle were examined to investigate the effects of disuse on nuclear Ca2+ homeostasis and apoptosis. Results showed that, after hindlimb unloading, the nuclear envelope Ca2+ levels ([Ca2+]NE) and nucleocytoplasmic Ca2+ levels ([Ca2+]NC) increased by 78% (p < 0.01) and 106% (p < 0.01), respectively. The levels of Ca2+-ATPase type 2 (Ca2+-ATPase2), Ryanodine receptor 1 (RyR1), Inositol 1,4,5-tetrakisphosphate receptor 1 (IP3R1), Cyclic ADP ribose hydrolase (CD38) and Inositol 1,4,5-tetrakisphosphate (IP3) increased by 470% (p < 0.001), 94% (p < 0.05), 170% (p < 0.001), 640% (p < 0.001) and 12% (p < 0.05), respectively, and the levels of Na+/Ca2+ exchanger 3 (NCX3), Ca2+/calmodulin dependent protein kinase II (CaMK II) and Protein kinase A (PKA) decreased by 54% (p < 0.001), 33% (p < 0.05) and 5% (p > 0.05), respectively. In addition, DNase X is mainly localized in the myonucleus and its activity is elevated after hindlimb unloading. Overall, our results suggest that enhanced Ca2+ uptake from cytoplasm is involved in the increase in [Ca2+]NE after hindlimb unloading. Moreover, the increase in [Ca2+]NC is attributed to increased Ca2+ release into nucleocytoplasm and weakened Ca2+ uptake from nucleocytoplasm. DNase X is activated due to elevated [Ca2+]NC, leading to DNA fragmentation in myonucleus, ultimately initiating myonuclear apoptosis. Nucleocytoplasmic Ca2+ overload may contribute to the increased incidence of myonuclear apoptosis in disused skeletal muscle.


Subject(s)
Hindlimb Suspension , Muscular Atrophy , Rats , Animals , Hindlimb Suspension/physiology , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , DNA Damage , Deoxyribonucleases/metabolism
6.
J Muscle Res Cell Motil ; 44(3): 201-208, 2023 09.
Article in English | MEDLINE | ID: mdl-36131171

ABSTRACT

Ca2+ acts on troponin and tropomyosin to switch the thin filament on and off, however in cardiac muscle a more graded form of regulation is essential to tailor cardiac output to the body's needs. This is achieved by the action of adrenaline on ß1 receptors of heart muscle cells leading to enhanced contractility, faster heart rate and faster relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. PKA phosphorylates serines 22 and 23 in the N-terminal peptide of cardiac troponin I. As a consequence the rate of Ca2+release from troponin is increased. This is the key determinant of lusitropy. The molecular mechanism of this process has remained unknown long after the mechanism of the troponin Ca2+ switch itself was defined. Investigation of this subtle process at the atomic level poses a challenge, since the change in Ca2+-sensitivity is only about twofold and key parts of the troponin modulation and regulation system are disordered and cannot be fully resolved by conventional structural approaches. We will review recent studies using molecular dynamics simulations together with functional, cryo-em and NMR techniques that have started to give us a precise picture of how phosphorylation of troponin I modulates the dynamics of troponin to produce the lusitropic effect.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Troponin I , Phosphorylation , Cyclic AMP-Dependent Protein Kinases/metabolism , Myocardium/metabolism , Sarcomeres/metabolism , Calcium/metabolism
7.
J Appl Microbiol ; 132(3): 2167-2176, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34716970

ABSTRACT

AIMS: This study aimed to investigate the effect of metal ions on lipopeptide production by Bacillus subtilis strain FJAT-4 and the mechanism of negative regulation by Ca2+ . METHODS AND RESULTS: The quantitative measurement of lipopeptides in response to K+ , Na+ , Mg2+ and Ca2+ addition was carried out by LC-MS. The contents of fengycin and surfactin varied within the range of 116.24-129.80 mg/L and 34.03-63.11 mg/L in the culture media containing K+ , Na+ and Mg2+ , while the levels were 0.86 and 0.63 mg/L in the media containing Ca2+ . Ca2+ at a high concentration (45 mM) did not adversely affect the growth of strain FJAT-4, but caused significant downregulation of lipopeptide synthesis-related gene expression, corresponding to a decrease in lipopeptide production. This inhibition by Ca2+ was further investigated by proteomic analysis. In total, 112 proteins were upregulated and 524 proteins were downregulated in the presence of additional Ca2+ (45 mM). Among these differentially expressed proteins (DEPs), 28 were related to phosphotransferase activity, and 42 were related to kinase activity. The proteomics results suggested that altered levels of three two-component signal-transduction systems (ResD/ResE, PhoP/PhoR and DegU/DegS) might be involved in the control of expression of the fen and srfA operons of FJAT-4 under high calcium stress. CONCLUSIONS: The Ca2+ at the high concentration (45 mM) triggers a decrease in lipopeptide production, which might be attributed to the regulation of three two-component signal-transduction systems ResD/ResE, PhoP/PhoR and DegU/DegS. SIGNIFICANCE AND IMPACT OF THE STUDY: The regulatory effect of calcium on the expression of genes encoding lipopeptide synthetases can be applied to optimize the production of lipopeptides.


Subject(s)
Bacillus subtilis , Proteomics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Ions/metabolism , Lipopeptides/pharmacology
8.
Basic Res Cardiol ; 116(1): 56, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642818

ABSTRACT

Ischemia-reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.


Subject(s)
Myocardial Reperfusion Injury , STAT3 Transcription Factor , Humans , Mitochondria/metabolism , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction
9.
Eur J Pharmacol ; 910: 174498, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34506778

ABSTRACT

BACKGROUND: Phosphodiesterase inhibitors can be used to enhance second messenger signaling to regulate intracellular Ca2+ cycling. This study investigated whether ITI-214, a selective phosphodiesterase-1 inhibitor, modulates intracellular Ca2+ regulation, resulting in a positive inotropic effect in sirtuin 1 (Sirt1)-deficient cardiomyocytes. METHODS: Mice with cardiac-specific Sirt1 knockout (Sirt1-/-) were used, with Sirt1flox/flox mice serving as controls. Electromechanical analyses of ventricular tissues were conducted, and we monitored intracellular Ca2+ using Fluo-3 as well as reactive oxygen species production in isolated cardiomyocytes. RESULTS: Sirt1-/- ventricles showed prolonged action potential duration at 90% repolarization and increased contractile force after treatment with ITI-214. The rates and sustained durations of burst firing in ventricles were higher and longer, respectively, in Sirt1-/- ventricles than in controls. ITI-214 treatment decreased the rates and shortened the durations of burst firing in Sirt1-/- mice. Sirt1-/- cardiomyocytes showed reduced Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores compared to those in control cardiac myocytes, which was reversed after ITI-214 treatment. SR Ca2+ leakage was larger in Sirt1-/- cardiac myocytes than in control myocytes. ITI-214 reduced SR Ca2+ leakage in Sirt1-/- cardiac myocytes. Increased levels of reactive oxygen species in Sirt1-/- cardiomyocytes compared to those in controls were reduced after ITI-214 treatment. Levels of Ca2+ regulatory proteins, including ryanodine receptor 2, phospholamban, and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a were not affected by ITI-214 administration. CONCLUSIONS: Our results suggest that ITI-214 improves intracellular Ca2+ regulation, which in turn exerts inotropic effects and suppresses arrhythmic events in Sirt1-deficient ventricular myocytes.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacology , Myocytes, Cardiac/drug effects , Phosphodiesterase Inhibitors/pharmacology , Sirtuin 1/deficiency , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Calcium Signaling/drug effects , Disease Models, Animal , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Male , Mice , Mice, Knockout , Myocytes, Cardiac/pathology , Phosphodiesterase Inhibitors/therapeutic use , Reactive Oxygen Species/metabolism , Sirtuin 1/genetics
10.
J Cell Sci ; 133(24)2020 12 24.
Article in English | MEDLINE | ID: mdl-33199522

ABSTRACT

Approximately 15% of autosomal dominant polycystic kidney disease (ADPKD) is caused by variants in PKD2PKD2 encodes polycystin-2, which forms an ion channel in primary cilia and endoplasmic reticulum (ER) membranes of renal collecting duct cells. Elevated internal Ca2+ modulates polycystin-2 voltage-dependent gating and subsequent desensitization - two biophysical regulatory mechanisms that control its function at physiological membrane potentials. Here, we refute the hypothesis that Ca2+ occupancy of the polycystin-2 intracellular EF hand is responsible for these forms of channel regulation, and, if disrupted, results in ADPKD. We identify and introduce mutations that attenuate Ca2+-EF hand affinity but find channel function is unaltered in the primary cilia and ER membranes. We generated two new mouse strains that harbor distinct mutations that abolish Ca2+-EF hand association but do not result in a PKD phenotype. Our findings suggest that additional Ca2+-binding sites within polycystin-2 or Ca2+-dependent modifiers are responsible for regulating channel activity.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Cilia/metabolism , EF Hand Motifs , Mice , Polycystic Kidney Diseases/genetics , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
11.
FASEB J ; 34(10): 13507-13520, 2020 10.
Article in English | MEDLINE | ID: mdl-32797717

ABSTRACT

Several congenital myopathies of slow skeletal muscles are associated with mutations in the tropomyosin (Tpm) TPM3 gene. Tropomyosin is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Two Tpm isoforms, γ (Tpm3.12) and ß (Tpm2.2) are expressed in human slow skeletal muscles forming γγ-homodimers and γß-heterodimers of Tpm molecules. We applied various methods to investigate how myopathy-causing mutations M9R, E151A, and K169E in the Tpm γ-chain modify the structure-functional properties of Tpm dimers, and how this affects the muscle functioning. The results show that the features of γγ-Tpm and γß-Tpm with substitutions in the Tpm γ-chain vary significantly. The characteristics of the γγ-Tpm depend on whether these mutations located in only one or both γ-chains. The mechanism of the development of nemaline myopathy associated with the M9R mutation was revealed. At the molecular level, a cause-and-effect relationship has been established for the development of myopathy by the K169E mutation. Also, we described the structure-functional properties of the Tpm dimers with the E151A mutation, which explain muscle weakness linked to this substitution. The results demonstrate a diversity of the molecular mechanisms of myopathy pathogenesis induced by studied Tpm mutations.


Subject(s)
Muscle Contraction , Myopathies, Nemaline , Tropomyosin , Humans , Models, Molecular , Mutation , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Protein Isoforms , Protein Multimerization , Tropomyosin/chemistry , Tropomyosin/genetics
12.
Biochimie ; 174: 1-8, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32224097

ABSTRACT

Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein playing an essential role in the regulation of muscle contraction. The α- (Tpm 1.1) and γ- (Tpm 3.12) Tpm isoforms are expressed in fast and slow human skeletal muscles, respectively, while ß-Tpm (Tpm 2.2) is expressed in both muscle types. This results in the formation of Tpm αα- and γγ-homodimers as well as αß- and γß-heterodimers. The properties of αα-homodimer are well studied, whereas very little is known about the functional properties of γγ-homodimer and γß-heterodimer. We investigated interaction characteristics of Tpm γγ-homodimer and γß-heterodimer with actin filaments and Ca2+-regulation of actin-myosin interaction on myosin from fast and slow skeletal muscles. The results showed that complexes formed by γγ-Tpm and γß-Tpm with F-actin are more stable than those with αα-Tpm and αß-Tpm. The maximum sliding speed of regulated thin filaments with either γγ-Tpm or γß-Tpm moving over skeletal myosin was significantly less than that of the filaments with αα-Tpm or αß-Tpm. The results indicate that isoforms of Tpm along with isoforms of myosin determine of functional properties of skeletal muscles and support an idea on the combined expression of myosin and Tpm isoforms.


Subject(s)
Muscle, Skeletal/metabolism , Tropomyosin , Calcium/physiology , Humans , Muscle Contraction , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/physiology , Protein Multimerization , Tropomyosin/chemistry , Tropomyosin/physiology
13.
Bioelectrochemistry ; 132: 107449, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31918058

ABSTRACT

Dysregulation of the cardiac ryanodine receptor (RYR2) by luminal Ca2+ has been implicated in a life-threatening, stress-induced arrhythmogenic disease. The mechanism of luminal Ca2+-mediated RYR2 regulation is under debate, and it has been attributed to Ca2+ binding on the cytosolic face (the Ca2+ feedthrough mechanism) and/or the luminal face of the RYR2 channel (the true luminal mechanism). The molecular nature and location of the luminal Ca2+ site is unclear. At the single-channel level, we directly probed the RYR2 luminal face by Eu3+, considering the non-permeant nature of trivalent cations and their high binding affinities for Ca2+ sites. Without affecting essential determinants of the Ca2+ feedthrough mechanism, we found that luminal Eu3+ competitively antagonized the activation effect of luminal Ca2+ on RYR2 responsiveness to cytosolic caffeine, and no appreciable effect was observed for luminal Ba2+ (mimicking the absence of luminal Ca2+). Importantly, luminal Eu3+ caused no changes in RYR2 gating. Our results indicate that two distinct Ca2+ sites (available for luminal Ca2+ even when the channel is closed) are likely involved in the true luminal mechanism. One site facing the lumen regulates channel responsiveness to caffeine, while the other site, presumably positioned in the channel pore, governs the gating behavior.


Subject(s)
Calcium/metabolism , Europium/chemistry , Myocardium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Caffeine/pharmacology , Humans , Ion Channel Gating/drug effects
14.
Physiol Rep ; 7(16): e14215, 2019 08.
Article in English | MEDLINE | ID: mdl-31444868

ABSTRACT

The sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) is imperative for normal cardiac function regulating both muscle relaxation and contractility. SERCA2a is the predominant isoform in cardiac muscles and is inhibited by phospholamban (PLN). Under conditions of oxidative stress, SERCA2a may also be impaired by tyrosine nitration. Tafazzin (Taz) is a mitochondrial-specific transacylase that regulates mature cardiolipin (CL) formation, and its absence leads to mitochondrial dysfunction and excessive production of reactive oxygen/nitrogen species (ROS/RNS). In the present study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN expression/phosphorylation in left ventricles (LV) obtained from young (3-5 months) and old (10-12 months) wild-type (WT) and Taz knockdown (TazKD ) male mice. These mice are a mouse model for Barth syndrome, which is characterized by mitochondrial dysfunction, excessive ROS/RNS production, and dilated cardiomyopathy (DCM). Here, we show that maximal SERCA activity was impaired in both young and old TazKD LV, a result that correlated with elevated SERCA2a tyrosine nitration. In addition PLN protein was decreased, and its phosphorylation was increased in TazKD LV compared with control, which suggests that PLN may not contribute to the impairments in SERCA function. These changes in expression and phosphorylation of PLN may be an adaptive response aimed to improve SERCA function in TazKD mice. Nonetheless, we demonstrate for the first time that SERCA function is impaired in LVs obtained from young and old TazKD mice likely due to elevated ROS/RNS production. Future studies should determine whether improving SERCA function can improve cardiac contractility and pathology in TazKD mice.


Subject(s)
Heart Ventricles/metabolism , Oxidative Stress/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Transcription Factors/deficiency , Acyltransferases , Animals , Barth Syndrome/metabolism , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Gene Knockdown Techniques , Male , Mice , Tyrosine/metabolism
15.
Biochem Biophys Res Commun ; 515(2): 318-324, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31153638

ABSTRACT

Calcium (Ca2+) is an important element for many physiological functions of the uterus, including embryo implantation. Here, we investigated the possible involvement of altered intracellular Ca2+ levels in decidualization in human endometrial stromal cells (hEMSCs). hEMSCs showed high levels of mesenchymal stem cell marker expression (CD73, CD90, and CD105) and did not express markers of hematopoietic progenitor cells (CD31, CD34, CD45, and HLA-DR). Decidualization is a process of ovarian steroid-induced endometrial stromal cell proliferation and differentiation. Several types of ion channels, which are regulated by the ovarian hormones progesterone and estradiol, as well as growth factors, are important for endometrial receptivity and embryo implantation. The combined application of progesterone (1 µM medroxyprogesterone acetate) and cyclic AMP (0.5 mM) for 6 days not only elevated inositol 1,4,5-triphosphate receptor (IP3R)-mediated Ca2+ release and IP3R expression, it also promoted ORAI and STIM expression as well as cyclopiazonic acid-induced Ca2+ release. Finally, intracellular Ca2+ levels and ion channel gene expression influenced hEMSC proliferation. These results suggest that cytosolic Ca2+ dynamics, mediated by specific ion channels, serve as an important step in the decidualization of hEMSCs.


Subject(s)
Calcium/metabolism , Decidua/cytology , Decidua/metabolism , Endometrium/cytology , Endometrium/metabolism , Stromal Cells/metabolism , Adult , Antigens, CD/metabolism , Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endoplasmic Reticulum/metabolism , Female , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Stromal Interaction Molecules/metabolism
16.
Parasitol Int ; 70: 112-117, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30794871

ABSTRACT

Leishmaniasis is a parasitic disease representing an important problem of public health. Visceral leishmaniasis, resulting from infection with Leishmania donovani, causes considerable mortality and morbidity in the poorest region of the word. At present there is no current effective treatment, since the approved, drugs are expensive and are not free of undesirable side effects. Therefore, there is a need for the identification of new drugs. In this context, the parasite Ca2+ regulatory mechanisms in which mitochondria and acidocalcisomes are involved have been postulated as important targets for several trypanocidal drugs. Thus, amiodarone and dronedarone, common human antiarrythmics, exert its known action on these parasites through the disruption of the intracellular Ca2+ homeostasis. AMIODER is a benzofuran derivate based on the structure of amiodarone that recently demonstrates a significant effect on Trypanosoma cruzi. We now report the effect of AMIODER on Leishmania donovani demonstrating that it inhibit the growth of promastigotes and also of amastigotes inside macrophages, the clinically relevant stage of the parasite, obtaining IC50 values significantly lower than those reported for T. cruzi. We also show that this compound disrupted Ca2+ homeostasis in L. donovani, through its action on two organelles involved in the intracellular Ca2+ regulation and on the bioenergetics of the parasite. AMIODER totally collapsed the electrochemical membrane potential of the unique giant mitochondrion and simultaneously induced the alkalinization of acidocalcisomes, driving together to a large increase in the intracellular Ca2+ concentration of the parasite as the main mechanism of action of this benzofurane derivative.


Subject(s)
Amiodarone/pharmacology , Benzofurans/pharmacology , Leishmania donovani/drug effects , Mitochondria/drug effects , Trypanocidal Agents/pharmacology , Animals , Calcium/metabolism , Cell Line , Cell Survival , Cytoplasm/chemistry , Cytoplasm/parasitology , Drug Discovery , Homeostasis , Inhibitory Concentration 50 , Leishmania donovani/growth & development , Leishmania donovani/metabolism , Leishmaniasis, Visceral/drug therapy , Macrophages/parasitology , Metabolic Networks and Pathways , Mice
17.
Biochem Biophys Res Commun ; 508(3): 934-939, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30545627

ABSTRACT

Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein that plays a key role in the Ca2+-regulated contraction of striated muscles. Two Tpm isoforms, α (Tpm 1.1) and ß (Tpm 2.2), are expressed in fast skeletal muscles. These Tpm isoforms can form either αα and ßß homodimers, or αß heterodimers. However, only αα-Tpm and αß-Tpm dimers are usually present in most of fast skeletal muscles, because ßß-homodimers are relatively unstable and cannot exist under physiologic conditions. Nevertheless, the most of previous studies of myopathy-causing mutations in the Tpm ß-chains were performed on the ßß-homodimers. In the present work, we applied different methods to investigate the effects of two myopathic mutations in the ß-chain, Q147P and K49del (i.e. deletion of Lys49), on structural and functional properties of Tpm αß-heterodimers and to compare them with the properties of ßß-homodimers carrying these mutations in both ß-chains. The results show that the properties of αß-Tpm heterodimers with these mutations in the ß-chain differ significantly from the properties of ßß-homodimers with the same substitutions in both ß-chains. This indicates that the αß-heterodimer is a more appropriate model for studying the effects of myopathic mutations in the ß-chain of Tpm than the ßß-homodimer which virtually does not exist in human skeletal muscles.


Subject(s)
Mutation , Tropomyosin/genetics , Actins/metabolism , Animals , Humans , Muscular Diseases/genetics , Protein Multimerization , Protein Unfolding , Rabbits , Tropomyosin/chemistry , Tropomyosin/metabolism
18.
Methods Mol Biol ; 1875: 255-277, 2019.
Article in English | MEDLINE | ID: mdl-30362009

ABSTRACT

The sieve elements are the only plant compartments, where phytoplasmas can survive and propagate. Therefore, this chapter is focussed on the specific molecular and cell-biological properties of the sieve element. Sieve element-companion cell complexes arise from (pro)cambial mother cells induced by key genes known to be decisive for sieve-element differentiation. The special anatomy, cell biology, and plasma-membrane outfit of sieve elements allows them to act collectively as a tube system that is able to drive a mass flow against the flow induced by transpiration. Plasmodesmal corridors are vital for the translocation of photoassimilates and systemic signals and for survival of the enucleate sieve elements. Of paramount importance is the Ca2+-dependent gating of plasmodesmata by callose and proteins. Hence, some of the complex, regulatory mechanisms to maintain Ca2+ homoeostasis in sieve elements are presented. Finally, the peculiarities of the chemical and physical sieve-element environment offered to phytoplasmas are discussed.


Subject(s)
Phloem/ultrastructure , Phytoplasma/pathogenicity , Plasmodesmata/microbiology , Animals , Biological Transport , Calcium/metabolism , Insect Vectors/microbiology , Phloem/metabolism , Phloem/microbiology , Plasmodesmata/metabolism , Plasmodesmata/ultrastructure
19.
Int J Mol Sci ; 19(7)2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29997361

ABSTRACT

The discovery that mutations in myosin and actin genes, together with mutations in the other components of the muscle sarcomere, are responsible for a range of inherited muscle diseases (myopathies) has revolutionized the study of muscle, converting it from a subject of basic science to a relevant subject for clinical study and has been responsible for a great increase of interest in muscle studies. Myopathies are linked to mutations in five of the myosin heavy chain genes, three of the myosin light chain genes, and three of the actin genes. This review aims to determine to what extent we can explain disease phenotype from the mutant genotype. To optimise our chances of finding the right mechanism we must study a myopathy where there are a large number of different mutations that cause a common phenotype and so are likely to have a common mechanism: a corollary to this criterion is that if any mutation causes the disease phenotype but does not correspond to the proposed mechanism, then the whole mechanism is suspect. Using these criteria, we consider two cases where plausible genotype-phenotype mechanisms have been proposed: the actin "A-triad" and the myosin "mesa/IHD" models.


Subject(s)
Actins/genetics , Muscular Diseases/genetics , Mutation , Myosins/genetics , Age of Onset , Gene Expression Regulation , Humans , Muscle, Skeletal/physiopathology , Muscular Diseases/physiopathology , Phenotype
20.
Front Physiol ; 9: 243, 2018.
Article in English | MEDLINE | ID: mdl-29636697

ABSTRACT

The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are relatively common, potentially life-threatening and currently untreatable. Mutations are often in the contractile proteins of cardiac muscle and cause abnormal Ca2+ regulation via troponin. HCM is usually linked to higher myofilament Ca2+-sensitivity whilst in both HCM and DCM mutant tissue there is often an uncoupling of the relationship between troponin I (TnI) phosphorylation by PKA and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline. The adrenergic response is blunted, and this may predispose the heart to failure under stress. At present there are no compounds or interventions that can prevent or treat sarcomere cardiomyopathies. There is a need for novel therapies that act at a more fundamental level to affect the disease process. We demonstrated that epigallocatechin-3 gallate (EGCG) was found to be capable of restoring the coupled relationship between Ca2+-sensitivity and TnI phosphorylation in mutant thin filaments to normal in vitro, independent of the mutation (15 mutations tested). We have labeled this property "re-coupling." The action of EGCG in vitro to reverse the abnormality caused by myopathic mutations would appear to be an ideal pharmaceutical profile for treatment of inherited HCM and DCM but EGCG is known to be promiscuous in vivo and is thus unsuitable as a therapeutic drug. We therefore investigated whether other structurally related compounds can re-couple myofilaments without these off-target effects. We used the quantitative in vitro motility assay to screen 40 compounds, related to C-terminal Hsp90 inhibitors, and found 23 that can re-couple mutant myofilaments. There is no correlation between re-couplers and Hsp90 inhibitors. The Ca2+-sensitivity shift due to TnI phosphorylation was restored to 2.2 ± 0.01-fold (n = 19) compared to 2.0 ± 0.24-fold (n = 7) in wild-type thin filaments. Many of these compounds were either pure re-couplers or pure desensitizers, indicating these properties are independent; moreover, re-coupling ability could be lost with small changes of compound structure, indicating the possibility of specificity. Small molecules that can re-couple may have therapeutic potential. HIGHLIGHTS - Inherited cardiomyopathies are common diseases that are currently untreatable at a fundamental level and therefore finding a small molecule treatment is highly desirable.- We have identified a molecular level dysfunction common to nearly all mutations: uncoupling of the relationship between troponin I phosphorylation and modulation of myofilament Ca2+-sensitivity, essential for normal responses to adrenaline.- We have identified a new class of drugs that are capable of both reducing Ca2+-sensitivity and/or recouping the relationship between troponin I phosphorylation and Ca2+-sensitivity.- The re-coupling phenomenon can be explained on the basis of a single mechanism that is testable.- Measurements with a wide range of small molecules of varying structures can indicate the critical molecular features required for recoupling and allows the prediction of other potential re-couplers.

SELECTION OF CITATIONS
SEARCH DETAIL