Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 754: 109946, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395122

ABSTRACT

G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and ß-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.


Subject(s)
Receptors, G-Protein-Coupled , Cell Membrane , Lipids/chemistry , Membrane Proteins/chemistry
2.
Eur Biophys J ; 52(1-2): 39-51, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36786921

ABSTRACT

From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.


Subject(s)
Nanoparticles , Polymers , Dimyristoylphosphatidylcholine , Sodium Chloride , Lipid Bilayers , Styrene , Maleates
3.
Methods Mol Biol ; 2507: 375-387, 2022.
Article in English | MEDLINE | ID: mdl-35773593

ABSTRACT

The development of styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA) copolymers provides an alternative to traditional detergent extraction of integral membrane proteins. By inserting into the membrane, these polymers can extract membrane proteins along with lipids in the form of native nanodiscs made by poly(styrene co-maleic anhydride) derivatives. Unlike detergent solubilization, where membrane proteins may lose annular lipids necessary for proper folding and stability, native nanodiscs allow for proteins to reside in the natural lipid environment. In addition, polymer-based nanodiscs can be purified using common chromatography methods similar to protocols established with detergent solubilization purification. Here we describe the solubilization screening and purification of an integral membrane protein using several commercial copolymers.


Subject(s)
Detergents , Membrane Proteins , Detergents/chemistry , Lipid Bilayers/chemistry , Lipids/chemistry , Membrane Proteins/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Styrenes
4.
Nanomaterials (Basel) ; 12(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35159706

ABSTRACT

Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.

5.
Biochim Biophys Acta Biomembr ; 1863(12): 183725, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34384757

ABSTRACT

Certain amphiphilic copolymers form lipid-bilayer nanodiscs from artificial and natural membranes, thereby rendering incorporated membrane proteins optimal for structural analysis. Recent studies have shown that the amphiphilicity of a copolymer strongly determines its solubilization efficiency. This is especially true for highly negatively charged membranes, which experience pronounced Coulombic repulsion with polyanionic polymers. Here, we present a systematic study on the solubilization of artificial multicomponent lipid vesicles that mimic inner mitochondrial membranes, which harbor essential membrane-protein complexes. In particular, we compared the lipid-solubilization efficiencies of established anionic with less densely charged or zwitterionic and even cationic copolymers in low- and high-salt concentrations. The nanodiscs formed under these conditions were characterized by dynamic light scattering and negative-stain electron microscopy, pointing to a bimodal distribution of nanodisc diameters with a considerable fraction of nanodiscs engaging in side-by-side interactions through their polymer rims. Overall, our results show that some recent, zwitterionic copolymers are best suited to solubilize negatively charged membranes at high ionic strengths even at low polymer/lipid ratios.


Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Mitochondria/chemistry , Mitochondrial Membranes/chemistry , Dynamic Light Scattering , Membrane Proteins/genetics , Membranes, Artificial , Mitochondria/genetics , Osmolar Concentration , Polyelectrolytes/chemistry , Polymers/chemistry , Sodium Chloride/chemistry
6.
Biochim Biophys Acta Biomembr ; 1863(10): 183681, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34186033

ABSTRACT

With this study we aim at comparing the well-known lipid membrane model system of liposomes and polymer-encapsulated nanodiscs regarding their lipid properties. Using differential scanning calorimetry (DSC) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy, we characterize the temperature-dependent lipid behavior within 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes and nanodiscs made from such liposomes by application of various polymers based on styrene-co-maleic acid (SMA), diisobutylene-alt-maleic acid (DIBMA), and styrene-co-maleic amide sulfobetaine (SMA-SB), a new SMA-derived copolymer containing sulfobetaine side chains. By incorporating a spin label doxyl moiety into the lipid bilayer in position 16 or 5 we were able to study the micropolarity as well as rotational restrictions onto the lipids in the apolar bilayer center and the chain region adjacent to the carbonyl groups, respectively. Our results suggest that all polymers broaden the main melting transition of DMPC, change the water accessibility within the lipid bilayer, and exhibit additional constraints onto the lipids. Independent of the used polymer, the rotational mobility of both spin-labeled lipids decreased with DIBMA exerting less restraints probably due to its aliphatic side chains. Our findings imply that the choice of the solubilizing polymer has to be considered an important step to form lipid nanodiscs which should be included into research of lipid membranes and membrane proteins in the future.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Lipids/chemistry , Nanostructures/chemistry , Polymers/chemistry , Calorimetry, Differential Scanning , Liposomes , Microscopy, Electron, Transmission , Temperature
7.
Biochem Soc Trans ; 49(3): 1361-1374, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34110369

ABSTRACT

Membrane proteins play vital roles in living organisms, serving as targets for most currently prescribed drugs. Membrane protein structural biology aims to provide accurate structural information to understand their mechanisms of action. The advance of membrane protein structural biology has primarily relied on detergent-based methods over the past several decades. However, detergent-based approaches have significant drawbacks because detergents often damage the native protein-lipid interactions, which are often crucial for maintaining the natural structure and function of membrane proteins. Detergent-free methods recently have emerged as alternatives with a great promise, e.g. for high-resolution structure determinations of membrane proteins in their native cell membrane lipid environments. This minireview critically examines the current status of detergent-free methods by a comparative analysis of five groups of membrane protein structures determined using detergent-free and detergent-based methods. This analysis reveals that current detergent-free systems, such as the styrene-maleic acid lipid particles (SMALP), the diisobutyl maleic acid lipid particles (DIBMALP), and the cycloalkane-modified amphiphile polymer (CyclAPol) technologies are not better than detergent-based approaches in terms of maintenance of native cell membrane lipids on the transmembrane domain and high-resolution structure determination. However, another detergent-free technology, the native cell membrane nanoparticles (NCMN) system, demonstrated improved maintenance of native cell membrane lipids with the studied membrane proteins, and produced particles that were suitable for high-resolution structural analysis. The ongoing development of new membrane-active polymers and their optimization will facilitate the maturation of these new detergent-free systems.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Cryoelectron Microscopy/methods , Detergents/chemistry , Membrane Proteins/isolation & purification , Membrane Proteins/ultrastructure , Protein Binding , Protein Conformation
8.
Biochim Biophys Acta Biomembr ; 1863(7): 183602, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33744253

ABSTRACT

Structure and function analysis of human membrane proteins in lipid bilayer environments is acutely lacking despite the fundame1ntal cellular importance of these proteins and their dominance of drug targets. An underlying reason is that detailed study usually requires a potentially destabilising detergent purification of the proteins from their host membranes prior to subsequent reconstitution in a membrane mimic; a situation that is exacerbated for human membrane proteins due to the inherent difficulties in overexpressing suitable quantities of the proteins. We advance the promising styrene maleic acid polymer (SMA) extraction approach to introduce a detergent-free method of obtaining stable, functional human membrane transporters in bilayer nanodiscs directly from yeast cells. We purify the human serotonin transporter (hSERT) following overexpression in Pichia pastoris using diisobutylene maleic acid (DIBMA) as a superior method to traditional detergents or the more established styrene maleic acid polymer. hSERT plays a pivotal role in neurotransmitter regulation being responsible for the transport of the neurotransmitter 5-hydroxytryptamine (5-HT or serotonin). It is representative of the neurotransmitter sodium symporter (NSS) family, whose importance is underscored by the numerous diseases attributed to their malfunction. We gain insight into hSERT activity through an in vitro transport assay and find that DIBMA extraction improves the thermostability and activity of hSERT over the conventional detergent method.


Subject(s)
Alkenes/chemistry , Maleates/chemistry , Polymers/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Humans , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/isolation & purification , Temperature
9.
ACS Appl Bio Mater ; 4(6): 4760-4768, 2021 06 21.
Article in English | MEDLINE | ID: mdl-35007026

ABSTRACT

The study of membrane proteins remains challenging, especially in a native membrane environment. Recently, major progress has been made using maleic acid copolymers, such as styrene maleic acid, to purify membrane proteins and study them directly with native lipids associated with the membrane. Additional maleic acid copolymers, such as diisobutylene maleic acid (DIBMA) membrane-mimetic systems, are being developed and found to have improved spectroscopic properties and pH stability. We studied DIBMA and its lipid particles in solution to better understand its assembly, without and with the lipids, to provide an insight regarding how to use it in solution for better membrane extraction. Using small-angle neutron and X-ray scattering (SANS/SAXS), we show that DIBMA organizes into structures of different size scales at various concentrations and ionic strengths. The polymer performed reasonably well under most solvent conditions except in very low concentrations and high-salt conditions that could result in limited interaction with lipids. To explore DIBMA lipid particles as a suitable membrane-mimetic system for neutron scattering studies of membrane proteins, we measured and determined the contrast-matching point of DIBMA to be ∼12% (v/v) D2O - similar to that of most protiated lipid molecules but distinct from that of regular protiated proteins - providing a natural contrast for separating their neutron scattering signals. Using SANS contrast variation, we demonstrated that the scattering from the whole lipid particle can be annihilated. Further, we determined that a well-defined lipid nanodisc structure with DIBMA was contrast-matched. These results demonstrate that the DIBMA lipid particle is an outstanding "stealth" membrane-mimetic for membrane proteins. The results provide a structural framework for understanding the organization and assembly process of the polymer itself and the lipid molecules. Such an understanding is imperative for structural techniques such as cryo-electron microscopy, nuclear magnetic resonance, small-angle scattering, and other biophysical techniques.


Subject(s)
Alkenes/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Maleates/chemistry , Membrane Proteins/chemistry , Polymers/chemistry , Biomedical Research , Biomimetics , Hydrogen-Ion Concentration , Osmolar Concentration
10.
Biochim Biophys Acta Biomembr ; 1862(9): 183314, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32304757

ABSTRACT

α-Synuclein (αsyn) is a cytosolic intrinsically disordered protein (IDP) known to fold into an α-helical structure when binding to membrane lipids, decreasing protein aggregation. Model membrane enable elucidation of factors critically affecting protein folding/aggregation, mostly using either small unilamellar vesicles (SUVs) or nanodiscs surrounded by membrane scaffold proteins (MSPs). Yet SUVs are mechanically strained, while MSP nanodiscs are expensive. To test the impact of lipid particle size on α-syn structuring, while overcoming the limitations associated with the lipid particles used so far, we compared the effects of large unilamellar vesicles (LUVs) and lipid-bilayer nanodiscs encapsulated by diisobutylene/maleic acid copolymer (DIBMA) on αsyn secondary-structure formation, using human-, elephant- and whale -αsyn. Our results confirm that negatively charged lipids induce αsyn folding in h-αsyn and e-αsyn but not in w-αsyn. When a mixture of zwitterionic and negatively charged lipids was used, no increase in the secondary structure was detected at 45 °C. Further, our results show that DIBMA/lipid particles (DIBMALPs) are highly suitable nanoscale membrane mimics for studying αsyn secondary-structure formation and aggregation, as folding was essentially independent of the lipid/protein ratio, in contrast with what we observed for LUVs having the same lipid compositions. This study reveals a new and promising application of polymer-encapsulated lipid-bilayer nanodiscs, due to their excellent efficiency in structuring disordered proteins such as αsyn into nontoxic α-helical structures. This will contribute to the unravelling and modelling aspects concerning protein-lipid interactions and α-helix formation by αsyn, paramount to the proposal of new methods to avoid protein aggregation and disease.


Subject(s)
Membrane Lipids/chemistry , Polymers/pharmacology , Unilamellar Liposomes/chemistry , alpha-Synuclein/chemistry , Alkenes/chemistry , Alkenes/pharmacology , Humans , Intrinsically Disordered Proteins/chemistry , Lipid Bilayers/chemistry , Maleates/chemistry , Maleates/pharmacology , Membrane Proteins/chemistry , Polymers/chemistry , Protein Aggregates/drug effects , Protein Conformation, alpha-Helical/drug effects , Protein Folding/drug effects , Protein Structure, Secondary/drug effects
11.
Biochim Biophys Acta Biomembr ; 1862(5): 183207, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31987867

ABSTRACT

Amphiphilic maleic acid-containing copolymers account for a recent methodical breakthrough in the study of membrane proteins. Their application enables a detergent-free extraction of membrane proteins from lipid bilayers, yielding stable water-soluble, discoidal lipid bilayer particles with incorporated proteins, which are wrapped with copolymers. Although many studies confirm the potential of this approach for membrane protein research, the interactions between the maleic acid-containing copolymers and extracted lipids, as well as possible effects of the copolymers on lipid-embedded proteins deserve further scrutinization. Here, we combine electron paramagnetic resonance spectroscopy and coarse-grain molecular dynamics simulations to compare the distribution and dynamics of lipids in lipid particles of phospholipid bilayers encased either by an aliphatic diisobutylene/maleic acid copolymer (DIBMALPs) or by an aromatic styrene/maleic acid copolymer (SMALPs). Nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels experience restrictions of their reorientational motion depending on the type of encasing copolymer. The dynamics of the lipids was less constrained in DIBMALPs than in SMALPs with the affinity of spin labeled lipids to the polymeric rim being more pronounced in SMALPs.


Subject(s)
Lipid Bilayers/chemistry , Maleates/chemistry , Nanoparticles/chemistry , Alkenes/chemistry , Dimyristoylphosphatidylcholine/chemistry , Electron Spin Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phospholipids , Polymers/chemistry , Polystyrenes/chemistry , Spin Labels/chemical synthesis
12.
Chem Phys Lipids ; 221: 167-175, 2019 07.
Article in English | MEDLINE | ID: mdl-30940445

ABSTRACT

Nanoparticles assembled with poly(styrene-maleic acid) copolymers, identified in the literature as Lipodisq, SMALPs or Native Nanodisc, are routinely used as membrane mimetics to stabilise protein structures in their native conformation. To date, transmembrane proteins of varying complexity (up to 8 beta strands or 48 alpha helices) and of a range of molecular weights (from 27 kDa up to 500 kDa) have been incorporated into this particle system for structural and functional studies. SMA and related amphipathic polymers have become versatile components of the biochemist's tool kit for the stabilisation, extraction and structural characterization of membrane proteins by techniques including cryo-EM and X-ray crystallography. Lipodisq formation does not require the use of conventional detergents and thus avoids their associated detrimental consequences. Here the development of this technology, from its fundamental concept and design to the diverse range of experimental methodologies to which it can now be applied, will be reviewed.


Subject(s)
Maleic Anhydrides/chemistry , Membrane Proteins/chemistry , Membrane Proteins/isolation & purification , Polymers/chemistry , Styrene/chemistry , Surface-Active Agents/chemistry , Molecular Structure , Solubility
13.
Chem Phys Lipids ; 219: 58-71, 2019 03.
Article in English | MEDLINE | ID: mdl-30711343

ABSTRACT

The membrane topology of the peptide 18A, a derivative of apolipoprotein A-I, is investigated in structural detail. Apolipoprotein A-I is the dominant protein component of high density lipoproteins with important functions in cholesterol metabolism. 18A (Ac-DWLKA FYDKV AEKLK EAF- NH2) was designed to mimic the structure of tandem domains of class A amphipathic helices and has served as a lead peptide for biomedical applications. At low peptide-to-lipid ratios 18A partitions into phosphatidylcholine membranes with helix topologies parallel to the membrane surface, an alignment that is maintained when disc-like bicelles form at higher peptide-to-lipid ratios. Notably, the bicelles interact cooperatively with the magnetic field of the NMR spectrometer, thus the bilayer normal is oriented perpendicular to the magnetic field direction. A set of peptides that totals four 15N or 2H labelled positions of 18A allowed the accurate analysis of tilt and azimuthal angles relative to the membrane surface under different conditions. The topology agrees with a double belt arrangement forming a rim that covers the hydrophobic fatty acyl chains of the bicelles. In another set of experiments, it was shown that POPC nanodiscs prepared in the presence of diisobutylene/maleic acid (DIBMA) polymers can also be made to align in the magnetic field. Finally, the transmembrane domains of the DQ alpha-1 and DQ beta-1 subunits of the major histocomptability complex (MHC) class II have been prepared and reconstituted into magnetically oriented bicelles for NMR structural analysis.


Subject(s)
Lipid Bilayers/chemistry , Nanostructures/chemistry , Peptides/chemistry , Amino Acid Sequence , Dimyristoylphosphatidylcholine/chemistry , Magnetic Resonance Spectroscopy , Phosphatidylcholines/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL