Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Curr Res Toxicol ; 7: 100180, 2024.
Article in English | MEDLINE | ID: mdl-39007079

ABSTRACT

Administration of phthalates in utero disrupts gene expression and hormone levels in the fetal rat testis, which are key events in an Adverse Outcome Pathway (AOP) for the Phthalate Syndrome. These measures can be used to predict the postnatal adverse effects of phthalate esters (PEs) on male rat sexual differentiation. Here, pregnant rats were exposed to dibutyl (DBP)- and diisononyl (DINP) phthalate on gestational days 14 to 18 individually and as a mixture (DBP,250 mg/kg/d; DINP, 750 mg/kg/d; and DBP 250 mg/kg/d plus DINP 750 mg/kg/d). We found that each PE reduced testosterone production (T Prod) and related gene transcripts by about 50 % and that they acted in a dose additive manner, reducing T Prod and gene expression by 75 % as a mixture. Based upon effects on T Prod, DINP was 0.33 times as potent as DBP and thus the DBP + DINP mixture was predicted to be equivalent to 500 mg DBP/kg/d. Logistic regression models of T Prod predicted that the adverse effects of the DBP + DINP mixture group versus the DBP and DINP individual treatments would reduce anogenital distance (AGD) by 27 % versus 10 %, increase hypospadias in 18 % versus < 1 %, induce epididymal agenesis in 46 % versus 10 %, and increase areolae/nipples in 4.8 % versus < 0.1 % of the, respectively. These predictions were highly consistent with effects from previously published dose response studies on the male reproductive effects of DBP. In summary, these results support the use of this New Approach Method to predict the detrimental effects of PEs and PE mixtures, replacing or reducing the need to run long-term, resource and animal use intensive extended one-generation reproduction studies for this class of chemicals.

2.
Chemosphere ; 362: 142593, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866335

ABSTRACT

Diisononyl phthalate (DiNP) has been used to replace bis(2-ethylhexyl) phthalate (DEHP) and is frequently found in the environment and humans. DiNP is reported for its anti-androgenic activity; however, little is known about its effects on thyroid function and neurodevelopment. In the present study, the thyroid disruption and neurobehavioral alteration potential of DiNP and its major metabolites were assessed in a rat pituitary carcinoma cell line (GH3) and embryo-larval zebrafish (Danio rerio). In GH3 cells, exposure to DiNP and its metabolites not only increased proliferation but also induced transcriptional changes in several target genes, which were different from those observed with DEHP exposure. In larval fish, a 5-day exposure to DiNP caused significant increases in thyroid hormone levels, following a similar pattern to that reported for DEHP exposure. Following exposure to DiNP, the activity of the larval fish decreased, and neurodevelopment-related genes, such as c-fos, elavl3, and mbp, were down-regulated. These changes are generally similar to those observed for DEHP. Up-regulation of gap43 and down-regulation of elavl3 gene, which are important for both thyroid hormone production and neurodevelopment, respectively, support the potential for both thyroid and behavioral disruption of DiNP. Overall, these results emphasize the need to consider the adverse thyroid and neurodevelopmental effects in developing regulations for DEHP-replacing phthalates.

3.
Sci Total Environ ; 912: 169613, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38154627

ABSTRACT

BACKGROUND: The potential role of dermal exposure diisononyl phthalate (DINP) as an adjuvant in allergic inflammation and asthma has been suggested. However, the current findings do not provide enough evidence to support this claim. OBJECTIVES: The purpose of this investigation was to examine the impact and mechanisms of allergic asthma exacerbation through the dermal exposure to DINP. METHODS: The study was undertaken using OVA-sensitized mice. Lung histopathology and airway hyperreactivity (AHR) were assessed. Expression levels of immunoglobulins (t-IgE, OVA-IgE and OVA-IgG1), cytokines (IL-31, IL-4, IL-5, IL-6, IL-13 and INF-γ), and TRPV1 were measured. To investigate the mechanism by which allergic asthma worsens due to dermal exposure to DINP, the blockade analysis using the IL-31 antagonist SB-431542 and the TRPV1 antagonist capsazepine (CZP) were performed. RESULTS: The findings of the study revealed that the simultaneous exposure to DINP and OVA resulted in an increase in inspiratory resistance (Ri) and expiratory resistance (Re), a decrease in the minimum value of lung dynamic compliance (Cldyn), and worsened airway remodeling. Additionally, it was found that this exposure led to an increase in the levels of IL-31 and TRPV1, which are biomarkers of Th2 cytokines (IL-4, IL-5, IL-6, and IL-13), as well as immunoglobulins (Total IgE, OVA-lgE, and OVA-IgG1), while decreasing the biomarker of Th1 cytokines (IFN-γ). However, these impairments showed improvement after the administration of SB-431542 or CZP. CONCLUSION: The findings of this research indicate that the IL-31/TRPV1 pathway plays a moderating function in OVA-induced allergic asthma worsened by dermal exposure to DINP.


Subject(s)
Asthma , Benzamides , Dioxoles , Interleukin-13 , Phthalic Acids , TRPV Cation Channels , Mice , Animals , Ovalbumin/toxicity , Interleukin-13/toxicity , Interleukin-4/toxicity , Interleukin-4/metabolism , Mice, Inbred BALB C , Interleukin-5/toxicity , Interleukin-6 , Asthma/metabolism , Lung/pathology , Cytokines/metabolism , Immunoglobulin E , Immunoglobulin G , Bronchoalveolar Lavage Fluid
4.
Ecotoxicol Environ Saf ; 268: 115686, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976928

ABSTRACT

As one of the most important phthalates, di-isononyl phthalate (DINP) has been widely used as a common plasticizer in the food and personal care products sectors. In our previous study, we found that DINP can induce autophagy of ovarian granulosa cells; while the underlying mechanism is unclear. In the study, we showed that DINP exposure could induce autophagy of ovarian granulosa cells and KGN cells, accompanied with the increase in the mRNA and protein level of DDIT4. Furthermore, overexpression of DDIT4 were shown to induce autophagy of KGN cells; while knockdown of DDIT4 inhibited DINP-induced autophagy, implying that DDIT4 played an important role in DINP-induced autophagy of ovarian granulosa cells. There were three putative binding sites of transcription factor ATF4 in the promoter region of DDIT4 gene, suggesting that DDIT4 might be regulated by ATF4. Herein, we found that overexpression of ATF4 could upregulate the expression of DDIT4 in KGN cells, while knockdown of ATF4 inhibited its expression. Subsequently, ATF4 was identified to bind to the promoter region of DDIT4 gene and promote its transcription. The expression of ATF4 was also increased in the DINP-exposed granulosa cells, and ATF4 overexpression promoted autophagy of KGN cells; whereas knockdown of ATF4 alleviated DINP-induced upregulation of DDIT4 and autophagy of the cells. Taken together, DINP triggered autophagy of ovarian granulosa cells through activating ATF4/DDIT4 signals.


Subject(s)
Gene Expression Regulation , Phthalic Acids , Female , Humans , Phthalic Acids/chemistry , Autophagy/genetics , Granulosa Cells
5.
Environ Sci Technol ; 57(48): 19202-19213, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37931007

ABSTRACT

We assessed phthalate-hormone associations in 382 pregnant women of the new-generation SEPAGES cohort (2014-2017, France) using improved exposure and outcome assessments. Metabolites from seven phthalate compounds and the replacement di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (≈21 samples/trimester). Metabolites from five steroid hormones were measured in maternal hair samples collected at delivery, reflecting cumulative levels over the previous weeks to months. Adjusted linear regression and Bayesian weighted quantile sum (BWQS) mixture models were performed. Each doubling in third-trimester urinary mono-benzyl phthalate (MBzP) concentrations was associated with an average increase of 13.3% (95% CI: 2.65, 24.9) for ∑cortisol, 10.0% (95% CI: 0.26, 20.7) for ∑cortisone, 17.3% (95% CI: 1.67, 35.4) for 11-dehydrocorticosterone, and 16.2% (95% CI: 2.20, 32.1) for testosterone, together with a suggestive 10.5% (95% CI: -1.57, 24.1) increase in progesterone levels. Each doubling in second-trimester urinary di-isononyl phthalate (DiNP) concentrations was inversely associated with testosterone levels (-11.6%; 95% CI: -21.6, -0.31). For most hormones, a nonsignificant trend toward a positive phthalate mixture effect was observed in the third but not in the second trimester. Our study showed that exposure to some phthalate metabolites, especially MBzP, may affect adrenal and reproductive hormone levels during pregnancy.


Subject(s)
Environmental Pollutants , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Bayes Theorem , Phthalic Acids/metabolism , Steroids , Testosterone , Hair/metabolism , Environmental Exposure , Maternal Exposure
6.
J Hazard Mater ; 460: 132392, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37657325

ABSTRACT

Epidemiological evidence indicates a significant relationship between exposure to diisononyl phthalate and allergic asthma. Despite this, the mechanism underlying this association remains unclear. Previous toxicological researches have suggested that the development of allergic asthma may involve the activation of endoplasmic reticulum stress (ERS) and the nuclear factor κ-B (NF-κB) pathways. Nevertheless, it is currently unknown whether these specific signaling pathways are implicated in diisononyl phthalate (DINP)-induced allergic asthma. The objective of this research was to understand how DINP exacerbates allergic asthma in Balb/c mice through ERS and NF-κB pathways. To systematically examine the aggravated effects of DINP in Balb/c mice, we measured airway hyperresponsiveness (AHR), lung tissue pathology, cytokines, and ERS and NF-κB pathway biomarkers. Additionally, we applied the ERS antagonist phenylbutyric acid (4-PBA) or the NF-κB antagonist pyrrolidine dithiocarbamate (PDTC) to verify the mediating effects of ERS and NF-κB on DINP-exacerbated allergic asthma. The results of our experiment show that oral DINP exposure may exacerbate airway hyperresponsiveness and airway remodeling. This deterioration is accompanied by an imbalance in immunoglobulin levels, Th17/Treg cells, ERS, and NF-κB biomarkers, leading to the activation of pro-inflammatory pathways. Furthermore, our study found that the blocking effect of 4-PBA or PDTC can inhibit the Th17/Treg imbalance and effectively alleviate symptoms resembling allergic asthma. In conclusion, ERS and NF-κB signaling pathways play an important role in regulating DINP-induced allergic asthma exacerbations.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Mice , NF-kappa B , Mice, Inbred BALB C , Asthma/chemically induced , Signal Transduction , Endoplasmic Reticulum Stress
7.
J Expo Sci Environ Epidemiol ; 33(5): 778-786, 2023 09.
Article in English | MEDLINE | ID: mdl-37726506

ABSTRACT

BACKGROUND: ortho-phthalates and other plasticizers impart flexibility to plastics in food production, processing, and packaging; food consumption is a dominant plasticizer exposure pathway. Lower molecular weight ortho-phthalates are being replaced in plastic products due to toxicity concerns, but toxic hazards of and exposures to replacement ortho-phthalates and other plasticizers are poorly understood. OBJECTIVE: We measured 12 ortho-phthalates and 9 other plasticizers in conventional and organic U.S. food products to assess magnitude and profiles of contamination. METHODS: We measured plasticizers in 34 vegetable oils, 10 milks, 18 infant formulas, and 9 cheese powders from macaroni kits using gas chromatography coupled with mass spectrometry (GC-MS). We analyzed plastic packaging composition using FTIR spectroscopy. RESULTS: We detected eight ortho-phthalates and three alternatives ((1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), diethylhexyl terephthalate (DEHT), and diisobutyl adipate (DIBA). Diethylhexyl phthalate (DEHP) was measured in all 71 products. DEHT had the highest concentration of any plasticizer (>10,000 ng/g in three oils). Oils had the highest total plasticizer (median = 770 ng/g, max = 14,900 ng/g) and milk the lowest (median = 88 ng/g, max = 120 ng/g). Organic milk and refined oils had higher median plasticizer levels than conventional. Refined oils had significantly lower concentrations than unrefined oils. Maximum contributors for every category were non-ortho-phthalates: DEHT (powdered infant formula and oils) and DIBA (cheese powder, milk and liquid formula). Plasticizers were not detected in packaging except epoxidized soybean oil in liquid formula lids. IMPACT STATEMENT: Human exposure to plasticizers is a significant public health concern. Nevertheless, sources of such exposures are poorly characterized. This study adds valuable information for estimating legacy and alternative plasticizer exposures from foods. The method developed for measuring DINCH, DINP and DIDP broadens the range of plasticizers other researchers may analyze in future work. The profiles of plasticizer contamination varied depending on the food type. We also document that food processing may be a source of plasticizer contamination in foods.


Subject(s)
Diethylhexyl Phthalate , Food Contamination , Food Packaging , Phthalic Acids , Humans , Oils , Phthalic Acids/analysis , Plasticizers/analysis , Plasticizers/toxicity , United States
8.
Reprod Toxicol ; 120: 108446, 2023 09.
Article in English | MEDLINE | ID: mdl-37482143

ABSTRACT

Di-isononyl phthalate (DiNP), an endocrine-disrupting chemical, is found in numerous consumer products and human exposure to this phthalate is becoming inevitable. The impact of DiNP exposure on the establishment and maintenance of pregnancy remains largely unknown. Thus, we conducted studies in which pregnant mice were exposed to an environmentally relevant dose (20 µg/kg BW/day) of DiNP on days 1-7 of gestation, then analyzed the effects of this exposure on pregnancy outcome. Our studies revealed that exposure to DiNP during this window led to fetal loss towards the end of gestation. Further studies showed that, although embryos were able to attach to the uterus, implantation sites in DiNP-exposed uteri exhibited impaired differentiation of stromal cells to decidual cells and an underdeveloped angiogenic network in the decidual bed. We also found that exposure to this phthalate has a significant effect on trophoblast differentiation and causes disorganization of the placental layers. The labyrinth was significantly reduced, resulting in compromised expression of nutrient transporters in the placentas of mice exposed to DiNP. These placental defects in DiNP-exposed females were the cause of fetal loss during the later stages of gestation.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Mice , Pregnancy , Female , Animals , Placentation , Placenta , Phthalic Acids/toxicity
9.
Toxicol Sci ; 193(1): 48-61, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36929940

ABSTRACT

Phthalates are found in plastic food containers, medical plastics, and personal care products. However, the effects of long-term phthalate exposure on female reproduction are unknown. Thus, this study investigated the effects of long-term, dietary phthalate exposure on estrous cyclicity and fertility in female mice. Adult female CD-1 mice were fed chow containing vehicle control (corn oil) or 0.15-1500 ppm of di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), or a mixture of phthalates (Mix) containing DEHP, DiNP, benzyl butyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, and diethyl phthalate. Measurements of urinary phthalate metabolites confirmed effective delivery of phthalates. Phthalate consumption for 11 months did not affect body weight compared to control. DEHP exposure at 0.15 ppm for 3 and 5 months increased the time that the mice spent in estrus and decreased the time the mice spent in metestrus/diestrus compared to control. DiNP exposure (0.15-1500 ppm) did not significantly affect time in estrus or metestrus/diestrus compared to control. Mix exposure at 0.15 and 1500 ppm for 3 months decreased the time the mice spent in metestrus/diestrus and increased the time the mice spent in estrus compared to control. DEHP (0.15-1500 ppm) or Mix (0.15-1500 ppm) exposure did not affect fertility-related indices compared to control. However, long-term DiNP exposure at 1500 ppm significantly reduced gestational index and birth rate compared to control. These data indicate that chronic dietary exposure to phthalates alters estrous cyclicity, and long-term exposure to DiNP reduces gestational index and birth rate in mice.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Mice , Female , Animals , Diethylhexyl Phthalate/toxicity , Birth Rate , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Periodicity
10.
Toxicol Rep ; 10: 348-356, 2023.
Article in English | MEDLINE | ID: mdl-36923442

ABSTRACT

One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in ∼ 25 % of genes for BPA, ∼ 22 % for BPF and ∼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.

11.
Toxicol Appl Pharmacol ; 465: 116454, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36921846

ABSTRACT

Some phthalate esters alter male rat reproductive development during sexual differentiation by interfering with fetal testis maturation resulting in reduced Leydig Cell synthesis of testosterone and insulin-like 3 (Insl3) hormones. Gene transcripts associated with steroid hormone and cholesterol transport, and cholesterol synthesis and lipid metabolism also are reduced. These alterations cause permanent malformations of hormone-dependent tissues, sperm production and fertility in male offspring; effects known as the "Phthalate Syndrome." We have shown that administration of a high dose of 750 mg diisononyl phthalate (750 mg/kg/d DINP) during sex differentiation reduced fetal testis testosterone production (T Prod), testis gene expression and induced a low incidence of reproductive malformations in male rat offspring. In the current study we administered DINP at even higher dose levels (1.0 and 1.5 g/kg/d) from gestational day (GD) 14 to postnatal (PND) 3 to determine if these effects were dose related and if the magnitude of the effects could be predicted from a statistical model of fetal testosterone production (T Prod) and Insl3 mRNA levels. These models were previously developed using dipentyl phthalate (DPeP) data from fetal T Prod and postnatal studies. We found that the severity of the demasculinizing effects on the androgen-dependent organs and gubernaculum by DINP were accurately predicted from the statistical models of fetal T prod and Insl3 mRNA, respectively. Taken together, our results indicate that reductions fetal T prod and Insl3 predict the severity of demasculinizing effects in utero exposure to the phthalates DINP and DPeP regardless of potency.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Rats , Male , Animals , Testosterone/metabolism , Cytochrome P-450 CYP2B1/metabolism , Cytochrome P-450 CYP2B1/pharmacology , Rats, Sprague-Dawley , Semen/metabolism , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Testis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cholesterol/metabolism
12.
Article in English | MEDLINE | ID: mdl-36767519

ABSTRACT

Toxicological research into the impact of plasticizer on different organs has been reported in the past few decades, while their effects on shifting the gut microbiota and immune cells homeostasis in zebrafish were only studied recently. However, studies on the impact of plasticizer on human gut microbiota are scarce. In this study, we co-incubated healthy human fecal microbiota with different concentrations of Di(2-ethylhexyl) phthalate (DEHP) and di-iso-nonyl phthalate (DINP), analyzed microbial composition by 16S rDNA sequencing, and compared the influence of their derived microbiomes on the human enterocyte (HT-29) and murine macrophage (RAW264.7) cell lines. Microbial diversity is reduced by DEHP treatment in a dose-dependent manner. DEHP treatment reduced the phyla Firmicutes/Bacteroidetes ratio, while DINP treatment promoted Proteobacteria. Expressions of tight/adherens junction genes in HT-29 and anti-inflammatory genes in RAW264.7 were down-regulated by plasticizer-co-incubated microbiota derived metabolites. Overall, it is observed that selected plasticizers at high dosages can induce compositional changes in human microbiota. Metabolites from such altered microbiota could affect the tight junction integrity of the intestinal epithelium and upset macrophage differentiation homeostasis in proximity. Chronic exposure to these plasticizers may promote risks of dysbiosis, leaky gut or the exacerbation of intestinal inflammation.


Subject(s)
Diethylhexyl Phthalate , Gastrointestinal Microbiome , Phthalic Acids , Humans , Mice , Animals , Plasticizers/toxicity , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Zebrafish/metabolism
13.
Toxics ; 10(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35878278

ABSTRACT

Plasticizers are chemicals in high demand, used in a wide range of commercial products. Human are exposed through multiple pathways, from numerous sources, to multiple plasticizers. This is a matter of concern, as it may contribute to adverse health effects. The vascular system carries plasticizers throughout the body and therefore can interact with the endothelium. The aim of the study was to evaluate the in vitro toxicity on endothelial cells by considering the individual and the mixture effects of bis-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP) or bis-(2-ethylhexyl) terephthalate (DEHT). In this study, their cytotoxicity on HMEC-1 cells was evaluated on cell function (viability, cell counting, total glutathione and intracellular adenosines) and mitochondrial function (mitochondrial respiration). Results showed cellular physiological perturbations induced with all the condition tested, excepted for DEHT. Plasticizers induced a cytotoxicity by targeting mitochondrial respiration, depleting mitochondrial ATP production and increasing glycolytic metabolism. Additionally, delayed effects were observed between the cellular and the mitochondrial parameters. These results suggest that endothelial cells could go through a metabolic adaptation to face plasticizer-induced cellular stress, to effectively maintain their cellular processes. This study provides additional information on the adverse effects of plasticizers on endothelial cells.

14.
Toxics ; 10(2)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35202261

ABSTRACT

Di-isononyl phthalate (DiNP) is a plasticizer used to impart flexibility or stability in a variety of products including polyvinyl chloride, cable coatings, artificial leather, and footwear. Previous studies have examined the impact of DiNP on gut integrity and the colonic immune microenvironment, but this study further expands the research by examining whether DiNP exposure alters the colonic microbiota and various immune markers. Previous studies have also revealed that environmental microbes degrade various phthalates, but no studies have examined whether anaerobic gut bacteria can degrade DiNP. Thus, this study tested the hypothesis that DiNP exposure alters the gut microbiota and immune-related factors, and that anaerobic bacteria in the gut can utilize DiNP as the sole carbon source. To test this hypothesis, adult female mice were orally dosed with corn oil or various doses of DiNP for 10-14 consecutive days. After the treatment period, mice were euthanized during diestrus. Colonic contents were collected for full-length 16S rRNA gene sequencing to identify the bacteria in the colon contents. Sanger sequencing of the 16S rRNA gene was used to identify bacteria that were able to grow in Bacteroides minimal media with DiNP as the sole carbon source. Colon tissues were collected for immunohistochemistry of immune(-related) factors. An environmentally relevant dose of DiNP (200 µg/kg) significantly increased a Lachnoclostridium taxon and decreased Blautia compared to the control. Collectively, minimal changes in the colonic microbiota were observed as indicated by non-significant beta-diversities between DiNP treatments and control. Furthermore, three strains of anaerobic bacteria derived from the colon were identified to use DiNP as the sole carbon source. Interestingly, DiNP exposure did not alter protein levels of interleukin-6, tumor necrosis factor alpha, claudin-1, and mucin-1 compared to the control. Collectively, these findings show that DiNP exposure alters the gut microbiota and that the gut contains DiNP-degrading microbes.

15.
Article in English | MEDLINE | ID: mdl-34889166

ABSTRACT

In this study, one hundred and twenty-eight toys and children's care items available in the Kosovo market were analyzed to determine the presence of phthalates and evaluate if the analyzed samples meet the national and EU standards. Toys and children's care items were imported from twelve countries, most of them from China. Phthalates were extracted and then analyzed using gas chromatography and mass spectrometry. Nine phthalates were analyzed in total, of them, benzyl butyl phthalate, di-isodecyl phthalate, diisobutyl phthalate and di-isononyl phthalate were the most frequently detected phthalates in the analyzed samples. Phthalates were not detected only in three toys and children's care items, others contained one or more phthalates, while none of them contained all (nine) analyzed phthalates. In total, 22 analyzed toys and children's care items did not fulfill at least one of the EU standards, of these 16 were toys and children's care items intended for children under age three and designed to be placed in the mouth. Overall, our work shows that toys and children's care items that exceed EU standards for phthalates are still present in the Kosovo market.


Subject(s)
Phthalic Acids , Child , China , Gas Chromatography-Mass Spectrometry/methods , Humans , Kosovo , Phthalic Acids/analysis , Play and Playthings
16.
Food Chem Toxicol ; 151: 112102, 2021 May.
Article in English | MEDLINE | ID: mdl-33711377

ABSTRACT

Previously, we reported that exposure to diisononyl phthalate (DINP) resulted in cognitive deficits and anxiety in mice (https://doi.org/10.1038/srep14676). Artificial light at night (ALAN) is now recognized as being a potential threat to human health. However, toxicological evidence concerning exposure to a combination of ALAN and DINP in vivo is limited. To this end, mice were orally exposed to different concentrations of DINP for 28 consecutive days, and ALAN (intensity 150 lux, every night for 12 h). The results showed that oxidative stress levels increased with increasing DINP exposure concentrations, which triggered apoptosis (Bcl-2 levels decreased, Bax levels increased), resulting in nerve cell damage and a decline in the learning and memory abilities of mice. The combined effects of ALAN and DINP exposure on the learning ability and memory of mice are more serious than for DINP exposure alone. The antioxidant vitamin E was shown to have a certain antagonistic effect on the oxidative damage caused by ALAN and DINP exposure. These results highlight a previously unknown relationship between exposure to ALAN and DINP-induced learning and memory impairment, and provide evidence that ALAN may be exacerbating the effects of DINP.


Subject(s)
Learning Disabilities/chemically induced , Light , Memory Disorders/chemically induced , Phthalic Acids/toxicity , Animals , Learning Disabilities/pathology , Memory Disorders/pathology , Mice
17.
Article in English | MEDLINE | ID: mdl-33412299

ABSTRACT

Diisononyl phthalate (DINP) as one of the most commonly used phthalates, has been found in various environmental samples and is considered to have potential risks to ecosystem. Till now, DINP has no clear effect consensus on insects from development to behavior and even mechanisms. Here, Drosophila melanogaster was selected as model organisms and the toxic effects of DINP (0.1%, 0.2%, 0.5% and 1.0%) (v/v) on its metamorphosis, crawling behavior, intestinal cells and cellular redox balance were investigated. During metamorphosis process, lower hatching rate, longer development time, lighter body weight and malformation were observed at high concentration groups. The crawling ability of larvae was severely inhibited by DINP and the movement distance was drastically reduced. DINP could cause severe damage to the larval intestinal cells in the dose-dependent and time-dependent manners. DINP was found to induce redox imbalance with activities of two important antioxidant enzymes (catalase (CAT) and superoxide dismutase (SOD)) increasing, and reactive oxygen species (ROS) level fluctuation in larvae. Our findings provide theoretical basis and data support for scientific management of DINP to reduce ecological risk.


Subject(s)
Drosophila melanogaster , Larva , Metamorphosis, Biological/drug effects , Phthalic Acids/toxicity , Plasticizers/toxicity , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/growth & development , Larva/drug effects , Larva/growth & development
18.
Environ Res ; 192: 110249, 2021 01.
Article in English | MEDLINE | ID: mdl-32980305

ABSTRACT

Obesity rates are increasing globally, and recent theories suggest that phthalates may contribute to obesity development. This longitudinal study aimed to investigate associations between environmental phthalate exposure during childhood and obesity, utilizing data from 100 participants from a Swedish birth cohort. The participants were followed repeatedly from birth and provided spot urine samples at 4 years. Weight and height were measured at ages 4, 8, 16 and 24 years, as well as additional anthropometric indices at 24 years. Urine samples were analysed for 10 phthalate metabolites using liquid chromatography tandem mass spectrometry. Generalized estimating equation models were performed to assess overall and age-specific associations between urinary phthalate concentrations and BMI groups; thin/normal weight vs overweight/obese. After adjustment for potential confounders, overall associations were observed for diisononyl phthalate (DiNP) metabolites mono(oxo-isononyl) phthalate (MOiNP) (OR per increase ng/ml: 1.18; 95% CI: 1.05, 1.33), mono(carboxy-isooctyl) phthalate (MCiOP) (OR: 1.06; 95% CI: 1.01, 1.11) and ∑DiNP (OR: 1.02; 95% CI:1.00, 1.04) and development of overweight/obesity up to age 24 years. Age-specific associations were observed for the same metabolites at 8, 16 and 24 years. Furthermore, linear regression analysis revealed associations between increased body fat % at age 24 years and MHiNP (ß: 2.42; 95% CI: 0.44, 4.39), MOiNP (ß: 2.32; 95% CI: 0.46, 4.18), MCiOP (ß: 2.65; 95% CI: 0.41, 4.89) and ∑DiNP (ß: 2.65; 95% CI: 0.52, 4.77). These findings suggest that DiNP exposure during preschool age may be associated with subsequent obesity, however these findings need to be corroborated by further research.


Subject(s)
Environmental Pollutants , Phthalic Acids , Adolescent , Adult , Body Weight , Child , Child, Preschool , Environmental Exposure , Environmental Pollutants/analysis , Humans , Longitudinal Studies , Obesity/chemically induced , Obesity/epidemiology , Phthalic Acids/toxicity , Young Adult
19.
Biol Reprod ; 104(2): 305-316, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33125036

ABSTRACT

Di-isononyl phthalate (DiNP) is a high molecular weight, general purpose, plasticizer used primarily in the manufacture of polymers and consumer products. It can be metabolized rapidly and does not bioaccumulate. The primary metabolite of DiNP is monoisononyl-phthalate (MiNP) and the secondary metabolites include three oxidative derivatives of DiNP, which have been identified mainly in urine: mono-oxoisononyl phthalate (MOINP or oxo-MiNP), mono-carboxyisooctyl phthalate (MCIOP, MCOP or cx-MiNP), and mono-hydroxyisononyl phthalate (MHINP or OH-MiNP). The secondary metabolites are very sensitive biomarkers of DiNP exposure while primary metabolites are not. As the usage of DiNP worldwide increases, studies evaluating its potential reproductive toxicity are becoming more prevalent in the literature. In studies on female animals, the researchers found that the exposure to DiNP appears to induce negative effects on ovarian function and fertility in animal models. Whether or not DiNP has direct effects on the uterus is still controversial, and the effects on human reproduction require much more research. Studies on males indicate that DiNP exposure has disruptive effects on male reproduction and fertility. Occupational studies also indicate that the exposure to DiNP might induce negative effects on male reproduction, but larger cohort studies are needed to confirm this. This review presents an overview of the literature regarding the reproductive effects of exposure to DiNP.


Subject(s)
Environmental Pollutants/toxicity , Phthalic Acids/toxicity , Plasticizers/toxicity , Reproduction/drug effects , Animals , Environmental Monitoring
20.
Toxicol Lett ; 335: 37-50, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33086118

ABSTRACT

This study investigates possible effects of in utero exposure of rats to a low dose (125 mg/kg bw/day) and a high dose (750 mg/kg bw/day) of Diisononyl phthalate (DINP) during the masculinisation programming window (MPW) which is embryonic days 15.5-18.5 (e15.5 - e18.5). Dibutyl phthalate (DBP) was used at a high dose level (750 mg/kg bw/day) as an established positive control substance for anti-androgenic effects on the developing male reproductive tract. We focussed on the MPW and measured a multitude of biological endpoints at various life stages and applied state of the art histopathology staining techniques to refine the characterization of potential changes to the testis, beyond what is currently available with DINP. If DINP can mediate testicular dysgenesis (TDS) disorders, this exposure window would be sufficient to induce androgen impacts and alter male reproductive tract development as shown earlier in this validated experimental model with DBP. Overall, the results of this systematic comparison provide convincing evidence on the differences between the effects occurring with DBP and DINP. In contrast to what was seen with DBP, DINP did not cause cryptorchidism or hypospadias, had no effect on anogenital distance/anogenital index (AGD/AGi) and Leydig cell aggregates on e17.5 and e21.5 did not increase. With DINP no reduction of intratesticular testosterone, no effects on sperm motility and sperm count and no effect on adult testosterone or luteinizing hormone (LH) levels were seen. Our results demonstrate that DINP does not cause the adverse reproductive effects known to occur with DBP, a well-established endocrine disruptor.


Subject(s)
Dibutyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Fetal Development/drug effects , Phthalic Acids/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Testis/drug effects , Animals , Cryptorchidism/chemically induced , Cryptorchidism/embryology , Dose-Response Relationship, Drug , Female , Fetal Development/genetics , Gene Expression/drug effects , Hypospadias/chemically induced , Hypospadias/embryology , Leydig Cells/drug effects , Leydig Cells/pathology , Male , Pregnancy , Rats , Rats, Wistar , Sperm Motility/drug effects , Spermatogenesis/drug effects , Testis/embryology , Testis/growth & development , Testis/pathology , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...