Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Foods ; 12(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38002204

ABSTRACT

In this study, a protective agent was added to prepare a high-activity Lactiplantibacillus plantarum x3-2b bacterial powder as a fermentation agent and explore its effect on the physicochemical quality, biogenic amines, and flavor of fermented lamb jerky. A composite protective agent, composed of 15% skim milk powder and 10% trehalose, was used, and bacterial mud was mixed with the protective agent at a 1:1.2 mass ratio. The resulting freeze-dried bacterial powder achieved a viable count of 5.1 lg CFU/g with a lyophilization survival rate of 87.58%. Scanning electron microscopy revealed enhanced cell coverage by the composite protective agent, maintaining the cell membrane's integrity. Inoculation with x3-2b bacterial powder increased the pH and the reduction in aw, enhanced the appearance and texture of fermented lamb jerky, increased the variety and quantity of flavor compounds, and reduced the accumulation of biogenic amines (phenethylamine, histamine, and putrescine). This research provides a theoretical basis for improving and regulating the quality of lamb jerky and establishes a foundation for the development of bacterial powder for the commercial fermentation of meat products.

2.
Crit Rev Food Sci Nutr ; : 1-11, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36322689

ABSTRACT

Nitrite has been widely used in meat products for its abilities including color formation, antimicrobial properties, flavor formation and preventing lipid oxidation. However, the possible generation of N-nitrosamines through reaction of nitrite with secondary amines arises many concerns in the usage of nitrite. For a long time, nitrite substitution is unsettled issue in the meat industry. Many attempts have been tried, however, the alternative solutions are often ephemeral and palliative. In recent years, bacterial nitric oxide synthase (bNOS) has received attention for its critical roles, especially in reddening meat products. This comprehensive background study summarizes the application of bNOS in colorizing meat products, its functions in bacteria, and methods of regulating the bNOS pathway. Based on this information, some strategies for promoting the nitric oxide yield for effectively substituting nitrite are presented, such as changing the environmental conditions for bacterial survival and adding substrate. Thus, bNOS is a promising nitrite substitute for color formation, and further research on its other roles in meat needs to be carried out to obtain the complete picture.

3.
Foods ; 11(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35954079

ABSTRACT

The "Chorizo Zamorano" dry fermented sausage is a traditional Spanish product which is highly appreciated by consumers. This paper studies the reformulation of this product in order to improve its lipid composition and its fatty acid profile and to reduce its fat content. To achieve this, the fat used in the production of the product was partially replaced with high oleic sunflower oil in proportions of 12.5%, 20%, and 50% of the total fat content. Proximate analysis, fatty acid profiles, lipid oxidation, and sensory analysis were studied. The replacement of fat with oil showed a significant effect on the evolution of the parameters analyzed during ripening in all cases. The batches with sunflower oil presented higher levels of monounsaturated fatty acids (MUFA) and lower levels of saturated fatty acids (SFA) and a similar amount of polyunsaturated fatty acids (PUFA) to the control products. The replacement of up to 20% of oil showed no significant differences for most of the physicochemical and sensory parameters analyzed at the end of the ripening.

4.
Int J Food Microbiol ; 374: 109727, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35605456

ABSTRACT

This study was aimed on the detection of methicillin resistant Staphylococcus aureus (MRSA) in different categories of retailed ready-to-eat (RTE) meat products from the Czech producers and determination of their genetic properties, antimicrobial resistance and virulence. In RTE meat products, 2% (4/181) of examined samples were MRSA positive. MRSA strains were detected only in durable fermented meat products made exclusively from pork meat. Detection of livestock-associated MRSA (LA-MRSA) clonal lineages (ST398 and ST4999), SCCmec cassette type V and tetracycline resistance indicate a source of contamination from raw pork. The study confirms the ability of these strains to survive the technological process rather than contamination of meat products from the food processing environment. MRSA strains did not carry any of the tested genes encoding staphylococcal enterotoxins or virulence genes (for Panton-Valentine leukocidin, exfoliative toxins A, B and toxic shock syndrome). Our results point out the spread of LA-MRSA through the meat processing chain.


Subject(s)
Meat Products , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Czech Republic , Livestock , Meat , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
5.
Meat Sci ; 159: 107936, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31518708

ABSTRACT

The substitution of dietary fiber and probiotic strains to reduce fat content of fermented sausages has been used for the development of innovative and healthier meat products. For this study, pork back fat was partially replaced by fructooligosaccharides (FOS) and the probiotic strains Lactobacillus paracasei and Lactobacillus rhamanosus. The fat replacement resulted in a significant decrease (P ≤ .05) in fat content (29%) compared with the control formulation (no fat substitution). The addition of FOS did not have a significant effect on microbial counts; however, reductions in Enterobacteriaceae and yeast were observed when Lactobacillus strains were also incorporated. The inclusion of FOS and probiotic strains did not show any significant effect on lipid oxidation and proteolysis. The partial fat replacement and the addition of Lactobacillus rhamanosus GG as probiotic strain in Spanish Salchichón can be considered a successful reformulation strategy for the meat product market.


Subject(s)
Lactobacillus/physiology , Meat Products/standards , Oligosaccharides/chemistry , Probiotics , Animals , Fermentation , Humans , Lipid Peroxidation , Meat Products/analysis , Meat Products/microbiology , Sensation , Swine , Time Factors
6.
Anim Sci J ; 88(3): 507-516, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27480048

ABSTRACT

In the lactic acid bacteria (LAB) strains screened from our LAB collection, Lactobacillus (L.) sakei strain no. 23 and L. curvatus strain no. 28 degraded meat protein and tolerated salt and nitrite in vitro. Fermented sausages inoculated strains no. 23 and no. 28 showed not only favorable increases in viable LAB counts and reduced pH, but also the degradation of meat protein. The sausages fermented with these strains showed significantly higher antioxidant activity than those without LAB or fermented by each LAB type strain. Angiotensin-I-converting-enzyme (ACE) inhibitory activity was also significantly higher in the sausages fermented with strain no. 23 than in those fermented with the type strain. Higher ACE inhibitory activity was also observed in the sausages fermented with strain no. 28, but did not differ significantly from those with the type strain. An analysis of the proteolysis and degradation products formed by each LAB in sausages suggested that those bioactivities yielded fermentation products such as peptides. Therefore, LAB starters that can adequately ferment meat, such as strains no. 23 and no. 28, should contribute to the production of bioactive compounds in meat products.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/analysis , Antioxidants/analysis , Fermentation , Lactobacillus/physiology , Meat Products/analysis , Meat Products/microbiology , Meat/analysis , Meat/microbiology , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL