Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Development ; 147(12)2020 06 22.
Article in English | MEDLINE | ID: mdl-32439761

ABSTRACT

The development of the biliary system is a complex yet poorly understood process, with relevance to multiple diseases, including biliary atresia, choledochal cysts and gallbladder agenesis. We present here a crucial role for Hippo-Yap/Taz signaling in this context. Analysis of sav1 mutant zebrafish revealed dysplastic morphology and expansion of both intrahepatic and extrahepatic biliary cells, and ultimately larval lethality. Biliary dysgenesis, but not larval lethality, is driven primarily by Yap signaling. Re-expression of Sav1 protein in sav1-/- hepatocytes is able to overcome these initial deficits and allows sav1-/- fish to survive, suggesting cell non-autonomous signaling from hepatocytes. Examination of sav1-/- rescued adults reveals loss of gallbladder and formation of dysplastic cell masses expressing biliary markers, suggesting roles for Hippo signaling in extrahepatic biliary carcinomas. Deletion of stk3 revealed that the phenotypes observed in sav1 mutant fish function primarily through canonical Hippo signaling and supports a role for phosphatase PP2A, but also suggests Sav1 has functions in addition to facilitating Stk3 activity. Overall, this study defines a role for Hippo-Yap signaling in the maintenance of both intra- and extrahepatic biliary ducts.


Subject(s)
Biliary Tract/metabolism , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Acyltransferases , Animals , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/metabolism , Biliary Tract/anatomy & histology , Biliary Tract/growth & development , CRISPR-Cas Systems/genetics , Carboxylic Ester Hydrolases/metabolism , Gallbladder/anatomy & histology , Gallbladder/growth & development , Gallbladder/metabolism , Larva/growth & development , Larva/metabolism , Liver/anatomy & histology , Liver/metabolism , Phenotype , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Serine-Threonine Kinase 3 , Signal Transduction , Trans-Activators/genetics , Transcription Factors/genetics , YAP-Signaling Proteins , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
2.
Dev Biol ; 458(2): 228-236, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31697936

ABSTRACT

Significant efforts have advanced our understanding of foregut-derived organ development; however, little is known about the molecular mechanisms that underlie the formation of the hepatopancreatic ductal (HPD) system. Here, we report a role for the homeodomain transcription factor Hhex in directing HPD progenitor specification in zebrafish. Loss of Hhex function results in impaired HPD system formation. We found that Hhex specifies a distinct population of HPD progenitors that gives rise to the cystic duct, common bile duct, and extra-pancreatic duct. Since hhex is not uniquely expressed in the HPD region but is also expressed in endothelial cells and the yolk syncytial layer (YSL), we tested the role of blood vessels as well as the YSL in HPD formation. We found that blood vessels are required for HPD patterning, but not for HPD progenitor specification. In addition, we found that Hhex is required in both the endoderm and the YSL for HPD development. Our results shed light on the mechanisms directing endodermal progenitors towards the HPD fate and emphasize the tissue specific requirement of Hhex during development.


Subject(s)
Hepatopancreas/embryology , Hepatopancreas/growth & development , Repressor Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified/metabolism , Body Patterning/physiology , Digestive System/metabolism , Embryo, Nonmammalian/metabolism , Endoderm/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental/genetics , Hepatopancreas/metabolism , Homeodomain Proteins/genetics , Repressor Proteins/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
3.
Semin Cell Dev Biol ; 66: 69-80, 2017 06.
Article in English | MEDLINE | ID: mdl-28214561

ABSTRACT

The hepatopancreatic ductal system is the collection of ducts that connect the liver and pancreas to the digestive tract. The formation of this system is necessary for the transport of exocrine secretions, for the correct assembly of the pancreatobiliary ductal system, and for the overall function of the digestive system. Studies on endoderm organ formation have significantly advanced our understanding of the molecular mechanisms that govern organ induction, organ specification and morphogenesis of the major foregut-derived organs. However, little is known about the mechanisms that control the development of the hepatopancreatic ductal system. Here, we provide a description of the different components of the system, summarize its development from the endoderm to a complex system of tubes, list the pathologies produced by anomalies in its development, as well as the molecules and signaling pathways that are known to be involved in its formation. Finally, we discuss its proposed potential as a multipotent cell reservoir and the unresolved questions in the field.


Subject(s)
Digestive System/growth & development , Endoderm/growth & development , Liver/growth & development , Pancreas/growth & development , Humans
SELECTION OF CITATIONS
SEARCH DETAIL