Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
J Biotechnol ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153547

ABSTRACT

As current methods of production of phycocyanobilin, a photosynthetic blue pigment derived from phycocyanin of filamentous cyanobacteria, Pseudanabaena sp. ABRG5-3, Limnothrix sp. SK1-2-1, and Spirulina sp., exhibit a low extraction efficiency, a new extraction method using ethanol extraction as a type of solvolysis with an autoclave (130 ℃, 5.7bar, 10min) was developed in this study. This method exhibited high efficiency and enabled easy recovery of the three types of phycocyanobilins. The identity of the three types of phycocyanobilins was confirmed by high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry. Phycocyanobilins were stable at high temperatures (80 ℃) and acidic (pH 3) conditions. Phycocyanobilins also possessed a remarkable antioxidant property. This is the first time that a simple phycocyanobilin extraction method with a recovery rate of more than 60% and approximately 1% per dry cell weight of filamentous cyanobacteria has been demonstrated. This novel production method is thus convenient and effective for obtaining high-purity phycocyanobilins.

2.
J Biotechnol ; 391: 64-71, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38844247

ABSTRACT

We investigated suitable culture conditions for the production of the blue pigment phycocyanin (PC) from the unique filamentous cyanobacteria Pseudanabaena sp. ABRG5-3 and Limnothrix sp. SK1-2-1. White, green, or red LED irradiation at 30 µmol photons/m2/s was effective for phycocyanin production when compared with Arthrospira platensis (Spirulina) sp. NIES-39, which is generally grown under high light irradiation. To investigate the safety of the cyanobacteria, ABRG5-3 cells were subjected to Ames (reverse mutation) tests and single oral-dose rat studies, which revealed non-mutagenic and non-toxic properties. When three purified phycocyanins (abPC, skPC, and spPC) were subjected to agarose gel electrophoresis, they showed different mobility, indicating that each phycocyanin has unique properties. abPC exhibited strong antiglycation activities as novel function.


Subject(s)
Cyanobacteria , Phycocyanin , Phycocyanin/pharmacology , Cyanobacteria/metabolism , Animals , Rats , Glycosylation , Male , Mutagenicity Tests
3.
Sci Total Environ ; 926: 171632, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38471589

ABSTRACT

Regulating photosynthetic machinery is a powerful but challenging strategy for selectively inhibiting bloom-forming cyanobacteria, in which photosynthesis mainly occurs in thylakoids. P-coumaric acid (p-CA) has several biological properties, including free radical scavenging and antibacterial effects, and studies have shown that it can damage bacterial cell membranes, reduce chlorophyll a in cyanobacteria, and effectively inhibit algal growth at concentrations exceeding 0.127 g/L. Allelochemicals typically inhibit cyanobacteria by inhibiting photosynthesis; however, research on inhibiting harmful algae using phenolic acids has focused mainly on their inhibitory and toxic effects and metabolite levels, and the molecular mechanism by which p-CA inhibits photosynthesis remains unclear. Thus, we examined the effect of p-CA on the photosynthesis of Limnothrix sp. in detail. We found that p-CA inhibits algal growth and damages photosynthesis-related proteins in Limnothrix sp., reduces carotenoid and allophycocyanin levels, and diminishes the actual quantum yield of Photosystem II (PSII). Moreover, p-CA significantly altered algal cell membrane protein systems, and PSII loss resulting from p-CA exposure promoted reactive oxygen species production. It significantly altered algae cell membrane protein systems. Finally, p-CA was found to be environmentally nontoxic; 80 % of 48-h-old Daphnia magna larvae survived when exposed to 0.15 g/L p-CA. These findings provide insight into the mechanism of cyanobacterial inhibition by p-CA, providing a more practical approach to controlling harmful algal blooms.


Subject(s)
Coumaric Acids , Cyanobacteria , Proteomics , Chlorophyll A/metabolism , Cyanobacteria/metabolism , Photosynthesis , Harmful Algal Bloom , Photosystem II Protein Complex/metabolism
4.
Int J Biol Macromol ; 252: 126503, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37633558

ABSTRACT

Cyanobacterial polyhydroxybutyrate (PHB) is preferred over bacteria for low-cost production due to its photoautotrophic nature and lower carbon requirement. Considering its impact on the environment and circular economy, the valorization of fruit waste is the need of the hour. In the present study, fruit peels of banana, orange, pea, jackfruit, watermelon and waste flowers were tried as carbon sources for mangrove-isolated cyanobacteria Limnothrix planktonica to accumulate PHB. Alterations in the ASN-III culture medium and the introduction of untreated and pre-treated (acid/alkali-treated) peels as carbon sources are tried to enhance PHB. Banana peel showed the maximum PHB accumulation potential of 25.73 mg/L on the 12th day of incubation, followed by jackfruit (22.46 mg/L) and watermelon peels (20.72 mg/L); whereas, commercial carbon sources showed lower PHB accumulation up to 19.26 mg/L and 18.21 mg/L with fructose and glucose respectively. PHB accumulation was boosted to 5-fold higher (39.39 mg/L) in NP deficiency medium along with banana peel supplement, as compared to photoautotrophic conditions (8.49 mg/L) after the 9th day of incubation. Additionally, the PHB obtained by using the fruit wastes has a higher molecular weight than the PHB accumulated during photoautotrophic conditions. Optimization of parameters using fruit wastes and characterization of PHB would lead to its potential use.


Subject(s)
Cyanobacteria , Fruit , Carbon , Hydroxybutyrates , Polyesters
5.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35808131

ABSTRACT

In this work, we demonstrated the ability of the cyanobacterium Pseudanabaena/Limnothrix sp. to produce ultra-small silver nanoparticlesin the forms of metallic silver (Ag0) and silver oxides (AgxOy) via a facile green synthetic process. The biological compounds in the cyanobacterial cellular extract acted both as reducing agents for silver ions and functional stabilizing agents for the silver nanoparticles. Furthermore, the antibacterical activity of the as-synthesized nanoparticles against Gram-negative Escherichia coli and Gram-positive Corynebacterium glutamicum bacterial cells was evaluated. The experimental results revealed a remarkable bactericidal activity of the nanoparticles that was both time-dependent and dose-dependent. In addition to their excellent bactericidal properties, the developed nanoparticles can be used as nanosupports in various environmental, biological, and medical applications.

6.
BMC Biotechnol ; 21(1): 40, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34134665

ABSTRACT

BACKGROUND: Most commercial phycocyanins are extracted from a filamentous cyanobacterium, Arthrospira (Spirulina) platensis. Owing to the expenses of culture and complexities of the physical and chemical methods of phycocyanin purification, a more effective and simple method is required. RESULTS: We developed a new method for efficiently recovering the blue pigment protein, phycocyanin, from unique filamentous cyanobacteria, Pseudanabaena sp. ABRG5-3 and Limnothrix sp. SK1-2-1. The cells were cultivated in economy medium BG11 and lysed by adding water in a 1:16 ratio of wet cells to water. After extraction and purification, 28-30% dry cell weight of phycocyanin was obtained and its purity was confirmed. The stabilities of the phycocyanins at different pH in the presence of high temperature and light conditions and their antioxidant abilities were assessed. Results indicated that the phycocyanins were stable and possessed antioxidant properties. Interestingly, the Pseudanabaena phycocyanin was less likely to deteriorate under acidic conditions. CONCLUSIONS: Overall, we developed a promising and novel method for producing high functional phycocyanin concentrations at a low cost. The possibilities of adapting this new phycocyanin biorefinery to unique bioreactor utilization have also been discussed.


Subject(s)
Antioxidants/isolation & purification , Chemical Fractionation/methods , Phycocyanin/chemistry , Phycocyanin/isolation & purification , Spirulina/chemistry , Antioxidants/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Phycocyanin/metabolism , Spirulina/metabolism
7.
Bioorg Med Chem ; 28(3): 115272, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31883786

ABSTRACT

The usefulness of Marine-derived products as the source of anticancer agents has been explored for many decades. The objective of our study was to investigate the molecular mechanism by which C-PC induces apoptosis in monotherapy as well as in combination treatment with a known chemotherapeutic drug named Topotecan (TPT) using prostate cancer cells (LNCaP). To determine the intracellular mechanism of action, we analyzed the gene expression profile of C-PC treated cells using human apoptosis RT2 profiler PCR array, which indicated that C-PC was able to regulate both anti- and pro-apoptotic genes significantly. Detailed analysis revealed increases in the levels of Bax, Apaf-1 (pro-apoptotic proteins) along with the activation of the key apoptotic proteases such as caspase-8, caspase-9, and caspase-3. Similarly, analysis of anti-apoptotic proteins demonstrated a decrease in the expression of Bcl-2, Mcl-1, and survivin. Results from the whole-cell incubation studies indicated that C-PC was only binding to the plasma membrane-associated receptor proteins. LNCaP cells treated with C-PC alone and in combination with TPT showed increased expression of the death receptor FAS (also known as FAS or CD95) along with cleaved PARP, confirming its importance. Our study is significant since it is providing greater insight into the apoptotic mechanisms triggered by C-PC as well as emphasizing the involvement of FAS in mediating its effects. Furthermore, our results with combination treatments suggest that-PC could improve the anticancer effects of drugs such as TPT that are currently used for cancer treatments. In addition, use of C-PC in combination can also diminish the side effects resulting from conventional chemotherapeutic agents such as TPT.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Phycocyanin/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/genetics , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Molecular Structure , Phycocyanin/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Toxins (Basel) ; 11(11)2019 11 15.
Article in English | MEDLINE | ID: mdl-31731712

ABSTRACT

Human poisoning by microcystin has been recorded in many countries, including Brazil, where fatal cases have already occurred. The Amazon River is the main source of drinking water in municipalities such as Macapá, where there is no monitoring of cyanobacteria and cyanotoxins. This study investigated the presence of cyanobacteria and cyanotoxins in samples from a drinking water treatment plant (DWTP) that catches water from the Amazon River. The toxin analyses employed ELISA, LC/MS, and molecular screening for genes involved in the production of cyanotoxins. The sampling was carried out monthly from April 2015 to April 2016 at the intake (raw water) and exit (treated water) of the DWTP. This study reports the first detection of microcystin-LR (MC-LR) in the Amazon River, the world's largest river, and in its treated water destined for drinking water purposes in Macapá, Brazil. The cyanobacterial density and MC-LR concentration were both low during the year. However, Limnothrix planctonica showed a density peak (± 900 cells mL-1) in the quarter of June-August 2015, when MC-LR was registered (2.1 µg L-1). Statistical analyses indicate that L. planctonica may produce the microcystin.


Subject(s)
Drinking Water/chemistry , Microcystins/analysis , Rivers/chemistry , Water Purification/methods , Brazil , Chromatography, Liquid/methods , Cities , Enzyme-Linked Immunosorbent Assay/methods , Humans , Marine Toxins , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
9.
Mar Drugs ; 17(4)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010222

ABSTRACT

Ototoxicity, or adverse pharmacological effects on the inner ear or auditory nerve, is a common side effect of cisplatin, a platinum-based drug widely used in anticancer chemotherapy. Although the incidence of ototoxicity is high among patients that receive cisplatin therapy, there is currently no effective treatment for it. The generation of excessive reactive oxygen species (ROS) is considered to be the major cause of cisplatin-induced ototoxicity. C-phycocyanin (C-PC), a blue phycobiliprotein found in cyanobacteria and red algae, has antioxidant and anticancer activities in different experimental models in vitro and in vivo. Thus, we tested the ability of C-PC from Limnothrix sp. KNUA002 to protect auditory cells from cisplatin-induced ototoxicity in vitro. Pretreatment with C-PC from Limnothrix sp. KNUA002 inhibited apoptosis and protected mitochondrial function by preventing ROS accumulation in cisplatin-treated House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, a mouse auditory cell line. Cisplatin increased the expression of Bax and reduced the expression of Bcl-2, which activate and inhibit, respectively, the mitochondrial apoptotic pathway in response to oxidative stress. Pretreatment with C-PC prior to cisplatin treatment caused the Bax and Bcl-2 levels to stay close to the levels in untreated control cells. Our results suggest that C-PC from Limnothrix sp. KNUA002 protects cells against cisplatin-induced cytotoxicity by inhibiting the mitochondrial apoptotic pathway.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , Cyanobacteria/chemistry , Hair Cells, Auditory/drug effects , Hearing Loss/chemically induced , Hearing Loss/drug therapy , Phycocyanin/pharmacology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Survival/drug effects , Cyanobacteria/metabolism , Hair Cells, Auditory/metabolism , Hearing Loss/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Protective Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism
10.
Front Microbiol ; 9: 2811, 2018.
Article in English | MEDLINE | ID: mdl-30515147

ABSTRACT

Currently only four genome sequences for Limnothrix spp. are publicly available, and information on the genetic properties of cyanobacteria belonging to this genus is limited. In this study, we report the draft genome of Limnothrix sp. CACIAM 69d, isolated from the reservoir of a hydroelectric dam located in the Amazon ecosystem, from where cyanobacterial genomic data are still scarce. Comparative genomic analysis of Limnothrix revealed the presence of key enzymes in the cyanobacterial central carbon metabolism and how it is well equipped for environmental sulfur and nitrogen acquisition. Additionally, this work covered the analysis of Limnothrix CRISPR-Cas systems, pathways related to biosynthesis of secondary metabolites and assembly of extracellular polymeric substances and their exportation. A trans-AT PKS gene cluster was identified in two strains, possibly related to the novel toxin Limnothrixin biosynthesis. Overall, the draft genome of Limnothrix sp. CACIAM 69d adds new data to the small Limnothrix genome library and contributes to a growing representativeness of cyanobacterial genomes from the Amazon region. The comparative genomic analysis of Limnothrix made it possible to highlight unique genes for each strain and understand the overall features of their metabolism.

11.
Harmful Algae ; 76: 1-10, 2018 06.
Article in English | MEDLINE | ID: mdl-29887200

ABSTRACT

Mitigation of cyanobacterial or "blue-green algal" blooms is a challenging task for water managers across Australia. In the present study, a regional drinking water source (located in Central Queensland) was studied to identify the potential risks posed by cyanobacteria. Data were collected from the drinking water source (a lagoon) as well as the drinking water supply infrastructure, at monthly intervals between September 2012 and December 2014. In March 2013 there was an extreme rainfall event where floodwaters infiltrated the water supply without passing through bank filtration. The floodwaters also compromised the bank filtration via erosion. The pump well and bank filtration system were subsequently upgraded/maintained in May 2013. Results showed that following the extreme event and infrastructure upgrade, two distinct Limnothrix redekei blooms microscopically identified, were detected in the drinking water supply chain. Further investigations indicated that the species was also present in the pump well infrastructure, a dark environment, growing on the surface of the newly installed pump well cement pipe. After observing the occurrence and habitat niche of this species during the present study, a suggestion was made to minimise cyanobacterial contamination and proliferation within the water supply chain infrastructure. The preliminary proposal is to use clean sand on the sub-surface layer of the bank filtration, complemented with biologically active sand as a surface cap. Furthermore, the culturing techniques reported in this study can potentially be used to optimize assessment for Limnothrix redekei populations surrounding water extraction points.


Subject(s)
Cyanobacteria/physiology , Filtration , Floods , Harmful Algal Bloom , Water Purification , Water Resources , Queensland
12.
J Mol Model ; 24(5): 108, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29619654

ABSTRACT

Asparaginases are found in a range of organisms, although those found in cyanobacteria have been little studied, in spite of their great potential for biotechnological application. This study therefore sought to characterize the molecular structure of an L-asparaginase from the cyanobacterium Limnothrix sp. CACIAM 69d, which was isolated from a freshwater Amazonian environment. After homology modeling, model validation was performed using a Ramachandran plot, VERIFY3D, and the RMSD. We also performed molecular docking and dynamics simulations based on binding free-energy analysis. Structural alignment revealed homology with the isoaspartyl peptidase/asparaginase (EcAIII) from Escherichia coli. When compared to the template, our model showed full conservation of the catalytic site. In silico simulations confirmed the interaction of cyanobacterial isoaspartyl peptidase/asparaginase with its substrate, ß-Asp-Leu dipeptide. We also observed that the residues Thr154, Thr187, Gly207, Asp218, and Gly237 were fundamental to protein-ligand complexation. Overall, our results suggest that L-asparaginase from Limnothrix sp. CACIAM 669d has similar properties to E. coli EcAIII asparaginase. Our study opens up new perspectives for the biotechnological exploitation of cyanobacterial asparaginases.


Subject(s)
Aminopeptidases/chemistry , Bacterial Proteins/chemistry , Cyanobacteria/enzymology , Molecular Docking Simulation , Molecular Dynamics Simulation
13.
J Biotechnol ; 280: 55-61, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29678391

ABSTRACT

Biomass yields and biofuel production were examined in a dual (solid and liquid)-phase cultivation system (DuPHA) with the unique filamentous cyanobacteria, Pseudanabaena sp. ABRG 5-3 and Limnothrix sp. SK1-2-1. Continuous circular cultivation was driven under the indoor closed (IC) or indoor opened (IO) conditions and provided biomass yields of approximately 8-27 g dry cell weight (DCW) floor m-2 d-1. Alkanes of heptadecane (C17H36) or pentadecane (C15H32) as liquid biofuels were also recovered from the lower liquid-phase, in which cyanobacteria were dropped from the upper solid-phase and continuously cultivated with a small amount of medium. After the main cultivation in DuPHA, the upper solid-phase of a cotton cloth on which cyanobacteria grew was dried and directly subjected to a combustion test. This resulted in the thermal power (kJ s-1) of the cloth with microalgae increasing approximately 20-50% higher than that of the cloth only, suggesting a possibility of using the solid phase with microalgae as solid biofuel.


Subject(s)
Biofuels/microbiology , Biotechnology/methods , Cyanobacteria/growth & development , Biomass , Bioreactors/microbiology , Cyanobacteria/metabolism , Microalgae/growth & development , Microalgae/metabolism
14.
Environ Toxicol Pharmacol ; 51: 142-155, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28343753

ABSTRACT

In this study, we isolated five indigenous cyanobacterial strains from different aqueous environments, with heavy metals contamination, in East Azerbaijan Province (northwest portion of Iran). A strain was identified by morphological and 16S rRNA sequence analysis as Limnothrix sp. KO05 and selected for further studies as having the greatest potential for cadmium uptake. Scanning electron microscopy (SEM) demonstrated cyanobacterium Limnothrix sp. KO05 forms filamentous structures and is straight or curved to some extent. The utmost biosorption capacity was found to be 82.18±1.22mgg-1 at a Cd (II) concentration level of 150mgL-1. Langmuir adsorption isotherm indicated a better fit to the experimental data. Response surface methodology (RSM) on the basis of four independent variables and the predicted maximum biosorption efficiency was 98.7% under the optimum condition. FT-IR spectroscopy profile of the Cd treated sample as demonstrated in confirmation of the benefits of various functional groups of proteins and polysaccharides of cyanobacterial biomass, involved in surface binding of Cd. The determination of catalase (CAT) activity in strain KO05 exposed to Cd (II) concentrations of 2, 5 and 10mgL-1 showed an increase in enzyme activity after 24h exposure compared to unexposed cells. Correspondingly, CAT activity showed a significant decrease after 48h of treatment with Cd (II) concentrations of 5 and 10mgL-1. CAT activity was decreased significantly at all concentrations within 72h after exposure to Cd. On the contrary, while ascorbate peroxidase (APX) gave the expected lower activity compared to the CAT within 24h after Cd treatment, its activity lasted up to 72h. Limnothrix sp. KO05 cells treated with 5 and 10mgL-1 Cd (II) over 72h exposure showed a reduction in chlorophyll a contents compared to the controls. However, following exposure to Cd, chlorophyll a and carotenoid contents is reduced and after overcoming stress and deployment of an adaptation mechanism, the amounts of these pigments is gradually increased in the cells. The reduction was slower for chlorophyll a pigment compared to carotenoids that may be an indication of the physiological importance of chlorophyll pigment for the phtosynthetic cells. Results related to lipid peroxidation in Limnothrix sp. KO05 represent a significant increase of MDA in the first 24h after exposure to the different concentrations of Cd (2, 5 and 10mgL-1). However, the MDA levels were decreased over time and no significant difference attained after 72h exposure to Cd concentrations of 2 and 10mgL-1 compared to control.


Subject(s)
Antioxidants/metabolism , Cadmium/toxicity , Cyanobacteria/drug effects , Cyanobacteria/enzymology , Models, Theoretical , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Biological Transport , Biomass , Cadmium/metabolism , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Environmental Monitoring , Iran , Water Pollutants, Chemical/metabolism
15.
Biochem Biophys Res Commun ; 477(3): 395-400, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27329814

ABSTRACT

The cyanobacterial aldehyde deformylating oxygenase (cADO) is a key enzyme that catalyzes the unusual deformylation of aliphatic aldehydes for alkane biosynthesis and can be applied to the production of biofuel in vitro and in vivo. In this study, we determined crystal structures of two ADOs from Limnothrix sp. KNUA012 (LiADO) and Oscillatoria sp. KNUA011 (OsADO). The structures of LiADO and OsADO resembled those of typical cADOs, consisting of eight α-helices found in ferritin-like di-iron proteins. However, structural comparisons revealed that while the LiADO active site was vacant of iron and substrates, the OsADO active site was fully occupied, containing both a coordinated metal ion and substrate. Previous reports indicated that helix 5 is capable of adopting two distinct conformations depending upon the existence of bound iron. We observed that helix 5 of OsADO with an iron bound in the active site presented as a long helix, whereas helix 5 of LiADO, which lacked iron in the active site, presented two conformations (one long and two short helices), indicating that an equilibrium exists between the two states in solution. Furthermore, acquisition of a structure having a fully occupied active site is unique in the absence of higher iron concentrations as compared with other cADO structures, wherein low affinity for iron complicates the acquisition of crystal structures with bound iron. An in-depth analysis of the ADO apo-enzyme, the enzyme with substrate bound, and the enzyme with both iron and substrate bound provided novel insight into substrate-binding modes in the absence of a coordinated metal ion and suggested a separate two-step binding mechanism for substrate and iron co-factors. Moreover, our results provided a comprehensive structural basis for conformational changes induced by binding of the substrate and co-factor.


Subject(s)
Aldehydes/metabolism , Cyanobacteria/enzymology , Oxygenases/chemistry , Amino Acid Sequence , Catalytic Domain , Cloning, Molecular , Oxygenases/genetics , Oxygenases/metabolism , Sequence Homology, Amino Acid
16.
Rev. colomb. biotecnol ; 15(1): 159-166, ene.-jun. 2013. ilus, tab
Article in Spanish | LILACS | ID: lil-696129

ABSTRACT

Se evalúo el efecto de la salinidad (15, 25 y 35 UPS) y concentración de nitrato (4, 8 y 16 mmoles L-1) sobre el crecimiento y composición bioquímica de la cianobacteria Limnothrix sp. (LAEP- 52) con miras a su explotación para fines biotecnológicos. La cianobacteria se cultivó durante 20 días a 25°C, 98 µmol m-2s-1, fotoperiodo 12:12 y aireación continua (200 mL min-1). El crecimiento fue evaluado cada 48 horas a través de la medición de la densidad óptica a 730 nm. Se evidenció que la salinidad y la concentración de nitrato modulan el crecimiento y la composición bioquímica de Limnothrix sp. El mayor crecimiento (6.3 ± 0.38 mg mL-1), contenidos de proteínas (57 ± 4.56 %), ficocianina (170.3 ± 13.6 µg mL-1) y clorofila a (16 ± 1.28 µg mL-1) se obtuvieron a la menor salinidad (15 UPS) y mayor concentración de nitrato (16 mmoles L-1). Por el contrario, las mayores concentraciones de lípidos (21.3± 1.19 %), carbohidratos (14.47 ± 1.15 %) y carotenoides (6 ± 0.48 µg mL-1) se lograron en la mayor salinidad (35 UPS) y menor concentración de nitrato (4 mmoles L-1). La producción de exopolisacáridos sólo fue influenciada por la salinidad, llegando a alcanzar sus mayores valores a 35 UPS (1600 ± 112.25 mg L-1). Los contenidos de proteínas, lípidos, carbohidratos y pigmentos obtenidos en esta cianobacteria permiten catalogarla como un organismo que puede ser usado en las industrias biotecnológicas, ya sea como alimento para organismos cultivados o como fuente de metabolitos de interés industrial.


In this research we evaluate the effect of salinity (15, 25 and 35 UPS) and nitrate concentration (4, 8 and 16 mmoles L-1) on growth and biochemical composition of the cyanobacterium Limnothrix sp. (LAEP-52) with a view to exploitation for biotechnological purposes. The cyanobacterium was grown in volumes of 1 L for 20 days. The culture conditions included 25 °C, irradiance of 98 µmol m-2 s-1, photoperiod 12:12 and continuous aeration (200 mL min-1). Growth was evaluated every 48 hours through the measurement of optical density at 730 nm. It showed that salinity and concentration of nitrate modulate the growth and biochemical composition of Limnothrix sp. The highest values of growth (6.3 ± 0.38 mg mL-1), protein content (57 ± 4.56%), phycocyanin (170.3 ± 13.6 mg mL-1) and chlorophyll a (16 ± 1.28 mg mL-1) were obtained at the lowest salinity (15 UPS) and highest levels of nitrate (16 mmolesL-1). By contrast, higher concentrations of lipids (21.3 ± 1.19%), carbohydrate (14.47 ± 1.15%) and carotenoids (6 ± 0.48 mg mL-1) were achieved in the highest salinity (35 UPS) and the lowest concentrations of nitrate (4 mmoles L-1). The production of exopolysaccharides was only influenced by salinity, reaching its highest values at 35 UPS (1600 ± 112.25 mg L-1). The content of proteins, lipids, carbohydrates and pigments obtained in this cyanobacterium allow cataloged as an organism which can be used in biotechnology industries, either as feed for farmed organisms or as a source of metabolites of industrial interest.


Subject(s)
Biotechnology , Culture Media , Cyanobacteria , Biochemistry , Chemistry, Bioinorganic
SELECTION OF CITATIONS
SEARCH DETAIL