Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 186: 114318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729711

ABSTRACT

The microbiome of surfaces along the beef processing chain represents a critical nexus where microbial ecosystems play a pivotal role in meat quality and safety of end products. This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution. Our findings highlighted that microbial communities change dynamically in the different steps along beef processing chain, influenced by the specific conditions of each micro-environment. Brochothrix thermosphacta, Carnobacterium maltaromaticum, Pseudomonas fragi, Psychrobacter cryohalolentis and Psychrobacter immobilis were identified as the key species that characterize beef processing environments. Carcass samples and slaughterhouse surfaces exhibited a high abundance of antibiotic resistance genes (ARGs), mainly belonging to aminoglycosides, ß-lactams, amphenicols, sulfonamides and tetracyclines antibiotic classes, also localized on mobile elements, suggesting the possibility to be transmitted to human pathogens. We also evaluated how the initial microbial contamination of raw beef changes in response to storage conditions, showing different species prevailing according to the type of packaging employed. We identified several genes leading to the production of spoilage-associated compounds, and highlighted the different genomic potential selected by the storage conditions. Our results suggested that surfaces in beef processing environments represent a hotspot for beef contamination and evidenced that mapping the resident microbiome in these environments may help in reducing meat microbial contamination, increasing shelf-life, and finally contributing to food waste restraint.


Subject(s)
Food Microbiology , Microbiota , Red Meat , Microbiota/genetics , Red Meat/microbiology , Animals , Cattle , Food Handling/methods , Bacteria/genetics , Bacteria/classification , Metagenomics/methods , Drug Resistance, Bacterial/genetics , Abattoirs , Anti-Bacterial Agents/pharmacology , Food Contamination/analysis , Drug Resistance, Microbial/genetics , Food Packaging
2.
Zoonoses Public Health ; 70(1): 22-45, 2023 02.
Article in English | MEDLINE | ID: mdl-36082435

ABSTRACT

Enhanced Salmonella surveillance programmes in poultry were implemented in all European Member States, with minimum prevalence targets for a list of targeted serotypes to safeguard food and public health. Based on the Belgian Salmonella surveillance programme and focusing on poultry, the overarching aim of this study was to highlight possible Salmonella transmissions across the food chain (FC). For this purpose, firstly, the prevalence patterns of Salmonella (targeted and the most prevalent non-targeted) serotypes along the FC were described over time. Secondly, the effectiveness of the control measures against vertical transmission (breeders to 1-day-old broiler and layer chicks) was indirectly assessed by looking into the odds of targeted serotypes detection. Thirdly, it was appraised if Salmonella prevalence can significantly increase during broilers and layers production. In addition, it was tested if being tested negative at the end of production in broilers when tested positive at the entrance is serotype dependent (targeted vs. non-targeted serotypes). Results showed that, firstly, the prevalence patterns of the listed serotypes were inconstant over time and across the FC. Secondly, the odds of Salmonella targeted serotype detection in 1-day-old broiler and in 1-day-old layer flocks were lower than in breeder flocks while, thirdly, infection during broiler and layer production can lead to significant increase in positivity in subsequent samples. Finally, being infected by a targeted or by non-targeted serotype at the entrance of the flock poorly reflects the Salmonella status at the end of production. Note that this study did not make a distinction between the different sources of contamination and the effects of sampling methods and isolation methods should be subject to further investigation.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Animals , Poultry , Chickens , Food Chain , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/prevention & control , Salmonella , Prevalence , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control
3.
Int J Food Microbiol ; 374: 109727, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35605456

ABSTRACT

This study was aimed on the detection of methicillin resistant Staphylococcus aureus (MRSA) in different categories of retailed ready-to-eat (RTE) meat products from the Czech producers and determination of their genetic properties, antimicrobial resistance and virulence. In RTE meat products, 2% (4/181) of examined samples were MRSA positive. MRSA strains were detected only in durable fermented meat products made exclusively from pork meat. Detection of livestock-associated MRSA (LA-MRSA) clonal lineages (ST398 and ST4999), SCCmec cassette type V and tetracycline resistance indicate a source of contamination from raw pork. The study confirms the ability of these strains to survive the technological process rather than contamination of meat products from the food processing environment. MRSA strains did not carry any of the tested genes encoding staphylococcal enterotoxins or virulence genes (for Panton-Valentine leukocidin, exfoliative toxins A, B and toxic shock syndrome). Our results point out the spread of LA-MRSA through the meat processing chain.


Subject(s)
Meat Products , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Czech Republic , Livestock , Meat , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
4.
Microorganisms ; 9(5)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925810

ABSTRACT

Antimicrobial resistance is a major public health problem and is mainly due to the indiscriminate use of antimicrobials in human and veterinary medicine. The consumption of animal-based foods can contribute to the transfer of these genes between animal and human bacteria. Resistant and multi-resistant bacteria such as Salmonella spp. and Campylobacter spp. have been detected both in animal-based foods and in production environments such as farms, industries and slaughterhouses. This review aims to compile the techniques for detecting antimicrobial resistance using traditional and molecular methods, highlighting their advantages and disadvantages as well as the effectiveness and confidence of their results.

5.
Rev Argent Microbiol ; 53(1): 59-63, 2021.
Article in English | MEDLINE | ID: mdl-32736818

ABSTRACT

Campylobacter jejuni is an important foodborne pathogen with global distribution. We describe a genotyping study of a collection of C. jejuni (n=137) isolated from different broiler farms and from multiple sites along the processing line in a slaughterhouse in Argentina during 2011, 2012 and 2015. The isolates were genotyped using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Based on the PFGE results, the isolates were grouped into 26 pulsotypes. Subsequently, the isolates representing these 26 pulsotypes were chosen for MLST genotyping, which identified 16 different sequence types (STs) and 6 clonal complexes (CCs) (21, 45, 48, 353, 354, 446). Several of the STs (n=7) have not been previously reported in the PubMLST.org database. The most prevalent CCs were 21, 45 (both associated with human campylobacteriosis worldwide) and 353. This study showed high genetic diversity among C. jejuni in the broiler production environment in Argentina with novel MLST genotypes.


Subject(s)
Campylobacter jejuni , Animals , Argentina/epidemiology , Campylobacter jejuni/genetics , Chickens , Humans , Meat , Molecular Epidemiology , Multilocus Sequence Typing
6.
Foods ; 9(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202859

ABSTRACT

Food of animal origin, especially meat products, represent the main vehicle of foodborne pathogens and so are implicated in foodborne outbreaks. Poultry meat is a widely consumed food in various forms, but it is also a reservoir of thermotolerant Campylobacter and Salmonella bacterial species. To assess human health risks associated with pathogenic bacteria in poultry meat, the use of quantitative microbial risk assessment (QMRA) has increased over the years as it is recognized to address complex food safety issues and is recommended by health authorities. The present project reviewed poultry meat QMRA, identified key steps of the farm-to-fork chain with significant impacts on food safety, highlighted current knowledge gaps, and provided risk mitigation advices. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-based systematic analysis was carried out and enabled the collection of 4056 studies including 42 QMRA kept for analysis after screening. The latter emphasized Campylobacter spp. and Salmonella spp. contaminations during the consumer stage as the main concern. The role of consumer handling on cross-contamination and undercooking events were of major concern. Thus, proper hygiene and safety practices by consumers have been suggested as the main intervention and would need to be followed with regular surveys to assess behavior changes and reduce knowledge gaps.

7.
Foods ; 9(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233782

ABSTRACT

Foodborne microbial diseases have a significant impact on public health, leading to millions of human illnesses each year worldwide. Pork is one of the most consumed meat in Europe but may also be a major source of pathogens introduced all along the farm-to-fork chain. Several quantitative microbial risk assessment (QMRA) have been developed to assess human health risks associated with pork consumption and to evaluate the efficiency of different risk reduction strategies. The present critical analysis aims to review pork QMRA. An exhaustive search was conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. It resulted in identification of a collection of 2489 papers including 42 on QMRA, after screening. Among them, a total of 29 studies focused on Salmonella spp. with clear concern on impacts at the slaughterhouse, modeling the spreading of contaminations and growth at critical stages along with potential reductions. Along with strict compliance with good hygiene practices, several potential risk mitigation pathways were highlighted for each slaughterhouse step. The slaughterhouse has a key role to play to ensure food safety of pork-based products but consideration of the whole farm-to-fork chain is necessary to enable better control of bacteria. This review provides an analysis of pork meat QMRA, to facilitate their reuse, and identify gaps to guide future research activities.

8.
Res Vet Sci ; 132: 481-484, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32799172

ABSTRACT

The transmission of antimicrobial resistance genes from enteric bacteria from the animal reservoir to indigenous bacteria in meat is a serious concern, as it can contribute to human exposure to antimicrobial resistance genes. The aim of this study was to investigate plasmid-mediated horizontal transfer of antimicrobial resistance genes from Escherichia coli to indigenous environmental bacteria in minced pork stored at 10 and 37 °C. E. coli MG1555 containing a gfp-tagged plasmid carrying tetracycline, kanamycin and streptomycin resistance genes was used as the donor with the indigenous bacteria in minced pork acting as potential recipients. The results demonstrated that enteric members of the pork meat microbiota were able to receive gfp-plasmids from the E. coli donor strain at both 10 and 37 °C. The majority of transconjugants were identified as Serratia spp. through sequencing of their 16S rRNA genes. This indicates that environmental Serratia spp. and other Enterobacteriaceae may play a role as carrier of antimicrobial resistance genes through the meat production chain to the consumer.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Meat/microbiology , Serratia/drug effects , Serratia/genetics , Animals , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/drug effects , Food Microbiology , Gene Transfer, Horizontal , Microbial Sensitivity Tests/veterinary , Plasmids , RNA, Ribosomal, 16S/genetics , Swine
SELECTION OF CITATIONS
SEARCH DETAIL