Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Appl Environ Microbiol ; 89(12): e0063023, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38054732

ABSTRACT

IMPORTANCE: Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.


Subject(s)
Burkholderia cepacia complex , Burkholderia , Fusarium , Mycotoxins , Animals , Humans , Mycotoxins/metabolism , Fusaric Acid/metabolism , Burkholderia/metabolism , Burkholderia cepacia complex/metabolism , Fungi/metabolism , Soil , Fusarium/metabolism , Plant Diseases/microbiology
2.
Elife ; 122023 08 29.
Article in English | MEDLINE | ID: mdl-37642294

ABSTRACT

Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.


Subject(s)
Coleoptera , Mycobacterium tuberculosis , Animals , Mice , Mycobacterium tuberculosis/genetics , Propionates , Reactive Oxygen Species , Homeostasis , Oxidation-Reduction , Mutagenesis
3.
J Fungi (Basel) ; 9(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675929

ABSTRACT

BACKGROUND: Paracoccidioidomycosis is a systemic mycosis caused by the inhalation of conidia of the genus Paracoccidioides. During the infectious process, fungal cells use several carbon sources, leading to the production of propionyl-CoA. The latter is metabolized by the methylcitrate synthase, a key enzyme of the methylcitrate cycle. We identified an inhibitor compound (ZINC08964784) that showed antifungal activity against P. brasiliensis. METHODS: This work aimed to understand the fungal metabolic response of P. brasiliensis cells exposed to ZINC08964784 through a proteomics approach. We used a glucose-free medium supplemented with propionate in order to simulate the environment found by the pathogen during the infection. We performed pyruvate dosage, proteolytic assay, dosage of intracellular lipids and quantification of reactive oxygen species in order to validate the proteomic results. RESULTS: The proteomic analysis indicated that the fungal cells undergo a metabolic shift due to the inhibition of the methylcitrate cycle and the generation of reactive species. Proteolytic enzymes were induced, driving amino acids into degradation for energy production. In addition, glycolysis and the citric acid cycle were down-regulated while ß-oxidation was up-regulated. The accumulation of pyruvate and propionyl-CoA led the cells to a state of oxidative stress in the presence of ZINC08964784. CONCLUSIONS: The inhibition of methylcitrate synthase caused by the compound promoted a metabolic shift in P. brasiliensis damaging energy production and generating oxidative stress. Hence, the compound is a promising alternative for developing new strategies of therapies against paracoccidioidomycosis.

4.
Food Chem ; 410: 135443, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36680882

ABSTRACT

Botrytis cinerea is a devastating pathogen causing gray mold in fruits and vegetables if not properly managed. Although the mechanisms remain unclear, we previously revealed that the safe food additive calcium propionate (CP) could suppress gray mold development on grapes. The present study reports that sub-lethal dose of CP (0.2 % w/v) could allow growth with substantial reprograming the genome-wide transcripts of B. cinerea. Upon CP treatment, the genes related to fungal methylcitrate cycle (responsible for catabolizing propionate) were upregulated. Meanwhile, CP treatment broadly downregulated the transcript levels of the virulence factors. Further comparative analysis of multiple transcriptomes confirmed that the CP treatment largely suppressed the expression of genes related to development and function of infection cushion. Collectively, these findings indicate that CP can not only reduce fungal growth, but also abrogate fungal virulence factors. Thus, CP has significant potential for the control of gray mold in fruit crops.


Subject(s)
Propionates , Virulence Factors , Botrytis , Plant Diseases/microbiology
5.
mBio ; 13(6): e0254122, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36377867

ABSTRACT

The human pathogen Pseudomonas aeruginosa (Pa) is one of the most frequent and severe causes of nosocomial infection. This organism is also a major cause of airway infections in people with cystic fibrosis (CF). Pa is known to have a remarkable metabolic plasticity, allowing it to thrive under diverse environmental conditions and ecological niches; yet, little is known about the central metabolic pathways that sustain its growth during infection or precisely how these pathways operate. In this work, we used a combination of 'omics approaches (transcriptomics, proteomics, metabolomics, and 13C-fluxomics) and reverse genetics to provide systems-level insight into how the infection-relevant organic acids succinate and propionate are metabolized by Pa. Moreover, through structural and kinetic analysis of the 2-methylcitrate synthase (2-MCS; PrpC) and its paralogue citrate (CIT) synthase (GltA), we show how these two crucial enzymatic steps are interconnected in Pa organic acid assimilation. We found that Pa can rapidly adapt to the loss of GltA function by acquiring mutations in a transcriptional repressor, which then derepresses prpC expression. Our findings provide a clear example of how "underground metabolism," facilitated by enzyme substrate promiscuity, "rewires" Pa metabolism, allowing it to overcome the loss of a crucial enzyme. This pathogen-specific knowledge is critical for the advancement of a model-driven framework to target bacterial central metabolism. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that, due to its unrivalled resistance to antibiotics, ubiquity in the built environment, and aggressiveness in infection scenarios, has acquired the somewhat dubious accolade of being designated a "critical priority pathogen" by the WHO. In this work, we uncover the pathways and mechanisms used by P. aeruginosa to grow on a substrate that is abundant at many infection sites: propionate. We found that if the organism is prevented from metabolizing propionate, the substrate turns from being a convenient nutrient source into a potent poison, preventing bacterial growth. We further show that one of the enzymes involved in these reactions, 2-methylcitrate synthase (PrpC), is promiscuous and can moonlight for another essential enzyme in the cell (citrate synthase). Indeed, mutations that abolish citrate synthase activity (which would normally prevent the cell from growing) can be readily overcome if the cell acquires additional mutations that increase the expression of PrpC. This is a nice example of the evolutionary utility of so-called "underground metabolism."


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/metabolism , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Propionates/metabolism , Kinetics , Transcription Factors , Pseudomonas Infections/microbiology
6.
Microb Cell ; 9(5): 123-125, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35647177

ABSTRACT

Unlike other heterotrophic bacteria, Mycobacterium tuberculosis (Mtb) can co-catabolize a range of carbon sources simultaneously. Evolution of Mtb within host nutrient environment allows Mtb to consume the host's fatty acids as a main carbon source during infection. The fatty acid-induced metabolic advantage greatly contributes to Mtb's pathogenicity and virulence. Thus, the identification of key enzymes involved in Mtb's fatty acid metabolism is urgently needed to aid new drug development. Two fatty acid metabolism enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and isocitrate lyase (ICL) have been intensively studied as promising drug targets, but recently, Quinonez et al. (mBio, doi: 10.1128/mbio.03559-21) highlighted a link between the fatty acid-induced dormancy-like state and drug tolerance. Using metabolomics profiling of a PEPCK-deficient mutant, Quinonez et al. identified that over-accumulation of methylcitrate cycle (MCC) intermediates are phenotypically associated with enhanced drug tolerance against first- and second- line TB antibiotics. This finding was further corroborated by metabolomics and phenotypic characterization of Mtb mutants lacking either ICL or 2-methylcitrate dehydratase. Fatty acid metabolism induced drug-tolerance was also recapitulated in wildtype Mtb after treatment with authentic 2-methylisocitrate, an MCC intermediate. Together, the fatty acid-induced dormancy-like state and drug tolerance are attributed to dysregulated MCC activity.

7.
mBio ; 13(1): e0355921, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35012349

ABSTRACT

Mycobacterium tuberculosis can cocatabolize a range of carbon sources. Fatty acids are among the carbons available inside the host's macrophages. Here, we investigated the metabolic changes of the fatty acid-induced dormancy-like state of M. tuberculosis and its involvement in the acquisition of drug tolerance. We conducted metabolomics profiling using a phosphoenolpyruvate carboxykinase (PEPCK)-deficient M. tuberculosis strain in an acetate-induced dormancy-like state, highlighting an overaccumulation of methylcitrate cycle (MCC) intermediates that correlates with enhanced drug tolerance against isoniazid and bedaquiline. Further metabolomics analyses of two M. tuberculosis mutants, an ICL knockdown (KD) strain and PrpD knockout (KO) strain, each lacking an MCC enzyme-isocitrate lyase (ICL) and 2-methylcitrate dehydratase (PrpD), respectively-were conducted after treatment with antibiotics. The ICL KD strain, which lacks the last enzyme of the MCC, showed an overaccumulation of MCC intermediates and a high level of drug tolerance. The PrpD KO strain, however, failed to accumulate MCC intermediates as it lacks the second step of the MCC and showed only a minor level of drug tolerance compared to the ICL KD mutant and its parental strain (CDC1551). Notably, addition of authentic 2-methylisocitrate, an MCC intermediate, improved the M. tuberculosis drug tolerance against antibiotics even in glycerol medium. Furthermore, wild-type M. tuberculosis displayed levels of drug tolerance when cultured in acetate medium significantly greater than those in glycerol medium. Taken together, the fatty acid-induced dormancy-like state remodels the central carbon metabolism of M. tuberculosis that is functionally relevant to acquisition of M. tuberculosis drug tolerance. IMPORTANCE Understanding the mechanisms underlying M. tuberculosis adaptive strategies to achieve drug tolerance is crucial for the identification of new targets and the development of new drugs. Here, we show that acetate medium triggers a drug-tolerant state in M. tuberculosis when challenged with antituberculosis (anti-TB) drugs. This carbon-induced drug-tolerant state is linked to an accumulation of the methylcitrate cycle (MCC) intermediates, whose role was previously known as a detox pathway for propionate metabolism. Three mutant strains with mutations in gluconeogenesis and MCC were used to investigate the correlation between drug tolerance and the accumulation of MCC metabolites. We herein report a new role of the MCC used to provide a survival advantage to M. tuberculosis as a species against both anti-TB drugs upon specific carbon sources.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Glycerol/metabolism , Carbon/metabolism , Tricarboxylic Acids/metabolism , Tuberculosis/microbiology , Fatty Acids/metabolism , Acetates/metabolism
8.
Front Fungal Biol ; 3: 858968, 2022.
Article in English | MEDLINE | ID: mdl-37746184

ABSTRACT

The growth and development of organisms depend on nutrient availability. Dermatophytes must sense nutrient levels and adapt to the host environment to colonize human and animal keratinized tissues. Owing to the clinical importance of the Trichophyton genus, this study compared the expression profile of genes involved in metabolism, cell cycle control, and proteases in two Trichophyton species, Trichophyton rubrum, and Trichophyton interdigitale, in response to nutrients and environmental pH. In addition, we evaluated the activity of enzymes in the tricarboxylic acid, glyoxylate, and methylcitrate cycles. Moreover, the effects of interruption of the transcription factor pacC on T. interdigitale in the same conditions as for the wild-type strain were determined. Our analyses revealed specific responses in each species to the nutritional and pH variation. An improved adaptation of T. interdigitale to keratin was observed, compared with that of T. rubrum. T. rubrum growth in buffered keratin media indicated pH 8.0 as an optimal pH condition for metabolic activity, which differed from that for T. interdigitale. Tricarboxylic acid components in T. rubrum showed increased enzymatic activity and transcript accumulation. In T. interdigitale, a higher activity of enzymes in glyoxylate and methylcitrate cycles was observed, with no direct correlation to the transcriptional profile. T. interdigitale fungal metabolism suggests the requirement of anaplerotic pathways in the late cultivation period. The identified differences between T. rubrum and T. interdigitale may represent determinants for adaptation to the host and the incidence of infection with each species.

9.
Front Microbiol ; 12: 619387, 2021.
Article in English | MEDLINE | ID: mdl-33603724

ABSTRACT

Mycobacterium tuberculosis is a global human pathogen that infects macrophages and can establish a latent infection. Emerging evidence has established the nutrients metabolism as a key point to study the pathogenesis of M. tuberculosis and host immunity. It was reported that fatty acids and cholesterol are the major nutrient sources of M. tuberculosis in the period of infection. However, the mechanism by which M. tuberculosis utilizes lipids for maintaining life activities in nutrient-deficiency macrophages is poorly understood. Mycobacterium smegmatis is fast-growing and generally used to study its pathogenic counterpart, M. tuberculosis. In this work, we found that the phosphate sensing regulator RegX3 of M. smegmatis is required for its growing on propionate and surviving in macrophages. We further demonstrated that the expression of prpR and related genes (prpDBC) in methylcitrate cycle could be enhanced by RegX3 in response to the phosphate-starvation condition. The binding sites of the promoter region of prpR for RegX3 and PrpR were investigated. In addition, cell morphology assay showed that RegX3 is responsible for cell morphological elongation, thus promoting the proliferation and survival of M. smegmatis in macrophages. Taken together, our findings revealed a novel transcriptional regulation mechanism of RegX3 on propionate metabolism, and uncovered that the nutrients-sensing regulatory system puts bacteria at metabolic steady state by altering cell morphology. More importantly, since we observed that M. tuberculosis RegX3 also binds to the prpR operon in vitro, the RegX3-mediated regulation might be general in M. tuberculosis and other mycobacteria for nutrient sensing and environmental adaptation.

10.
Front Microbiol ; 12: 603835, 2021.
Article in English | MEDLINE | ID: mdl-33613477

ABSTRACT

Mycobacterium smegmatis (Msm), along with its pathogenic counterpart Mycobacterium tuberculosis (Mtb), utilizes fatty acids and cholesterol as important carbon and energy sources during the persistence within host cells. As a dual-functional enzyme in the glyoxylate cycle and the methylcitrate cycle, isocitrate lyase (ICL, encoded by icl or MSMEG_0911) is indispensable for the growth of Msm and Mtb on short-chain fatty acids. However, regulation of icl in mycobacteria in response to nutrient availability remains largely unknown. Here, we report that the global nitrogen metabolism regulator GlnR represses icl expression by binding to an atypical binding motif in the icl promoter region under nitrogen-limiting conditions. We further show that GlnR competes with PrpR, a transcriptional activator of icl, and dominantly occupies the co-binding motif in the icl promoter region. In the absence of GlnR or in response to the excess nitrogen condition, Msm cells elongate and exhibit robust growth on short-chain fatty acids due to the PrpR-mediated activation of icl, thereby inducing enhanced apoptosis in infected macrophages. Taken together, our findings reveal the GlnR-mediated repression of icl on fatty acid metabolism, which might be a general strategy of nutrient sensing and environmental adaptation employed by mycobacteria.

11.
IMA Fungus ; 11: 9, 2020.
Article in English | MEDLINE | ID: mdl-32617258

ABSTRACT

Fungi of the complex Paracoccidioides spp. are thermodimorphic organisms that cause Paracoccidioidomycosis, one of the most prevalent mycoses in Latin America. These fungi present metabolic mechanisms that contribute to the fungal survival in host tissues. Paracoccidioides lutzii activates glycolysis and fermentation while inactivates aerobic metabolism in iron deprivation, a condition found during infection. In lungs Paracoccidioides brasiliensis face a glucose poor environment and relies on the beta-oxidation to support energy requirement. During mycelium to yeast transition P. lutzii cells up-regulate transcripts related to lipid metabolism and cell wall remodeling in order to cope with the host body temperature. Paracoccidioides spp. cells also induce transcripts/enzymes of the methylcitrate cycle (MCC), a pathway responsible for propionyl-CoA metabolism. Propionyl-CoA is a toxic compound formed during the degradation of odd-chain fatty acids, branched chain amino acids and cholesterol. Therefore, fungi require a functional MCC for full virulence and the ability to metabolize propionyl-CoA is related to the virulence traits in Paracoccidioides spp. On this way we sought to characterize the propionate metabolism in Paracoccidioides spp. The data collected showed that P. lutzii grows in propionate and activates the MCC by accumulating transcripts and proteins of methylcitrate synthase (MCS), methylcitrate dehydratase (MCD) and methylisocitrate lyase (MCL). Biochemical characterization of MCS showed that the enzyme is regulated by phosphorylation, an event not yet described. Proteomic analyses further indicate that P. lutzii yeast cells degrades lipids and amino acids to support the carbon requirement for propionate metabolism. The induction of a putative propionate kinase suggests that fungal cells use propionyl-phosphate as an intermediate in the production of toxic propionyl-CoA. Concluding, the metabolism of propionate in P. lutzii is under regulation at transcriptional and phosphorylation levels and that survival on this carbon source requires additional mechanisms other than activation of MCC.

12.
Microb Cell Fact ; 19(1): 13, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992309

ABSTRACT

BACKGROUND: Androstenedione (AD) is an important steroid medicine intermediate that is obtained via the degradation of phytosterols by mycobacteria. The production process of AD is mainly the degradation of the phytosterol aliphatic side chain, which is accompanied by the production of propionyl CoA. Excessive accumulation of intracellular propionyl-CoA produces a toxic effect in mycobacteria, which restricts the improvement of production efficiency. The 2-methylcitrate cycle pathway (MCC) plays a significant role in the detoxification of propionyl-CoA in bacterial. The effect of the MCC on phytosterol biotransformation in mycobacteria has not been elucidated in detail. Meanwhile, reducing fermentation cost has always been an important issue to be solved in the optimizing of the bioprocess. RESULTS: There is a complete MCC in Mycobacterium neoaurum (MNR), prpC, prpD and prpB in the prp operon encode methylcitrate synthase, methylcitrate dehydratase and methylisocitrate lyase involved in MCC, and PrpR is a specific transcriptional activator of prp operon. After the overexpression of prpDCB and prpR in MNR, the significantly improved transcription levels of prpC, prpD and prpB were observed. The highest conversion ratios of AD obtained by MNR-prpDBC and MNR-prpR increased from 72.3 ± 2.5% to 82.2 ± 2.2% and 90.6 ± 2.6%, respectively. Through enhanced the PrpR of MNR, the in intracellular propionyl-CoA levels decreased by 43 ± 3%, and the cell viability improved by 22 ± 1% compared to MNR at 96 h. The nitrogen transcription regulator GlnR repressed prp operon transcription in a nitrogen-limited medium. The glnR deletion enhanced the transcription level of prpDBC and the biotransformation ability of MNR. MNR-prpR/ΔglnR was constructed by the overexpression of prpR in the glnR-deleted strain showed adaptability to low nitrogen. The highest AD conversion ratio by MNR-prpR/ΔglnR was 92.8 ± 2.7% at low nitrogen level, which was 1.4 times higher than that of MNR. CONCLUSION: Improvement in phytosterol biotransformation after the enhancement of propionyl-CoA metabolism through the combined modifications of the prp operon and glnR of mycobacteria was investigated for the first time. The overexpress of prpR in MNR can increase the transcription of essential genes (prpC, prpD and prpB) of MCC, reduce the intracellular propionyl-CoA level and improve bacterial viability. The knockout of glnR can enhance the adaptability of MNR to the nitrogen source. In the MNRΔglnR strain, overexpress of prpR can achieve efficient production of AD at low nitrogen levels, thus reducing the production cost. This strategy provides a reference for the economic and effective production of other valuable steroid metabolites from phytosterol in the pharmaceutical industry.


Subject(s)
Acyl Coenzyme A/metabolism , Androstenedione/biosynthesis , Citrate (si)-Synthase/metabolism , Mycobacteriaceae , Nitrogen/metabolism , Phytosterols/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotechnology/methods , Biotransformation , Citrate (si)-Synthase/genetics , Mycobacteriaceae/growth & development , Mycobacteriaceae/metabolism , Operon , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Med Mycol ; 58(3): 351-361, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31290549

ABSTRACT

Talaromyces marneffei (T. marneffei), which used to be known as Penicillium marneffei, is the causative agent of the fatal systemic mycosis known as talaromycosis. For the purpose of understanding the role of methylcitrate cycle in the virulence of T. marneffei, we generated MCD deletion (ΔMCD) and complementation (ΔMCD+) mutants of T. marneffei. Growth in different carbon sources showed that ΔMCD cannot grow on propionate media and grew slowly on the valerate, valine, methionine, isoleucine, cholesterol, and YNB (carbon free) media. The macrophage killing assay showed that ΔMCD was attenuated in macrophages of mice in vitro, especially at the presence of propionate. Finally, virulence studies in a murine infection experiment revealed attenuated virulence of the ΔMCD, which indicates MCD is essential for T. marneffei virulence in the host. This experiment laid the foundation for the further study of the specific mechanisms underlying the methylcitrate cycle of T. marneffei and may provide suitable targets for new antifungals.


Subject(s)
Genes, Fungal , Talaromyces/genetics , Talaromyces/pathogenicity , Virulence Factors/genetics , Animals , Culture Media/chemistry , Female , Gene Deletion , Macrophages/microbiology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , RAW 264.7 Cells , Specific Pathogen-Free Organisms , Talaromyces/growth & development , Virulence
14.
Front Bioeng Biotechnol ; 8: 602936, 2020.
Article in English | MEDLINE | ID: mdl-33553115

ABSTRACT

Wild-type C. glutamicum ATCC 13032 is known to possess two enzymes with anaplerotic (C4-directed) carboxylation activity, namely phosphoenolpyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx). On the other hand, C3-directed decarboxylation can be catalyzed by the three enzymes phosphoenolpyruvate carboxykinase (PEPCk), oxaloacetate decarboxylase (ODx), and malic enzyme (ME). The resulting high metabolic flexibility at the anaplerotic node compromises the unambigous determination of its carbon and energy flux in C. glutamicum wild type. To circumvent this problem we performed a comprehensive analysis of selected single or double deletion mutants in the anaplerosis of wild-type C. glutamicum under defined d-glucose conditions. By applying well-controlled lab-scale bioreactor experiments in combination with untargeted proteomics, quantitative metabolomics and whole-genome sequencing hitherto unknown, and sometimes counter-intuitive, genotype-phenotype relationships in these mutants could be unraveled. In comparison to the wild type the four mutants C. glutamiucm Δpyc, C. glutamiucm Δpyc Δodx, C. glutamiucm Δppc Δpyc, and C. glutamiucm Δpck showed lowered specific growth rates and d-glucose uptake rates, underlining the importance of PCx and PEPCk activity for a balanced carbon and energy flux at the anaplerotic node. Most interestingly, the strain C. glutamiucm Δppc Δpyc could be evolved to grow on d-glucose as the only source of carbon and energy, whereas this combination was previously considered lethal. The prevented anaplerotic carboxylation activity of PEPCx and PCx was found in the evolved strain to be compensated by an up-regulation of the glyoxylate shunt, potentially in combination with the 2-methylcitrate cycle.

15.
J Bacteriol ; 201(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30745367

ABSTRACT

Mycobacterium tuberculosis utilizes fatty acids of the host as the carbon source. Metabolism of odd-chain fatty acids by Mycobacterium tuberculosis produces propionyl coenzyme A (propionyl-CoA). The methylcitrate cycle is essential for mycobacteria to utilize the propionyl-CoA to persist and grow on these fatty acids. In M. smegmatis, methylcitrate synthase, methylcitrate dehydratase, and methylisocitrate lyase involved in the methylcitrate cycle are encoded by prpC, prpD, and prpB, respectively, in operon prpDBC In this study, we found that the nitrogen regulator GlnR directly binds to the promoter region of the prpDBC operon and inhibits its transcription. The binding motif of GlnR was identified by bioinformatic analysis and validated using DNase I footprinting and electrophoretic mobility shift assays. The GlnR-binding motif is separated by a 164-bp sequence from the binding site of PrpR, a pathway-specific transcriptional activator of methylcitrate cycle, but the binding affinity of GlnR to prpDBC is much stronger than that of PrpR. Deletion of glnR resulted in faster growth in propionate or cholesterol medium compared with the wild-type strain. The ΔglnR mutant strain also showed a higher survival rate in macrophages. These results illustrated that the nitrogen regulator GlnR regulates the methylcitrate cycle through direct repression of the transcription of the prpDBC operon. This finding not only suggests an unprecedented link between nitrogen metabolism and the methylcitrate pathway but also reveals a potential target for controlling the growth of pathogenic mycobacteria.IMPORTANCE The success of mycobacteria survival in macrophage depends on its ability to assimilate fatty acids and cholesterol from the host. The cholesterol and fatty acids are catabolized via ß-oxidation to generate propionyl coenzyme A (propionyl-CoA), which is then primarily metabolized via the methylcitrate cycle. Here, we found a typical GlnR binding box in the prp operon, and the affinity is much stronger than that of PrpR, a transcriptional activator of methylcitrate cycle. Furthermore, GlnR repressed the transcription of the prp operon. Deletion of glnR significantly enhanced the growth of Mycobacterium tuberculosis in propionate or cholesterol medium, as well as viability in macrophages. These findings provide new insights into the regulatory mechanisms underlying the cross talk of nitrogen and carbon metabolisms in mycobacteria.


Subject(s)
Bacterial Proteins/biosynthesis , Citrates/metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Mycobacterium smegmatis/enzymology , Repressor Proteins/metabolism , Transcription, Genetic , Binding Sites , Carbon-Carbon Lyases/biosynthesis , Citrate (si)-Synthase/biosynthesis , DNA, Bacterial/metabolism , Gene Deletion , Hydro-Lyases/biosynthesis , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Operon , Promoter Regions, Genetic , Protein Binding , Repressor Proteins/genetics
16.
Microbiology (Reading) ; 164(3): 251-259, 2018 03.
Article in English | MEDLINE | ID: mdl-29458664

ABSTRACT

Propionate is an abundant catabolite in nature and represents a rich potential source of carbon for the organisms that can utilize it. However, propionate and propionate-derived catabolites are also toxic to cells, so propionate catabolism can alternatively be viewed as a detoxification mechanism. In this review, we summarize recent progress made in understanding how prokaryotes catabolize propionic acid, how these pathways are regulated and how they might be exploited to develop novel antibacterial interventions.


Subject(s)
Bacteria/metabolism , Bacteria/pathogenicity , Citrates/metabolism , Gene Expression Regulation, Bacterial , Propionates/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metabolic Networks and Pathways/genetics , Operon/genetics , Propionates/toxicity , Virulence
17.
Gene ; 642: 178-187, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-28988960

ABSTRACT

Lipid metabolism forms the heart and soul of Mycobacterium tuberculosis life cycle. Starting from macrophage invasion at cholesterol rich micro-domains to a sustainable survival for infection by utilizing cholesterol, Mycobacterium displays the nexus of metabolic pathways around host derived lipids. mce4 operon acts as cholesterol import system in M. tuberculosis and here we demonstrate role of mce4A gene of this operon in cholesterol catabolism. Here M. tuberculosis H37Rv overexpressing Rv3499c (mce4A) recombinant was used as a model to decipher the metabolic flux during intake and utilization of host lipids by mycobacteria. We analysed the impact of mce4A expression on carbon shift initiated during cholesterol utilization necessary for long term survival of mycobacterium. Through transcriptional analysis, upregulation in methylcitrate cycle (MCC) and methylmalonyl pathway (MMP) genes was observed in Rv3499c overexpressing recombinants of M. tuberculosis H37Rv. Up-regulation of methylmalonyl pathway associated enzyme encoding genes increased accumulation of virulence associated mycobacterial lipids phthiocerol dimycocerates (PDIM) and sulfolipid (SL1). We demonstrate that MCC and MMP associated enzyme encoding genes are upregulated upon mce4A overexpression and lead to enhanced accumulation of PDIM and SL1 which are responsible for pathogenicity of M. tuberculosis.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lipids/analysis , Mycobacterium tuberculosis/growth & development , Cholesterol/pharmacology , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial/drug effects , Gene Regulatory Networks/drug effects , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Protein Interaction Maps , Recombinant Proteins/metabolism , Up-Regulation/drug effects , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL