Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Life (Basel) ; 13(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511953

ABSTRACT

The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution. As tissue structure largely differs from cultured cells, several aspects must be considered. We studied the influence of the parameters involved in the imprint and nuclear track formation, such as neutron fluence, different NTDs, etching and UV-C exposure times, tissue absorbance, thickness, and staining, among others. Samples from different biological models of interest for BNCT were used, exhibiting homogeneous and heterogeneous histology and boron microdistribution. The optimal conditions will depend on the animal model under study and the resolution requirements. Both the imprint sharpness and the fading effect depend on tissue thickness. While 6 h of UV-C was necessary to yield an imprint in CR-39, only 5 min was enough to observe clear imprints on Lexan. The information related to microdistribution of boron obtained with neutron autoradiography is of great relevance when assessing new boron compounds and administration protocols and also contributes to the study of the radiobiology of BNCT.

2.
Histochem Cell Biol ; 160(1): 3-10, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37126141

ABSTRACT

Boron neutron capture therapy (BNCT) is a cancer treatment option that combines preferential uptake of a boron compound in tumors and irradiation with thermal neutrons. For treatment planning, the boron concentration in different tissues must be considered. Neutron autoradiography using nuclear track detectors (NTD) can be applied to study both the concentration and microdistribution of boron in tissue samples. Histological sections are obtained from frozen tissue by cryosectioning. When the samples reach room temperature, they undergo an evaporation process, which leads to an increase in the boron concentration. To take this effect into account, certain correction factors (evaporation coefficients, CEv) must be applied. With this aim, a protocol was established to register and analyze mass variation of tissue sections, measured with a semimicro scale. Values of ambient temperature, pressure, and humidity were simultaneously recorded. Reproducible results of evaporation curves and CEv values were obtained for different tissue samples, which allowed the systematization of the procedure. This study could contribute to a more precise determination of boron concentration in tissue samples through the neutron autoradiography technique, which is of great relevance to make dosimetric calculations in BNCT.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms , Humans , Boron , Autoradiography , Boron Neutron Capture Therapy/methods , Neutrons
3.
Appl Radiat Isot ; 167: 109353, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33039761

ABSTRACT

In Boron Neutron Capture Therapy, the boronated drug plays a leading role in delivering a lethal dose to the tumour. The effectiveness depends on the boron macroscopic concentration and on its distribution at sub-cellular level. This work shows a way to colocalize alpha particles and lithium ions tracks with cells. A neutron autoradiography technique is used, which combines images of cells with images of tracks produced in a solid-state nuclear track detector.


Subject(s)
Boron Neutron Capture Therapy/methods , Radiometry/methods , Autoradiography , Cell Line, Tumor , Dose-Response Relationship, Radiation , Humans
4.
Appl Radiat Isot ; 165: 109331, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32777741

ABSTRACT

In Argentina, a multi-institutional project has been established to assess the feasibility of applying BNCT ex-situ to the treatment of patients with multiple metastases in both lungs. Within this context, this work aims at applying the neutron autoradiography technique to study boron microdistribution in the lung. A comprehensive analysis of the different aspects for the generation of autoradiographic images of both normal and metastatic BDIX rat lungs was achieved. Histology, boron uniformity, optimal tissue thickness and water content in tissue were explored for the two types of samples. A qualitative and a quantitative analysis were performed. No heterogeneities in uptake were observed in normal lung. Conversely, samples with metastasis showed preferential boron uptake in the tumour areas with respect to surrounding tissue. Surrounding tissue would present a slightly higher uptake of boron than the normal lung. Quantitative results of boron concentration values and ratios determined by neutron autoradiography were obtained. In order to contribute to BNCT dosimetry, further analysis increasing the number of samples is warranted.


Subject(s)
Autoradiography/methods , Boron/pharmacokinetics , Lung/metabolism , Neutrons , Animals , Boron Neutron Capture Therapy/methods , Rats
5.
Microsc Microanal ; 25(6): 1331-1340, 2019 12.
Article in English | MEDLINE | ID: mdl-31648656

ABSTRACT

Our group has reported the imprint formation of biological material on polycarbonate nuclear track detectors by UV-C exposure, which is used as an approach to simultaneously visualize cell imprints and nuclear tracks coming from the boron neutron capture reaction. Considering that the cell nucleus has a higher UV-C absorption than the cytoplasm and that hematoxylin preferentially stains the nucleus, we proposed to enhance the contrast between these two main cell structures by hematoxylin staining before UV-C sensitization. In this study, several experiments were performed in order to optimize UV-C exposure parameters and chemical etching conditions for cell imprint formation using the SK-BR-3 breast cancer cell line. The proposed method improves significantly the resolution of the cell imprints. It allows clear differentiation of the nucleus from the rest of the cell, together with nuclear tracks pits. Moreover, it reduces considerably the UV-C exposure time, an important experimental issue. The proposed methodology can be applied to study the boron distribution independently from the chosen cell line and/or boron compounds.


Subject(s)
Autoradiography/methods , Neutron Activation Analysis/methods , Staining and Labeling/methods , Ultraviolet Rays , Boron/radiation effects , Cell Line, Tumor , Hematoxylin/metabolism , Humans , Trace Elements/radiation effects
6.
Appl Radiat Isot ; 137: 62-67, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29587160

ABSTRACT

The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 1012 cm-2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis.


Subject(s)
Autoradiography/methods , Boron/analysis , Neutrons , Animals , Autoradiography/standards , Bone and Bones/chemistry , Boron/standards , Boron Neutron Capture Therapy , Calibration , Computer Simulation , Models, Animal , Radiometry/methods , Radiometry/standards , Sheep , Stochastic Processes , Tissue Distribution
7.
Radiat Environ Biophys ; 57(2): 153-162, 2018 05.
Article in English | MEDLINE | ID: mdl-29476254

ABSTRACT

The analysis of the distribution and density of nuclear tracks forming an autoradiography in a nuclear track detector (NTD) allows the determination of 10B atoms concentration and location in tissue samples from Boron Neutron Capture Therapy (BNCT) protocols. This knowledge is of great importance for BNCT dosimetry and treatment planning. Tissue sections studied with this technique are obtained by cryosectioning frozen tissue specimens. After the slicing procedure, the tissue section is put on the NTD and the sample starts drying. The thickness varies from its original value allowing more particles to reach the detector and, as the mass of the sample decreases, the boron concentration in the sample increases. So in order to determine the concentration present in the hydrated tissue, the application of corrective coefficients is required. Evaporation mechanisms as well as various factors that could affect the process of mass variation are outlined in this work. Mass evolution for tissue samples coming from BDIX rats was registered with a semimicro analytical scale and measurements were analyzed with software developed to that end. Ambient conditions were simultaneously recorded, obtaining reproducible evaporation curves. Mathematical models found in the literature were applied for the first time to this type of samples and the best fit of the experimental data was determined. The correlation coefficients and the variability of the parameters were evaluated, pointing to Page's model as the one that best represented the evaporation curves. These studies will contribute to a more precise assessment of boron concentration in tissue samples by the Neutron Autoradiography technique.


Subject(s)
Autoradiography , Boron/metabolism , Isotopes/metabolism , Neutrons , Animals , Boron/therapeutic use , Boron Neutron Capture Therapy , Isotopes/therapeutic use , Liver/cytology , Liver/metabolism , Lung/cytology , Lung/metabolism , Models, Biological , Rats , Volatilization
8.
Rep Pract Oncol Radiother ; 21(2): 123-8, 2016.
Article in English | MEDLINE | ID: mdl-26933395

ABSTRACT

AIM: Boron Neutron Capture Therapy (BNCT) is a binary hadrontherapy which exploits the neutron capture reaction in boron, together with a selective uptake of boronated substances by the neoplastic tissue. There is increasing evidence that future improvements in clinical BNCT will be triggered by the discovery of new boronated compounds, with higher selectivity for the tumor with respect to clinically used sodium borocaptate (BSH) and boronophenylalanine (BPA). BACKGROUND: Therefore, a (10)B quantification technique for biological samples is needed in order to evaluate the performance of new boronated formulations. MATERIALS AND METHODS: This article describes an improved neutron autoradiography set-up employing radiation sensitive films where the latent tracks are made visible by proper etching conditions. RESULTS: Calibration curves for both liquid and tissue samples were obtained. CONCLUSIONS: The obtained calibration curves were adopted to set-up a mechanism to point out boron concentration in the whole sample.

9.
Appl Radiat Isot ; 106: 171-5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26508276

ABSTRACT

An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100 ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues.

10.
Appl Radiat Isot ; 105: 35-39, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26454177

ABSTRACT

An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues.


Subject(s)
Boron Neutron Capture Therapy/standards , Boron/analysis , Argentina , Autoradiography , Humans , Isotopes/analysis , Italy , Laboratories/standards , Liver/chemistry , Neutrons , Radiography , Spectrum Analysis , Tissue Distribution
11.
Microsc Microanal ; 21(4): 796-804, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26155721

ABSTRACT

The distribution of boron in tissue samples coming from boron neutron capture therapy protocols can be determined through the analysis of its autoradiography image on a nuclear track detector. A more precise knowledge of boron atom location on the microscopic scale can be attained by the observation of nuclear tracks superimposed on the sample image on the detector. A method to produce an "imprint" of cells cultivated on a polycarbonate detector was developed, based on the photodegradation properties of UV-C radiation on this material. Optimal conditions to generate an appropriate monolayer of Mel-J cells incubated with boronophenylalanine were found. The best images of both cells and nuclear tracks were obtained for a neutron fluence of 1013 cm-2, 6 h UV-C (254 nm) exposure, and 4 min etching time with a KOH solution. The imprint morphology was analyzed by both light and scanning electron microscopy. Similar samples, exposed to UV-A (360 nm) revealed no cellular imprinting. Etch pits were present only inside the cell imprints, indicating a preferential boron uptake (about threefold the incubation concentration). Comparative studies of boron absorption in different cell lines and in vitro evaluation of the effect of diverse boron compounds are feasible with this methodology.


Subject(s)
Autoradiography/methods , Cytological Techniques/methods , Optical Imaging/methods , Polycarboxylate Cement/radiation effects , Radiometry/methods , Ultraviolet Rays , Boranes/metabolism , Cell Line, Tumor , Humans , Phenylalanine/analogs & derivatives , Phenylalanine/metabolism
12.
Int J Radiat Biol ; 91(4): 329-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25510259

ABSTRACT

PURPOSE: We previously reported the therapeutic efficacy of Sequential Boron Neutron Capture Therapy (Seq-BNCT), i.e., BPA (boronophenylalanine) - BNCT followed by GB-10 (decahydrodecaborate) - BNCT 1 or 2 days later, in the hamster cheek pouch oral cancer model. We have utilized the neutron autoradiography methodology to study boron microdistribution in tissue. The aim was to use this method to evaluate if the distribution of GB-10 is altered by prior application of BPA-BNCT in Sequential BNCT protocols. MATERIALS AND METHODS: Extensive qualitative and quantitative autoradiography analyses were performed in the following groups: G1 (animals without boron); G2 (animals injected with BPA); G3 (animals injected with GB-10); G4 (same as G3, 24 h after BPA-BNCT); and G5 (same protocol as G4, 48 h interval). RESULTS: A detailed study of boron localization in the different tissue structures of tumor, premalignant and normal tissue in the hamster cheek pouch was performed. GB-10 accumulated preferentially in non-neoplastic connective tissue, whereas for BPA neoplastic cells showed the highest boron concentration. Boron distribution was less heterogeneous for GB-10 than for BPA. In premalignant and normal tissue, GB-10 and BPA accumulated mostly in connective tissue and epithelium, respectively. CONCLUSIONS: BPA-BNCT could alter boron microlocalization of GB-10 administered subsequently. Boron targeting homogeneity is essential for therapeutic success.


Subject(s)
Autoradiography , Boron Compounds/pharmacokinetics , Boron Neutron Capture Therapy , Mouth Neoplasms/radiotherapy , Animals , Cricetinae , Humans , Mesocricetus , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL