Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Brain Inj ; : 1-11, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994671

ABSTRACT

BACKGROUND: It has been reported that Runx1 engaged in IS progression, but the detailed mechanism of Runx1 in IS is still unclear. METHODS: Mice and HT22 cells were subjected to the process of middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Infract volume was tested using TTC staining. The levels of inflammatory cytokines were investigated using ELISA assay. Cell viability was examined utilizing MTS. Apoptosis rate was evaluated using flow cytometry and TUNEL. The productions of SOD and MDA were monitored by means of commercial kits. The correlations among Runx1, miR-203-3p and Pde4d were ascertained using dual luciferase reporter gene, ChIP and RNA-RNA pull-down assays. RESULTS: Runx1 and Pde4d were abnormally elevated, while miR-203-3p was notably declined in MCAO/R mice and OGD/R-induced HT22 cells. OGD/R treatment suppressed cell viability and facilitated cell apoptosis, inflammation and oxidative stress, which were compromised by Runx1 knockdown or miR-203-3p upregulation. Runx1 bound to miR-203-3p promoter, thus decreasing miR-203-3p expression. MiR-203-3p inhibited Pde4d expression via targeting Pde4d mRNA. Runx1 deficiency-induced protection effects on OGD/R-treated HT22 cells were offset by miR-203-3p downregulation. CONCLUSION: Runx1 aggravated neuronal injury caused by IS through mediating miR-203-3p/Pde4d axis.

2.
Brain Commun ; 6(4): fcae225, 2024.
Article in English | MEDLINE | ID: mdl-38983619

ABSTRACT

Members of the phosphodiesterase 4 (PDE4) enzyme family regulate the availability of the secondary messenger cyclic adenosine monophosphate (cAMP) and, by doing so, control cellular processes in health and disease. In particular, PDE4D has been associated with Alzheimer's disease and the intellectual disability seen in fragile X syndrome. Furthermore, single point mutations in critical PDE4D regions cause acrodysostosis type 2(ACRDYS2, also referred to as inactivating PTH/PTHrP signalling disorder 5 or iPPSD5), where intellectual disability is seen in ∼90% of patients alongside the skeletal dysmorphologies that are characteristic of acrodysostosis type 1 (ACRDYS1/iPPSD4) and ACRDYS2. Two contrasting mechanisms have been proposed to explain how mutations in PDE4D cause iPPSD5. The first mechanism, the 'over-activation hypothesis', suggests that cAMP/PKA (cyclic adenosine monophosphate/protein kinase A) signalling is reduced by the overactivity of mutant PDE4D, whilst the second, the 'over-compensation hypothesis' suggests that mutations reduce PDE4D activity. That reduction in activity is proposed to cause an increase in cellular cAMP, triggering the overexpression of other PDE isoforms. The resulting over-compensation then reduces cellular cAMP and the levels of cAMP/PKA signalling. However, neither of these proposed mechanisms accounts for the fine control of PDE activation and localization, which are likely to play a role in the development of iPPSD5. This review will draw together our understanding of the role of PDE4D in iPPSD5 and present a novel perspective on possible mechanisms of disease.

3.
Inflamm Regen ; 44(1): 34, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026335

ABSTRACT

BACKGROUND: Interstitial lung diseases (ILDs) are a diverse group of conditions characterized by inflammation and fibrosis in the lung. In some patients with ILD, a progressive fibrotic phenotype develops, which is associated with an irreversible decline in lung function and a poor prognosis. MAIN BODY: The pathological mechanisms that underlie this process culminate in fibroblast activation, proliferation, and differentiation into myofibroblasts, which deposit extracellular matrix proteins and result in fibrosis. Upstream of fibroblast activation, epithelial cell injury and immune activation are known initiators of fibrosis progression, with multiple diverse cell types involved. Recent years have seen an increase in our understanding of the complex and interrelated processes that drive fibrosis progression in ILD, in part due to the advent of single-cell RNA sequencing technology and integrative multiomics analyses. Novel pathological mechanisms have been identified, which represent new targets for drugs currently in clinical development. These include phosphodiesterase 4 inhibitors and other molecules that act on intracellular cyclic adenosine monophosphate signaling, as well as inhibitors of the autotaxin-lysophosphatidic acid axis and  α v  integrins. Here, we review current knowledge and recent developments regarding the pathological mechanisms that underlie progressive fibrotic ILD, including potential therapeutic targets. CONCLUSION: Knowledge of the pathological mechanisms that drive progressive fibrosis in patients with ILD has expanded, with the role of alveolar endothelial cells, the immune system, and fibroblasts better elucidated. Drugs that target novel mechanisms hold promise for expanding the future therapeutic armamentarium for progressive fibrotic ILD.

4.
Biomed Pharmacother ; 177: 117009, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908196

ABSTRACT

Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.

5.
Nat Prod Res ; : 1-7, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913076

ABSTRACT

Two new limonoid glycosides, named limonosides A (1) and B (2), along with four known limonoids (3-6) were obtained from the seeds of Citrus limon. Their structures were deduced based on extensive spectroscopic analysis. Limonoside A (1) and nomilin (4) were found to possess moderate phosphodiesterase type 4D (PDE4D) inhibitory effect with values of 89.8 ± 2.4% and 98.9 ± 3.0% at 10 µM, respectively.

6.
Eur J Med Chem ; 275: 116576, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38861808

ABSTRACT

Sepsis can quickly result in fatality for critically ill individuals, while liver damage can expedite the progression of sepsis, necessitating the exploration of new strategies for treating hepatic sepsis. PDE4 has been identified as a potential target for the treatment of liver damage. The scaffold hopping of lead compounds FCPR16 and Z19153 led to the discovery of a novel 7-methoxybenzofuran PDE4 inhibitor 4e, demonstrating better PDE4B (IC50 = 10.0 nM) and PDE4D (IC50 = 15.2 nM) inhibitor activity as a potential anti-hepatic sepsis drug in this study. Compared with FCPR16 and Z19153, 4e displayed improved oral bioavailability (F = 66 %) and longer half-life (t1/2 = 2.0 h) in SD rats, which means it can be more easily administered and has a longer-lasting effect. In the D-GalN/LPS-induced liver injury model, 4e exhibited excellent hepatoprotective activity against hepatic sepsis by decreasing ALT and AST levels and inflammatory infiltrating areas.


Subject(s)
Benzofurans , Galactosamine , Phosphodiesterase 4 Inhibitors , Sepsis , Animals , Humans , Male , Rats , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis , Chemical and Drug Induced Liver Injury/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dose-Response Relationship, Drug , Drug Discovery , Galactosamine/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Liver/drug effects , Liver/pathology , Molecular Docking Simulation , Molecular Structure , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/chemical synthesis , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/chemical synthesis , Rats, Sprague-Dawley , Sepsis/drug therapy , Structure-Activity Relationship
7.
Nat Prod Res ; : 1-9, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824431

ABSTRACT

A novel cytochalasin named diaporchalasin A (1) bearing a cinnamenyl and an epoxy-macrocycloketone, and a new benzenepropionic acid derivative (2), and two known compounds (3 and 4) were isolated from Conus marmoreus-derived fungus Diaporthe sp. XMA007. Their structures were elucidated through detailed spectroscopic analysis, and the absolute configuration of 1 was determined by conformational analysis and TDDFT-ECD calculation. Their activity evaluation on PDE4 inhibition and breast cancer cell cytotoxicity were conducted, and compound 1 showed moderate inhibition on PDE4.

8.
FEBS Lett ; 598(13): 1591-1604, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38724485

ABSTRACT

Inhibition of the cyclic-AMP degrading enzyme phosphodiesterase type 4 (PDE4) in the brains of animal models is protective in Alzheimer's disease (AD). We show for the first time that enzymes from the subfamily PDE4D not only colocalize with beta-amyloid (Aß) plaques in a mouse model of AD but that Aß directly associates with the catalytic machinery of the enzyme. Peptide mapping suggests that PDE4D is the preferential PDE4 subfamily for Aß as it possesses a unique binding site. Intriguingly, exogenous addition of Aß to cells overexpressing the PDE4D5 longform caused PDE4 activation and a decrease in cAMP. We suggest a novel mechanism where PDE4 longforms can be activated by Aß, resulting in the attenuation of cAMP signalling to promote loss of cognitive function in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cyclic AMP , Cyclic Nucleotide Phosphodiesterases, Type 4 , Neurons , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Amyloid beta-Peptides/metabolism , Cyclic AMP/metabolism , Mice , Neurons/metabolism , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Protein Binding , Enzyme Activation , Mice, Transgenic , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology
9.
Biochem Biophys Res Commun ; 722: 150170, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38797152

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent progressive liver disease. Currently, there is only one drug for NAFLD treatment, and the options are limited. Phosphodiesterase-4 (PDE-4) inhibitors have potential in treating NAFLD. Therefore, this study aims to investigate the effect of roflumilast on NAFLD. Here, we fed ob/ob mice to induce the NAFLD model by GAN diet. Roflumilast (1 mg/kg) was administered orally once daily. Semaglutide (20 nmol/kg), used as a positive control, was injected subcutaneously once daily. Our findings showed that roflumilast has beneficial effects on NAFLD. Roflumilast prevented body weight gain and improved lipid metabolism in ob/ob-GAN NAFLD mice. In addition, roflumilast decreased hepatic steatosis by down-regulating the expression of hepatic fatty acid synthesis genes (SREBP1c, FASN, and CD36) and improving oxidative stress. Roflumilast not only reduced liver injury by decreasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, but also ameliorated hepatic inflammation by reducing the gene expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6). Roflumilast lessened liver fibrosis by inhibiting the expression of fibrosis mRNA (TGFß1, α-SMA, COL1a1, and TIMP-1). Collectively, roflumilast could ameliorate NAFLD, especially in reducing hepatic steatosis and fibrosis. Our findings suggested a PDE-4 inhibitor roflumilast could be a potential drug for NAFLD.


Subject(s)
Aminopyridines , Benzamides , Cyclopropanes , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Phosphodiesterase 4 Inhibitors , Animals , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Benzamides/pharmacology , Benzamides/therapeutic use , Male , Mice , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Lipid Metabolism/drug effects , Mice, Obese , Oxidative Stress/drug effects , Diet
10.
Genes (Basel) ; 15(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38790238

ABSTRACT

Schizophrenia symptomatology includes negative symptoms and cognitive impairment. Several studies have linked schizophrenia with the PDE4 family of enzymes due to their genetic association and function in cognitive processes such as long-term potentiation. We conducted a systematic gene expression meta-analysis of four PDE4 genes (PDE4A-D) in 10 brain sample datasets (437 samples) and three blood sample datasets (300 samples). Subsequently, we measured mRNA levels in iPSC-derived hippocampal dentate gyrus neurons generated from fibroblasts of three groups: healthy controls, healthy monozygotic twins (MZ), and their MZ siblings with schizophrenia. We found downregulation of PDE4B in brain tissues, further validated by independent data of the CommonMind consortium (515 samples). Interestingly, the downregulation signal was present in a subgroup of the patients, while the others showed no differential expression or even upregulation. Notably, PDE4A, PDE4B, and PDE4D exhibited upregulation in iPSC-derived neurons compared to healthy controls, whereas in blood samples, PDE4B was found to be upregulated while PDE4A was downregulated. While the precise mechanism and direction of altered PDE4 expression necessitate further investigation, the observed multilevel differential expression across the brain, blood, and iPSC-derived neurons compellingly suggests the involvement of PDE4 genes in the pathophysiology of schizophrenia.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Induced Pluripotent Stem Cells , Neurons , Schizophrenia , Schizophrenia/genetics , Schizophrenia/blood , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Neurons/metabolism , Brain/metabolism , Brain/pathology , Male , Female , Adult
12.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Article in English | MEDLINE | ID: mdl-38774995

ABSTRACT

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Subject(s)
Bone Neoplasms , Cyclic Nucleotide Phosphodiesterases, Type 4 , Immunotherapy , Macrophages , Osteosarcoma , Tumor Microenvironment , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Gene Expression Regulation, Neoplastic , Immunotherapy/methods , Macrophages/metabolism , Macrophages/immunology , Neoplasm Metastasis , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/therapy , Prognosis , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
13.
Adv Exp Med Biol ; 1447: 117-129, 2024.
Article in English | MEDLINE | ID: mdl-38724789

ABSTRACT

With recent advances in topical therapies for atopic dermatitis (AD), steroid-sparing options like calcineurin inhibitors, Janus kinase (JAK) inhibitors, and phosphodiesterase-4 (PDE-4) inhibitors are becoming mainstays in therapy, underscoring the importance of careful selection and usage of topical corticosteroids (TCSs) to minimize side effects. Alongside the necessity of emollient use, these steroid-sparing alternatives offer rapid itch relief and efficacy in improving disease severity. While TCSs still hold a prominent role in AD management, promising novel topical treatments like tapinarof and live biotherapeutics to modulate the skin microbiome are also discussed. Overall, the recent addition of novel topical therapies offers diverse options for AD management and underscores the importance of topical treatments in the management of AD.


Subject(s)
Dermatitis, Atopic , Humans , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/microbiology , Administration, Topical , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Phosphodiesterase 4 Inhibitors/therapeutic use , Administration, Cutaneous , Skin/drug effects , Skin/microbiology , Skin/pathology , Calcineurin Inhibitors/therapeutic use , Calcineurin Inhibitors/administration & dosage , Dermatologic Agents/therapeutic use , Dermatologic Agents/administration & dosage , Dermatologic Agents/adverse effects
14.
Mol Biol Rep ; 51(1): 651, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734860

ABSTRACT

BACKGROUND: Canine atopic dermatitis (CAD) is a common genetically predisposed, inflammatory, and pruritic skin disorder that affects dogs globally. To date, there are no specific biomarkers available to diagnose CAD, and the current diagnosis is based on a combination of criteria including patient history, clinical signs, and exclusion of other relevant differential diagnoses. METHODS AND RESULTS: We examined the gene expression of phosphodiesterase 4D (PDE4D) in peripheral blood mononuclear cells (PBMCs), as well as miR-203 and miR-483 in plasma, in three groups: healthy dogs, CAD dogs, and other inflammatory pruritic skin diseases (OIPSD) such as pemphigus foliaceus, scabies, cutaneous lymphoma, and dermatophytosis. Our results showed that PDE4D gene expression in the CAD group is statistically higher compared to those in the healthy and OIPSD groups, suggesting PDE4D may be a specific marker for CAD. Nevertheless, no correlation was found between PDE4D gene expression levels and the lesion severity gauged by CAD severity index-4 (CADESI-4). We also showed that miR-203 is a generic marker for clinical dermatitis and differentiates both CAD and OIPSD inflammatory conditions from healthy controls. CONCLUSIONS: We show that PDE4D is a potential marker to differentiate CAD from non-atopic healthy and OIPSD while miR-203 may be a potential marker for general dermatologic inflammation. Future study of PDE4D and miR-203 on a larger scale is warranted.


Subject(s)
Biomarkers , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dermatitis, Atopic , Dog Diseases , MicroRNAs , Dermatitis, Atopic/genetics , Dermatitis, Atopic/veterinary , Dermatitis, Atopic/blood , Dermatitis, Atopic/diagnosis , Animals , Dogs , MicroRNAs/genetics , MicroRNAs/blood , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Biomarkers/blood , Dog Diseases/genetics , Dog Diseases/diagnosis , Dog Diseases/blood , Male , Leukocytes, Mononuclear/metabolism , Female
15.
Cardiovasc Res ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776406

ABSTRACT

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs) such as PDE4B has recently been described to effectively prevent heart failure in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload induced heart failure in mice by acting on and restoring altered cAMP compartmentalization in distinct subcellular microdomains. METHODS AND RESULTS: Heart failure was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3 or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentalization in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human induced pluripotent stem derived cardiomyocytes with the A2254 V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS: Our data indicate that gene therapy with phosphodiesterases can prevent heart failure including associated cardiac remodeling and arrhythmias by restoring altered cAMP compartmentalization in functionally relevant subcellular microdomains.

16.
Dermatol Clin ; 42(3): 365-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796268

ABSTRACT

Significant research advances in our understanding of psoriatic disease have led to the development of several highly selective, effective, and safe topical and systemic treatments. These treatments have led to unprecedented levels of disease clearance and control for most patients with psoriasis with cutaneous disease. However, there remains a need for improved treatments for those patients with recalcitrant disease, psoriatic arthritis, or nonplaque disease variants. Recently approved therapies and investigational products in ongoing clinical development programs that target IL-17A/F, IL-23, TYK2, PDE4, AhR or IL-36 cytokine signaling are improving the clinician's ability to care for a broader range of patients affected by psoriasis.


Subject(s)
Dermatologic Agents , Phosphodiesterase 4 Inhibitors , Psoriasis , Humans , Psoriasis/drug therapy , Dermatologic Agents/therapeutic use , Phosphodiesterase 4 Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Interleukin-23/antagonists & inhibitors , Ustekinumab/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Interleukin-17/antagonists & inhibitors , Arthritis, Psoriatic/drug therapy , TYK2 Kinase/antagonists & inhibitors , Thalidomide/analogs & derivatives
17.
Expert Opin Emerg Drugs ; 29(2): 177-186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588523

ABSTRACT

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating lung disease with poor prognosis. Although two antifibrotics have been approved in the past decade there are no curative therapies. AREAS COVERED: This review highlights the current landscape of IPF research in the development of novel compounds for the treatment of IPF while also evaluating repurposed medications and their role in the management of IPF. The literature search includes studies found on PubMed, conference abstracts, and press releases until March 2024. EXPERT OPINION: Disease progression in IPF is driven by a dysregulated cycle of microinjury, aberrant wound healing, and propagating fibrosis. Current drug development focuses on attenuating fibrotic responses via multiple pathways. Phosphodiesterase 4 inhibitors (PDE4i), lysophosphatidic acid (LPA) antagonists, dual-selective inhibitor of αvß6 and αvß1 integrins, and the prostacyclin agonist Treprostinil have had supportive phase II clinical trial results in slowing decline in forced vital capacity (FVC) in IPF. Barriers to drug development specific to IPF include the lack of a rodent model that mimics IPF pathology, the nascent understanding of the role of genetics affecting development of IPF and response to treatment, and the lack of a validated biomarker to monitor therapeutic response in patients with IPF. Successful treatment of IPF will likely include a multi-targeted approach anchored in precision medicine.


Subject(s)
Clinical Trials, Phase II as Topic , Disease Progression , Drug Development , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/physiopathology , Animals , Antifibrotic Agents/pharmacology , Clinical Trials, Phase III as Topic , Phosphodiesterase 4 Inhibitors/pharmacology , Drug Repositioning , Vital Capacity , Disease Models, Animal
18.
Cureus ; 16(3): e55773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38590459

ABSTRACT

Psoriasis is a chronic autoimmune inflammatory skin disease that is associated with other conditions, one of them being psoriatic arthritis (PsA). Apremilast, a phosphodiesterase-4 inhibitor, displayed promising results in multiple trials for patients with PsA. This systematic review and meta-analysis aims to showcase its efficacy and safety when compared to placebo. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was adopted after registration on the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023476245). Four databases were systematically searched from their inception until October 25, 2023. As a result, five randomized controlled trials were included with 1,849 participants, after thorough screening. The primary efficacy endpoint evaluated in this meta-analysis was the American College of Rheumatology Response Criteria 20 (ACR20). The results significantly favored apremilast (risk ratio [RR] = 1.92, 95% confidence interval [CI] 1.66-2.21; P < 0.00001; I2= 0%) as opposed to placebo. Similarly, secondary efficacy endpoints, ACR50 (RR = 2.34, 95% CI 1.79-3.06; P < 0.00001; I2 = 0%), ACR70 (RR = 2.89, 95% CI 1.62-5.18; P = 0.0003; I2 = 0%), and the Health Assessment Questionnaire and Disability Index (HAQ-DI; standardized mean difference [SMD] = -0.26, 95% CI -0.34 to -0.17; P < 0.00001; I2 = 0%) were also in significant favor of apremilast. However, apremilast had a higher occurrence of gastrointestinal adverse events than placebo (RR = 1.21, 95% CI 1.12-1.30; P < 0.00001; I2 = 19%). To conclude, apremilast shows promising efficaciousness with some nonserious side effects when compared to placebo, but further trials are needed for comparison with other management lines.

19.
Cureus ; 16(3): e55393, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38562326

ABSTRACT

Atopic dermatitis (AD) is a pervasive and multifaceted dermatological disorder causing daily distress to afflicted individuals worldwide. This comprehensive review synthesizes the historical and contemporary advancements in therapeutic strategies, offering a critical analysis of their efficacy, safety profiles, and adaptability. The enduring role of topical corticosteroids in managing AD is examined, acknowledging their potent anti-inflammatory properties alongside their potential adverse side effects, particularly in extended usage. The article explores the utilization of topical calcineurin inhibitors like tacrolimus and pimecrolimus, highlighting their novel anti-inflammatory pathways while also scrutinizing concerns over potential malignancies that relegate them to second-line therapy. The present investigation features the emergence of crisaborole, a phosphodiesterase four inhibitor. Its innovative mode of action, benign safety profile, and applicability to mild and moderate AD are thoroughly evaluated. The review also includes challenges, particularly cost considerations, which constrain accessibility and necessitate nuanced implementation in therapeutic regimens. This study underscores the need for persistent investigation, teamwork, and innovations in managing AD. In this regard, AD requires a united approach between clinicians, researchers, affected individuals, and policymakers to refine patient-focused treatment and develop precise, economical strategies to address this chronic and frequently life-altering health condition.

20.
Front Med (Lausanne) ; 11: 1363405, 2024.
Article in English | MEDLINE | ID: mdl-38633304

ABSTRACT

Psoriasis and atopic dermatitis (AD) are prevalent inflammatory skin disorders, each stemming from diverse factors, and characterized by recurring episodes. In certain complex cases, the clinical and pathological features exhibit overlapping and atypical characteristics, making accurate clinical diagnosis and targeted treatment a challenge. Psoriasiform dermatitis is the term used to describe such cases. Moreover, when patients have a history of malignancy, the situation becomes even more intricate, resulting in limited treatment options. Biologic therapies have transformed the management of immune-mediated inflammatory diseases, including psoriasis and AD. Meanwhile, the safety of biologics in special populations, especially among patients with a history of malignancy, should be underlined. The selective Janus kinase 1 (JAK1) inhibitor abrocitinib has been approved for the treatment of AD and has showed satisfying efficacy and safety in the treatment of psoriasis in clinical trials. Although unreported, JAK1 inhibitors are thought to have the potential to increase the risk of potential tumors. Apremilast, an oral phosphodiesterase (PDE)-4 inhibitor, is approved for moderate to severe plaque psoriasis. It has been investigated for its efficacy in AD, and is not contraindicated in malignancy. This report presents three cases of psoriasiform dermatitis in patients with a history of malignancy, showcasing significant improvement following treatment with systemic glucocorticoid, abrocitinib, or apremilast.

SELECTION OF CITATIONS
SEARCH DETAIL