Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Eur Urol Focus ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39232905

ABSTRACT

BACKGROUND AND OBJECTIVE: Bladder cancer (BLCa) remains a prevalent malignancy with high recurrence rates and limited treatment options. In recent years, patient-derived organoids (PDOs) have emerged as a promising platform for studying cancer biology and therapeutic responses in a personalized manner. Using drug screening, PDOs facilitate the identification of novel therapeutic agents and translational treatment strategies. Moreover, their ability to model patient-specific responses to treatments holds promise for predicting clinical outcomes and guiding treatment decisions. This exploratory review aims to investigate the potential of PDOs in advancing BLCa research and treatment, with an emphasis on translational clinical approaches. Furthermore, we analyze the feasibility of deriving PDOs from minimally invasive blood and urine samples. METHODS: In addition to exploring hypothetical applications of PDOs for predicting patient outcomes and their ability to model different stages of BLCa, we conducted a comprehensive PubMed search on already published data as well as comprehensive screening of currently ongoing trials implementing PDOs in precision medicine in cancer patients irrespective of the tumor entity. KEY FINDINGS AND LIMITATIONS: While the research on BLCa PDOs is advancing rapidly, data on both BLCa PDO research and their clinical application are scarce. Owing to this fact, a narrative review format was chosen for this publication. CONCLUSIONS AND CLINICAL IMPLICATIONS: BLCa PDOs have the potential to influence the domain of precision medicine and enhance personalized cancer treatment strategies. However, standardized protocols for PDO generation, their ideal clinical application, as well as their impact on outcomes remain to be determined. PATIENT SUMMARY: In this review, we discuss the current state and future needs for the use of patient-derived organoids, small three-dimensional avatars of tumor cells, in bladder cancer. Patient-derived bladder cancer organoids offer a more personalized approach to studying and treating bladder cancer, providing a model that closely resembles the patient's own tumor. These organoids can help researchers identify new treatment options and predict how individual patients may respond to standard therapies. By using minimally invasive samples such as blood and urine, patients can participate in research studies more easily, potentially leading to improved outcomes in bladder cancer treatment.

2.
Anal Chim Acta ; 1325: 342989, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39244298

ABSTRACT

BACKGROUND: Patient-derived organoids (PDOs) are multi-cellular cultures with specific three-dimensional (3D) structures. Tumor organoids (TOs) offer a personalized perspective for assessing treatment response. However, the presence of normal organoid (NO) residuals poses a potential threat to their utility for personalized medicine. There is a crucial need for an effective platform capable of distinguishing between TO and NO in cancer organoid cultures. RESULTS: We introduced a whole-mount (WM) preparation protocol for in-situ visualization of the lipidomic distribution of organoids. To assess the efficacy of this method, nine breast cancer organoids (BCOs) and six normal breast organoids (NBOs) were analyzed. Poly-l-lysine (PLL) coated slides, equipped with 12 well chambers, were utilized as a carrier for the high-throughput analysis of PDOs. Optimizing the fixation time to 30 min, preserved the integrity of organoids and the fidelity of lipid compounds. The PDOs derived from the same organoid lines exhibited similar lipidomic profiles. BCOs and NBOs were obviously distinguished based on their lipidomic signatures detected by WM autofocusing (AF) scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) mass spectrometry imaging (MSI). SIGNIFICANCE: A whole-mount (WM) preparation protocol was developed to visualize lipidomic distributions of the organoids' surface. Using poly-l-lysine coated slides for high-throughput analysis, the method preserved organoid integrity and distinguished breast cancer organoids (BCOs) from normal breast organoids (NBOs) based on their unique lipidomic profiles using autofocusing scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) mass spectrometry imaging.


Subject(s)
Breast Neoplasms , Lipidomics , Organoids , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Organoids/metabolism , Organoids/cytology , Lipidomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Lipids/analysis , Lipids/chemistry
3.
J Control Release ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39242032

ABSTRACT

Breast cancer represents the most prevalent tumor type worldwide, with hormone-responsive breast cancer the most common subtype. Despite the effectiveness of endocrine therapy, advanced disease forms represent an unmet clinical need. While drug combination therapies remain promising, differences in pharmacokinetic profiles result in suboptimal ratios of free drugs reaching tumors. We identified a synergistic combination of bisdemethoxycurcumin and exemestane through drug screening and rationally designed star-shaped poly-L-glutamic acid-based combination conjugates carrying these drugs conjugated through pH-responsive linkers for hormone-responsive breast cancer treatment. We synthesized/characterized single and combination conjugates with synergistic drug ratios/loadings. Physicochemical characterization/drug release kinetics studies suggested that lower drug loading prompted a less compact conjugate conformation that supported optimal release. Screening in monolayer and spheroid breast cancer cell cultures revealed that combination conjugates possessed enhanced cytotoxicity/synergism compared to physical mixtures of single-drug conjugates/free drugs; moreover, a combination conjugate with the lowest drug loading outperformed remaining conjugates. This candidate inhibited proliferation-associated signaling, reduced inflammatory chemokine/exosome levels, and promoted autophagy in spheroids; furthermore, it outperformed a physical mixture of single-drug conjugates/free drugs regarding cytotoxicity in patient-derived breast cancer organoids. Our findings highlight the importance of rational design and advanced in vitro models for the selection of polypeptide-based combination conjugates.

4.
Article in English | MEDLINE | ID: mdl-39191607

ABSTRACT

Liver diseases represent a growing global health challenge, and the increasing prevalence of obesity and metabolic disorders is set to exacerbate this crisis. To meet evolving regulatory demands, patient-specific in vitro liver models are essential for understanding disease mechanisms and developing new therapeutic approaches. Organoid models, which faithfully recapitulate liver biology, can be established from both non-malignant and malignant liver tissues, offering insight into various liver conditions, from acute injuries to chronic diseases and cancer. Improved understanding of liver microenvironments, innovative biomaterials, and advanced imaging techniques now facilitate comprehensive and unbiased data analysis, paving the way for personalised medicine. In this review, we discuss state-of-the-art patient-derived liver organoid models, recent technological advancements, and strategies to enhance their clinical impact.

5.
Cells ; 13(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39195202

ABSTRACT

Cancer is a leading cause of death worldwide. Around one-third of the total global cancer incidence and mortality are related to gastrointestinal (GI) cancers. Over the past few years, rapid developments have been made in patient-derived organoid (PDO) models for gastrointestinal cancers. By closely mimicking the molecular properties of their parent tumors in vitro, PDOs have emerged as powerful tools in personalized medicine and drug discovery. Here, we review the current literature on the application of PDOs of common gastrointestinal cancers in the optimization of drug treatment strategies in the clinic and their rising importance in pre-clinical drug development. We discuss the advantages and limitations of gastrointestinal cancer PDOs and outline the microfluidics-based strategies that improve the throughput of PDO models in order to extract the maximal benefits in the personalized medicine and drug discovery process.


Subject(s)
Gastrointestinal Neoplasms , Organoids , Precision Medicine , Humans , Precision Medicine/methods , Organoids/drug effects , Organoids/pathology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/pathology , Drug Evaluation, Preclinical/methods , Drug Discovery/methods , Drug Screening Assays, Antitumor/methods
6.
Clin Transl Radiat Oncol ; 48: 100829, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39192878

ABSTRACT

Background: The effectiveness of radiotherapy for pancreatic cancer is debated. Patient-derived organoids (PDOs) already mimicked clinical radiation response in other cancer types, which could be valuable in pancreatic cancer as well. This study aimed to investigate whether PDOs can be used to model RT response in pancreatic cancer and to explore the presence of a dose-response correlation. Methods: PDOs derived from two pancreatic cancer patients (HUB-08-B2-022A and HUB-08-B2-026B) were irradiated with doses ranging from 0 to 40 Gray. Viability assessments were conducted after seven and 10 days by measuring ATP-levels. Results were normalized, defining the viability at 0 Gray as 100 % and an absolute viability of 0 as 0 %. The relative area under the curve (rAUC) was calculated (0 = total sensitivity, 1 = total resistance). Results: With a readout time of seven days, both HUB-08-B2-022A and HUB-08-B2-026B exhibited viability above 50 % at the highest dose of 12 Gy (rAUC of 0.79 and 0.69, respectively). With a readout time of 10 days, both PDOs showed a dose-response relation although HUB-08-B2-022A was more sensitive than HUB-08-B2-026B (rAUC of 0.37 and 0.51, respectively). Increasing the radiation dose to 40 Gy did not further affect viability, but the dose-response relation remained present (rAUC of 0.13 and 0.26, respectively). In the final experiment with a readout time of 10 days and a maximum dose of 14 Gy, the dose-response correlation was paramount in both PDOs (rAUC 0.28 and 0.45, respectively), with HUB-08-B2-022A being most sensitive. Conclusions: In this setup, both pancreatic cancer PDOs showed an irradiation dose-response correlation. These preliminary findings suggest that pancreatic cancer PDOs are suitable for assessing radiation response in vitro. Further experiments are needed to eventually simulate treatment responses to personalized treatment strategies.

7.
J Ethnopharmacol ; 337(Pt 1): 118710, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197803

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The clinical application of the traditional Chinese medicinal formula Jiedu Xiaozheng Yin (JXY) for gastrointestinal tumors, particularly colorectal cancer (CRC), is well-established, yet the precise biological mechanism underlying its efficacy in CRC treatment remains elusive. AIMS OF THE STUDY: This study endeavors to unravel the intricate mechanism through which JXY modulates colorectal cancer stem cells, thus elucidating the pathways by which it exerts its potent anti-tumor effects. MATERIALS AND METHODS: In this study, the regulatory impact of JXY on the signaling pathway and function of CRC cells was analyzed through Network pharmacology. The ethyl acetate extract of JXY was detected the major compounds using HPLC and then treated the HCT-116 cells for RNA-Sequencing (RNA-Seq). Protein expression and stemness of HCT-15 and HCT-116 cells following JXY extract treatment were assessed using Western blot analysis and matrigel spheroid assays. Additionally, the ß-catenin transcriptional activity was evaluated using a TOPflash reporter assay with or without Lithium chloride (LiCl) stimulation. Patient-derived organoids of CRC (CRC PDOs) were cultured using a stemness maintenance medium, and their viability was measured using ATP assays after treatment of JXY extract. Furthermore, the anti-tumor efficacy of JXY extract was assessed using a xenograft mice model derived from HCT-15 cells. RESULTS: Network pharmacology emphasized the influence of JXY on cancer stem cells and the Wnt signaling pathway. HPLC analysis confirmed that the JXY extract contained the three most prevalent pharmaceutical compounds among the four herbs documented in the Chinese Pharmacopoeia (rosmarinic acid, quercetin, and kaempferol). RNA-Seq results further elucidated the effect of JXY extract, particularly targeting cancer stem cells and the Wnt signaling pathway. Furthermore, JXY extract inhibited spheroid formation in CRC cells and downregulated CRC CSC markers (CD133, DCLK1, and C-MYC). Additionally, JXY extract suppressed the ß-catenin expression and transcriptional activity as well as the Wnt pathway target proteins, including C-MYC and Cyclin D1. Consistent with findings from cell lines, JXY extract suppressed the growth of CRC PDOs exhibiting stemness characteristics. And JXY extract demonstrated a significant inhibitory effect on tumor growth, C-MYC, and ß-catenin protein levels in xenograft tumors. CONCLUSIONS: These results highlight the novel function of JXY extract in targeting CRC CSCs by regulating Wnt signaling pathway, underscoring its potential as a therapeutic agent for treating CRC.

8.
FASEB J ; 38(15): e23847, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39096137

ABSTRACT

Intestinal failure-associated liver disease (IFALD) is a serious complication of long-term parenteral nutrition in patients with short bowel syndrome (SBS), and is the main cause of death in SBS patients. Prevention of IFALD is one of the major challenges in the treatment of SBS. Impairment of intestinal barrier function is a key factor in triggering IFALD, therefore promoting intestinal repair is particularly important. Intestinal repair mainly relies on the function of intestinal stem cells (ISC), which require robust mitochondrial fatty acid oxidation (FAO) for self-renewal. Herein, we report that aberrant LGR5+ ISC function in IFALD may be attributed to impaired farnesoid X receptor (FXR) signaling, a transcriptional factor activated by steroids and bile acids. In both surgical biopsies and patient-derived organoids (PDOs), SBS patients with IFALD represented lower population of LGR5+ cells and decreased FXR expression. Moreover, treatment with T-ßMCA in PDOs (an antagonist for FXR) dose-dependently reduced the population of LGR5+ cells and the proliferation rate of enterocytes, concomitant with decreased key genes involved in FAO including CPT1a. Interestingly, however, treatment with Tropifexor in PDOs (an agonist for FXR) only enhanced FAO capacity, without improvement in ISC function and enterocyte proliferation. In conclusion, these findings suggested that impaired FXR may accelerate the depletion of LGR5 + ISC population through disrupted FAO processes, which may serve as a new potential target of preventive interventions against IFALD for SBS patients.


Subject(s)
Liver Diseases , Receptors, Cytoplasmic and Nuclear , Short Bowel Syndrome , Signal Transduction , Stem Cells , Humans , Short Bowel Syndrome/metabolism , Short Bowel Syndrome/pathology , Receptors, Cytoplasmic and Nuclear/metabolism , Stem Cells/metabolism , Male , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/etiology , Female , Child , Intestinal Failure/metabolism , Child, Preschool , Infant , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Receptors, G-Protein-Coupled/metabolism , Cell Proliferation , Intestines/pathology , Enterocytes/metabolism
9.
Trends Biotechnol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39025680

ABSTRACT

Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.

10.
Cancer Immunol Immunother ; 73(9): 164, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954022

ABSTRACT

T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.


Subject(s)
Coculture Techniques , Lymphocytes, Tumor-Infiltrating , Organoids , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Organoids/immunology , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology
11.
Adv Sci (Weinh) ; 11(32): e2405084, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38962943

ABSTRACT

The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.


Subject(s)
Colorectal Neoplasms , Colorectal Neoplasms/genetics , Humans , Animals , In Vitro Techniques/methods , Cell Line, Tumor
12.
Cancer Lett ; 598: 217106, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38992487

ABSTRACT

Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with aggressiveness and poor prognosis. It is of great significance to find sensitive drugs for DGC. In the current study, a total of 20 patient-derived organoids (PDOs) were analyzed for screening the therapeutic efficacy of small molecule kinases inhibitors on gastric cancers, especially the therapeutic difference between intestinal-type gastric cancer (IGCs) and DGCs. The IGCs are sensitive to multiple kinases inhibitors, while DGCs are resistant to most of these kinases inhibitors. It was found that DGCs showed drug-induced senescent phenotype after treatment by aurora kinases inhibitors (AURKi) Barasertib-HQPA and Danusertib. The cell diameter of cancer cells are increased with stronger staining of senescence-associated ß-galactosidase (SA-ß-GAL), and characteristic appearance of multinucleated giant cells. The senescent cancer cells secrete large amounts of chemokine MCP-1/CCL2, which recruit and induce macrophage to M2-type polarization in PDOs of DGC (DPDOs)-macrophage co-culture system. The up-regulation of local MCP-1/CCL2 can interact with MCP-1/CCL2 receptor (CCR2) expressed on macrophages and suppress their innate immunity to cancer cells. Overall, the special response of DGC to AURKi suggests that clinicians should select a sequential therapy with senescent cell clearance after AURKi treatment for DGC.


Subject(s)
Cellular Senescence , Immunity, Innate , Macrophages , Organoids , Protein Kinase Inhibitors , Stomach Neoplasms , Humans , Aurora Kinases/antagonists & inhibitors , Aurora Kinases/metabolism , Cellular Senescence/drug effects , Chemokine CCL2/metabolism , Coculture Techniques , Immunity, Innate/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Organoids/drug effects , Protein Kinase Inhibitors/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism
13.
Mol Ther Oncol ; 32(3): 200828, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39072289

ABSTRACT

To date, nearly one-quarter of colorectal cancer (CRC) patients develop liver metastases (CRCLM), and its aggressiveness can be correlated to defined histopathological growth patterns (HGP). From the three main HGPs within CRCLM, the replacement HGP emerges as particularly aggressive, characterized by heightened tumor cell motility and vessel co-option. Here, we investigated the correlation between the expression of calcium- and integrin-binding protein 1 (CIB1), a ubiquitously expressed gene involved in various cellular processes including migration and adhesion, and disease-free (DFS) and overall survival (OS) in primary CRC patients. Additionally, we explored the correlation between CIB1 expression and different HGPs of CRCLM. Proteomic analysis was used to evaluate CIB1 expression in a cohort of 697 primary CRC patients. Additionally, single-cell and spatial RNA-sequencing datasets, along with publicly available bulk sequencing data were used to evaluate CIB1 expression in CRCLM. In silico data were further validated by formalin-fixed paraffin-embedded immunohistochemical stainings. We observed that high CIB1 expression is independently associated with worse DFS and OS, regardless of Union Internationale Contre le Cancer stage, gender, or age. Furthermore, the aggressive replacement CRCLM HGP is significantly associated with high CIB1 expression. Our findings show a correlation between CIB1 levels and the clinical aggressiveness of CRC. Moreover, CIB1 may be a novel marker to stratify HGP CRCLM.

14.
Theranostics ; 14(8): 3300-3316, 2024.
Article in English | MEDLINE | ID: mdl-38855182

ABSTRACT

Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.


Subject(s)
Antineoplastic Agents , Consensus , Drug Development , Neoplasms , Organoids , Precision Medicine , Organoids/drug effects , Humans , Precision Medicine/methods , Neoplasms/drug therapy , Drug Development/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor/methods
15.
Cancer Cell Int ; 24(1): 220, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926706

ABSTRACT

BACKGROUND: A reliable preclinical model of patient-derived organoids (PDOs) was developed in a case study of a 69-year-old woman diagnosed with breast cancer (BC) to investigate the tumour evolution before and after neoadjuvant chemotherapy and surgery. The results were achieved due to the development of PDOs from tissues collected before (O-PRE) and after (O-POST) treatment. METHODS: PDO cultures were characterized by histology, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy, flow cytometry, real-time PCR, bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) and drug screening. RESULTS: Both PDO cultures recapitulated the histological and molecular profiles of the original tissues, and they showed typical mammary gland organization, confirming their reliability as a personalized in vitro model. Compared with O-PRE, O-POST had a greater proliferation rate with a significant increase in the Ki67 proliferation index. Moreover O-POST exhibited a more stem-like and aggressive phenotype, with increases in the CD24low/CD44low and EPCAMlow/CD49fhigh cell populations characterized by increased tumour initiation potential and multipotency and metastatic potential in invasive lobular carcinoma. Analysis of ErbB receptor expression indicated a decrease in HER-2 expression coupled with an increase in EGFR expression in O-POST. In this context, deregulation of the PI3K/Akt signalling pathway was assessed by transcriptomic analysis, confirming the altered transcriptional profile. Finally, transcriptomic single-cell analysis identified 11 cell type clusters, highlighting the selection of the luminal component and the decrease in the number of Epithelial-mesenchymal transition cell types in O-POST. CONCLUSION: Neoadjuvant treatment contributed to the enrichment of cell populations with luminal phenotypes that were more resistant to chemotherapy in O-POST. PDOs represent an excellent 3D cell model for assessing disease evolution.

16.
Head Neck Pathol ; 18(1): 59, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940869

ABSTRACT

INTRODUCTION: Patient derived organoids (PDOs) are 3D in vitro models and have shown to better reflect patient and tumor heterogeneity than conventional 2D cell lines. To utilize PDOs in clinical settings and trials for biomarker discovery or drug response evaluation, it is valuable to determine the best way to optimize sample selection for maximum PDO establishment. In this study, we assess patient, tumor and tissue sampling factors and correlate them with successful PDO establishment in a well-documented cohort of patients with head and neck squamous cell carcinoma (HNSCC). METHODS: Tumor and non-tumorous adjacent tissue samples were obtained from HNSCC patients during routine biopsy or resection procedures at the University Medical Center Utrecht. The tissue was subsequently processed to establish PDOs. The sample purity was determined as the presence of epithelial cells in the culture on the day of organoid isolation as visualized microscopically by the researcher. PDO establishment was recorded for all samples. Clinical data was obtained from the medical records and was correlated to PDO establishment and presence of epithelial cells. RESULTS: Organoids could be established in 133/250 (53.2%) primary tumor site tissues. HNSCC organoid establishment tended to be more successful if patients were younger than the median age of 68 years (74/123 (60.2%) vs. 59/127 (46.5%), p = 0.03). For a subset of samples, the presence of epithelial cells in the organoid culture on the day of organoid isolation was recorded in 112/149 (75.2%) of these samples. When cultures were selected for presence of epithelial cells, organoid establishment increased to 76.8% (86/112 samples). CONCLUSION: This study found a trend between age and successful organoid outgrowth in patients with HNSCC younger than 68 years and emphasizes the value of efficient sampling regarding PDO establishment.


Subject(s)
Head and Neck Neoplasms , Organoids , Squamous Cell Carcinoma of Head and Neck , Humans , Organoids/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Aged , Female , Middle Aged , Male , Head and Neck Neoplasms/pathology , Adult , Aged, 80 and over
17.
EMBO Mol Med ; 16(7): 1495-1514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831131

ABSTRACT

Achieving complete tumor resection is challenging and can be improved by real-time fluorescence-guided surgery with molecular-targeted probes. However, pre-clinical identification and validation of probes presents a lengthy process that is traditionally performed in animal models and further hampered by inter- and intra-tumoral heterogeneity in target expression. To screen multiple probes at patient scale, we developed a multispectral real-time 3D imaging platform that implements organoid technology to effectively model patient tumor heterogeneity and, importantly, healthy human tissue binding.


Subject(s)
Imaging, Three-Dimensional , Organoids , Humans , Imaging, Three-Dimensional/methods , Surgery, Computer-Assisted/methods , Optical Imaging/methods , Animals , Neoplasms/surgery , Fluorescent Dyes/chemistry
18.
Front Cell Dev Biol ; 12: 1401504, 2024.
Article in English | MEDLINE | ID: mdl-38835507

ABSTRACT

Cancer therapy is on the brink of a significant transformation with the inclusion of patient-derived organoids (PDOs) in drug development. These three-dimensional cell cultures, directly derived from a patient's tumor, accurately replicate the complex structure and genetic makeup of the original cancer. This makes them a promising tool for advancing oncology. In this review, we explore the practical applications of PDOs in clinical drug screening and pharmacognostic assessment, as well as their role in refining therapeutic strategies. We provide insights into the latest advancements in PDO technology and its implications for predicting treatment responses and facilitating novel drug discoveries. Additionally, we address the operational challenges associated with incorporating PDOs into the drug development process, such as scaling up organoid cultures, ensuring consistent results, and addressing the ethical use of patient-derived materials. Aimed at researchers, clinicians, and key stakeholders in oncology, this article aims to succinctly present both the extraordinary potential and the obstacles to integrating PDOs, thereby shedding light on their prospective impact on the future of cancer treatment.

19.
Surg Oncol Clin N Am ; 33(3): 571-581, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789199

ABSTRACT

In this article, the authors summarize the current state of translational science for esophageal and gastric cancers. The available targeted therapies, immunotherapies, and recently discovered molecular targets are reviewed. The authors introduce circulating tumor deoxyribonucleic acid and its promise as a biomarker to detect disease recurrence. The authors present patient-derived organoids as a new model for studying carcinogenesis and treatment responses. Finally, we discuss the implications of organoid models for precision oncology and describe exciting new work applying gene editing technology to organoids and studying tumor-microenvironment interactions using 3-dimensional co-culture systems.


Subject(s)
Esophageal Neoplasms , Stomach Neoplasms , Translational Science, Biomedical , Animals , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Organoids , Precision Medicine/methods , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Stomach Neoplasms/pathology , Translational Research, Biomedical/methods , Translational Science, Biomedical/methods , Tumor Microenvironment
20.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791392

ABSTRACT

Malignant pleural mesothelioma (MPM) remains an incurable disease. This is partly due to the lack of experimental models that fully recapitulate the complexity and heterogeneity of MPM, a major challenge for therapeutic management of the disease. In addition, the contribution of the MPM microenvironment is relevant for the adaptive response to therapy. We established mesothelioma patient-derived organoid (mPDO) cultures from MPM pleural effusions and tested their response to pemetrexed and cisplatin. We aimed to evaluate the contribution of mesothelioma-associated fibroblasts (MAFs) to the response to pemetrexed and cisplatin (P+C). Organoid cultures were obtained from eight MPM patients using specific growth media and conditions to expand pleural effusion-derived cells. Flow cytometry was used to verify the similarity of the organoid cultures to the original samples. MAFs were isolated and co-cultured with mPDOs, and the addition of MAFs reduced the sensitivity of mPDOs to P+C. Organoid formation and expression of cancer stem cell markers such as ABCG2, NANOG, and CD44 were altered by conditioned media from treated MAFs. We identified IL-6 as the major contributor to the attenuated response to chemotherapy. IL-6 secretion by MAFs is correlated with increased resistance of mPDOs to pemetrexed and cisplatin.


Subject(s)
Cancer-Associated Fibroblasts , Cisplatin , Interleukin-6 , Mesothelioma, Malignant , Organoids , Pemetrexed , Aged , Female , Humans , Male , Middle Aged , Antineoplastic Agents/pharmacology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology , Cisplatin/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Interleukin-6/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mesothelioma/pathology , Mesothelioma/drug therapy , Mesothelioma/metabolism , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/pathology , Mesothelioma, Malignant/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Organoids/metabolism , Organoids/drug effects , Organoids/pathology , Pemetrexed/pharmacology , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL