Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Angew Chem Int Ed Engl ; : e202411863, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223086

ABSTRACT

Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, we achieved the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration into their structure-function relationships using glycan microarray, revealing broad yet distinct recognitions by Siglecs to the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insights for functional study and potential applications of Siglecs and HMOs.

2.
Diagn Pathol ; 19(1): 112, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153970

ABSTRACT

The occurrence and progression of skin cutaneous melanoma (SKCM) is strongly associated with immune cells infiltrating the tumor microenvironment (TME). This study examined the expression, prognosis, and immune relevance of SIGLEC9 in SKCM using multiple online databases. Analysis of the GEPIA2 and Ualcan databases revealed that SIGLEC9 is highly expressed in SKCM, and patients with high SIGLEC9 expression had improved overall survival (OS). Furthermore, the mutation rate of SIGLEC9 in SKCM patients was found to be 5.41%, the highest observed. The expression of SIGLEC9 was positively correlated with macrophages, neutrophils and B cells, CD8 + T cells, CD4 + T cells, and dendritic cells, according to TIMER. Based on TCGA-SKCM data, we verified that high SIGLEC9 expression is closely associated with a good prognosis for SKCM patients, including overall survival, progression-free interval, and disease-specific survival. This positive prognosis could be due to the infiltration of immune cells into the TME. Additionally, our analysis of single-cell transcriptome data revealed that SIGLEC9 not only played a role in the normal skin immune microenvironment, but is also highly expressed in immune cell subpopulations of SKCM patients, regulating the immune response to tumors. Our findings suggest that the close association between SIGLEC9 and SKCM prognosis is primarily mediated by its effect on the tumor immune microenvironment.


Subject(s)
Biomarkers, Tumor , Melanoma , Skin Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Melanoma/immunology , Melanoma/genetics , Melanoma/mortality , Melanoma/pathology , Prognosis , Biomarkers, Tumor/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Melanoma, Cutaneous Malignant , Antigens, CD/genetics , Antigens, CD/metabolism , Lymphocytes, Tumor-Infiltrating/immunology
3.
Immunology ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129256

ABSTRACT

Cancer immunotherapy has revolutionized the treatment landscape by harnessing the power of the immune system to combat malignancies. Two of the most promising players in this field are cluster of differentiation 24 (CD24) and sialic acid-binding Ig-like lectin 10 (Siglec-10), and both of them play pivotal roles in modulating immune responses. CD24, a cell surface glycoprotein, emerges as a convincing fundamental signal transducer for therapeutic intervention, given its significant implication in the processes related to tumour progression and immunogenic evasion. Additionally, the immunomodulatory functions of Siglec-10, a prominent member within the Siglec family of immune receptors, have recently become a crucial point of interest, particularly in the context of the tumour microenvironment. Hence, the intricate interplay of both CD24 and Siglec-10 assumes a critical role in fostering tumour growth, facilitating metastasis and also orchestrating immune evasion. Recent studies have found multiple evidences supporting the therapeutic potential of targeting CD24 in cancer treatment. Siglec-10, on the other hand, exhibits immunosuppressive properties that contribute to immune tolerance within the tumour microenvironment. Therefore, we delve into the complex mechanisms through which Siglec-10 modulates immune responses and facilitates immune escape in cancer. Siglec-10 also acts as a viable target for cancer immunotherapy and presents novel avenues for the development of therapeutic interventions. Furthermore, we examine the synergy between CD24 and Siglec-10 in shaping the immunosuppressive tumour microenvironment and discuss the implications for combination therapies. Therefore, understanding the roles of CD24 and Siglec-10 in cancer immunotherapy opens exciting possibilities for the development of novel therapeutics.

4.
Curr Issues Mol Biol ; 46(8): 7795-7811, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39194679

ABSTRACT

Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.

5.
EBioMedicine ; 107: 105271, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173531

ABSTRACT

BACKGROUND: Breast cancer cells suppress the host immune system to efficiently invade the lymph nodes; however, the underlying mechanism remains incompletely understood. Here, we aimed to comprehensively characterise the effects of breast cancers on immune cells in the lymph nodes. METHODS: We collected non-metastatic and metastatic lymph node samples from 6 patients with breast cancer with lymph node metastasis. We performed bulk transcriptomics, spatial transcriptomics, and imaging mass cytometry to analyse the obtained lymph nodes. Furthermore, we conducted histological analyses against a larger patient cohort (474 slices from 58 patients). FINDINGS: The comparison between paired lymph nodes with and without metastasis from the same patients demonstrated that the number of CD169+ lymph node sinus macrophages, an initiator of anti-cancer immunity, was reduced in metastatic lymph nodes (36.7 ± 21.1 vs 7.3 ± 7.0 cells/mm2, p = 0.0087), whereas the numbers of other major immune cell types were unaltered. We also detected that the infiltration of CD169+ macrophages into metastasised cancer tissues differed by section location within tumours, suggesting that CD169+ macrophages were gradually decreased after anti-cancer reactions. Furthermore, CD169+ macrophage elimination was prevalent in major breast cancer subtypes and correlated with breast cancer staging (p = 0.022). INTERPRETATION: We concluded that lymph nodes with breast cancer metastases have fewer CD169+ macrophages, which may be detrimental to the activity of anti-cancer immunity. FUNDING: JSPS KAKENHI (16H06279, 20H03451, 20H04842, 22H04925, 19K16770, and 21K15530, 24K02236), JSPS Fellows (JP22KJ1822), AMED (JP21ck0106698), JST FOREST (JPMJFR2062), Caravel, Co., Ltd, Japan Foundation for Applied Enzymology, and Sumitomo Pharma Co., Ltd. under SKIPS.

6.
Glycobiology ; 34(10)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39173029

ABSTRACT

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.


Subject(s)
Esophagus , Keratan Sulfate , Lectins , Mucin-5B , Humans , Ligands , Mucin-5B/metabolism , Mucin-5B/genetics , Lectins/metabolism , Lectins/chemistry , Keratan Sulfate/metabolism , Keratan Sulfate/chemistry , Esophagus/metabolism , Antigens, CD/metabolism , Antigens, CD/chemistry , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte
7.
Front Immunol ; 15: 1411072, 2024.
Article in English | MEDLINE | ID: mdl-39211050

ABSTRACT

Introduction: Gliomas are the most common primary intracranial tumors, known for their high invasiveness and destructiveness. Sialic acid-binding immunoglobulin-like lectin 7 (SIGLEC7) is present in various immune cells, especially macrophages, and significantly affects immune homeostasis and cancer cell response. However, research on the role and prognostic impact of SIGLEC7 in glioma patients is currently limited. Methods: We utilized transcriptomic data from 702 glioma patients in The Cancer Genome Atlas (TCGA) and 693 glioma patients in the Chinese Glioma Genome Atlas (CGGA), along with clinical samples we collected, to comprehensively investigate the impact of SIGLEC7 on glioma expression patterns, biological functions, and prognostic value. We focused on its role in glioma-related immune responses and immune cell infiltration and analyzed its expression at the single-cell level. Finally, we validated the role of SIGLEC7 in gliomas through tissue and cell experiments. Results: SIGLEC7 expression was significantly increased in glioma patients with malignant characteristics. Survival analysis indicated that glioma patients with high SIGLEC7 expression had significantly lower survival rates. Gene function analysis revealed that SIGLEC7 is primarily involved in immune and inflammatory responses and is strongly negatively correlated with tumor-associated immune regulation. Additionally, the expression of most immune checkpoints was positively correlated with SIGLEC7, and immune cell infiltration analysis clearly demonstrated a significant positive correlation between SIGLEC7 expression and M2 macrophage infiltration levels. Single-cell analysis, along with tissue and cell experiments, confirmed that SIGLEC7 enhances macrophage polarization towards the M2 phenotype, thereby promoting glioma invasiveness through the immunosuppressive effects of M2 macrophages. Cox regression analysis and the establishment of survival prediction models indicated that high SIGLEC7 expression is an unfavorable prognostic factor for glioma patients. Discussion: High SIGLEC7 expression predicts poor prognosis in glioma patients and is closely associated with M2 macrophages in the tumor environment. In the future, SIGLEC7 may become a promising target for glioma immunotherapy.


Subject(s)
Brain Neoplasms , Glioma , Macrophages , Humans , Glioma/immunology , Glioma/genetics , Glioma/mortality , Glioma/pathology , Prognosis , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Macrophages/immunology , Macrophages/metabolism , Male , Female , Lectins/genetics , Lectins/metabolism , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/immunology , Macrophage Activation/genetics , Biomarkers, Tumor/genetics , Middle Aged , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, Myelomonocytic
8.
J Biol Chem ; 300(9): 107630, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098526

ABSTRACT

CD22 (also known as Siglec-2) is an inhibitory receptor expressed in B cells. CD22 specifically recognizes α2,6 sialic acid and interacts with α2,6 sialylated membrane proteins expressed on the same cell (cis-ligands) and those derived from outside of the cell (trans-ligands). Previously, CD22 cis-ligands were shown to regulate the activity of CD22, thereby regulating both BCR ligation-induced signaling and low-level "tonic" signaling in the absence of BCR ligation that regulates the survival and differentiation of B cells. Mouse CD22 prefers Neu5Gc to Neu5Ac thereby binding to α2,6-linked Neu5Gc with high affinity. Although human CD22 binds to a distinct α2,6 sialylated glycan with high affinity, expression of high-affinity ligands is regulated in a conserved and stringent manner. However, how high- versus low-affinity CD22 ligands regulate B cells is poorly understood. Here we demonstrate that the interaction of CD22 with the endogenous ligands enhances BCR ligation-induced signaling but reduces tonic signaling in Cmah-/- mouse B cells deficient in Neu5Gc as well as wild-type B cells. Moreover, Cmah-/- B cells do not show alterations in the phenotypes correlated to tonic signaling. These results indicate that low-affinity interaction of the CD22 cis-ligands with CD22 is sufficient for the regulation of B cell signaling, and suggest that expression of high-affinity CD22 ligands might be involved in the regulation of B cells by competing for the binding of CD22 with exogenous trans-ligands of CD22.

9.
Int J Biol Macromol ; 278(Pt 3): 134851, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168212

ABSTRACT

In mammals, siglec7, an integral component of the siglecs, is principally found on the surface of natural killer (NK) cells, macrophages, and monocytes, where it interacts with various pathogens to perform immunological regulatory activities. Nonetheless, the immune defense and mechanism of siglec7 in early vertebrates remain unknown. In this study, we identified siglec7 from Oreochromis niloticus (OnSiglec7) and revealed its immune functions. Specifically, OnSiglec7 was abundantly expressed in immune-related tissues of healthy tilapia and its transcription level was strongly activated after being challenged with A. hydrophila, S. agalactiae, and Poly: IC. Meanwhile, OnSiglec7 protein was purified and analyzed, which could recognize multiple pathogens through binding and agglutinating activity. Moreover, OnSiglec7-positive cells were mainly distributed in non-specific cytotoxic cells (NCC) of tilapia HKLs and showed cell membrane localization. Furthermore, OnSiglec7 blockage affected multiple innate immune responses (inflammation, apoptosis, and pyroptosis process) by regulating the activation of MAPK, NF-κB, TLR, and JAK-STAT pathways. Finally, OnSiglec7 blockage also greatly enhanced the cytotoxic effect of tilapia NCC. Summarily, this study uncovers immune functions and mechanisms of siglec7 in primitive vertebrates, thereby enhancing our understanding of the systemic evolution and ancient functions of other siglecs within the host's innate immune system (to our knowledge).

10.
J Transl Med ; 22(1): 674, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039496

ABSTRACT

BACKGROUND: Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS: The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS: The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS: This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.


Subject(s)
Cell Movement , Mitochondria , Pre-Eclampsia , Receptors, G-Protein-Coupled , Trophoblasts , Up-Regulation , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Humans , Pregnancy , Female , Mitochondria/metabolism , Up-Regulation/genetics , Trophoblasts/metabolism , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Cell Movement/genetics , Lectins/metabolism , Placenta/metabolism , Mice , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Adult
11.
mBio ; 15(8): e0110724, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39041817

ABSTRACT

Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.


Subject(s)
Adhesins, Bacterial , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Bacterial Adhesion , Host-Pathogen Interactions , Lectins , Humans , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Lectins/metabolism , Lectins/genetics , Lectins/immunology , Animals , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Protein Binding , Mice , CHO Cells , Cricetulus , Neisseria meningitidis/genetics , Neisseria meningitidis/metabolism , Neisseria meningitidis/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Meningococcal Infections/microbiology , Meningococcal Infections/immunology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/immunology , Neisseria meningitidis, Serogroup B/metabolism
12.
Int Immunopharmacol ; 139: 112720, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39047450

ABSTRACT

Periodontitis is a widely prevalent oral disease around the world characterized by the disruption of the periodontal ligament and the subsequent development of periodontal pockets, as well as the loss of alveolar bone, and may eventually lead to tooth loss. This research aims to assess the suppressive impact of Eupatilin, a flavone obtained from Artemisia argyi, on osteoclastogenesis in vitro and periodontitis in vivo. We found that Eupatilin can efficiently obstruct the differentiation of Raw264.7 and bone marrow-derived macrophages (BMDMs) induced by RANKL, leading to the formation of mature osteoclasts. Consistently, bone slice resorption assay showed that Eupatilin significantly inhibited osteoclast-mediated bone resorption in a dose-dependent manner. Eupatilin also downregulated the expression of osteoclast-specific genes and proteins in Raw264.7 and BMDMs. RNA sequencing showed that Eupatilin notably downregulated the expression of Siglec-15. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified significantly enriched pathways in DEGs, including MAPK signaling pathway. And further mechanistic investigations confirmed that Eupatilin repressed MAPKs/NF-κBsignaling pathways. It was found that Siglec-15 overexpression reversed the inhibitory impact of Eupatilin on the differentiation of osteoclasts. Furthermore, activating MAPK signaling pathway reversed the downregulation of Siglec-15 and the inhibition of osteoclastogenesis by Eupatilin. To sum up, Eupatilin reduced the expression of Siglec-15 by suppressing MAPK signaling pathway, ultimately leading to the inhibition of osteoclastogenesis. Meanwhile, Eupatilin suppressed the alveolar bone resorption caused by experimentalperiodontitis in vivo. Eupatilin exhibits potential therapeutic effects in the treatment of periodontitis, rendering it a promising pharmaceutical agent.


Subject(s)
Alveolar Bone Loss , Flavonoids , Osteoclasts , Osteogenesis , Periodontitis , Animals , Mice , Osteogenesis/drug effects , RAW 264.7 Cells , Flavonoids/pharmacology , Flavonoids/therapeutic use , Alveolar Bone Loss/drug therapy , Osteoclasts/drug effects , Periodontitis/drug therapy , Mice, Inbred C57BL , Cell Differentiation/drug effects , Male , Macrophages/drug effects , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Artemisia/chemistry , RANK Ligand/metabolism
13.
Turk J Med Sci ; 54(2): 391-400, 2024.
Article in English | MEDLINE | ID: mdl-39050398

ABSTRACT

Background/aim: In this prospective study, we aimed to investigate the association of serum (s) and urine (u) IP-10, galectin-9, and SIGLEC-1 with disease activity in patients with systemic lupus erythematosus (SLE). Materials and methods: Sixty-three patients with active SLE (31 renal, 32 extrarenal) were included. Thirty patients with inactive SLE (15 renal, 15 extrarenal), 17 with renal active AAV, and 32 healthy volunteers were selected as control groups. Serum and urine IP-10, galectin-9, and SIGLEC-1 were tested using ELISA. Results: Levels of sIP-10 (p = 0.046), uIP-10 (p < 0.001), sGalectin-9 (p = 0.03), and uSIGLEC-1 (p = 0.006) were significantly higher in active SLE group compared to the inactive SLE; however, no differences were detected in the comparison of uGalectin-9 (p = 0.18) and sSIGLEC-1 (p = 0.69) between two groups. None of the biomarkers discriminated patients with active renal SLE from active extrarenal SLE. ROC analyses revealed an AUC of 0.63 (0.52-0.73) for sIP-10, 0.78 (0.68-0.86) for uIP-10, 0.64 (0.53-0.74) for sGalectin-9, and 0.68 (0.57-0.77) for uSIGLEC-1 in discriminating disease activity in SLE, which did not outperform C3 (0.75, 0.64-0.84) and C4 (0.72, 0.61-0.82). sIP-10 (p = 0.001), uIP-10 (p = 0.042), and uGalectin-9 (p = 0.009) were significantly increased in patients with active renal SLE compared to active renal AAV. sGalectin-9 (p < 0.001) and sIP-10 levels (p = 0.06) were decreased after 8 (5-22.5) months of treatment. Conclusion: sIP-10, uIP-10, sGalectin-9, and uSIGLEC-1 reflect global disease activity in SLE but do not outperform C3 and C4. sIP-10 and uIP-10 may be specific for active SLE compared to active AAV. sIP-10 and sGalectin-9 might be valuable in monitoring response after treatment.


Subject(s)
Biomarkers , Chemokine CXCL10 , Galectins , Lupus Erythematosus, Systemic , Sialic Acid Binding Ig-like Lectin 1 , Humans , Lupus Erythematosus, Systemic/urine , Lupus Erythematosus, Systemic/blood , Female , Male , Biomarkers/blood , Biomarkers/urine , Adult , Galectins/blood , Galectins/urine , Chemokine CXCL10/blood , Chemokine CXCL10/urine , Sialic Acid Binding Ig-like Lectin 1/blood , Sialic Acid Binding Ig-like Lectin 1/urine , Middle Aged , Prospective Studies , Young Adult , Case-Control Studies
14.
Transl Oncol ; 47: 102046, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943923

ABSTRACT

Tumor derived Extracellular vesicles (EVs) in circulating system may contain tumor-specific markers, and EV detection in body fluids could become an important tool for early tumor diagnosis, prognosis assessment. Meningiomas are the most common benign intracranial tumors, few studies have revealed specific protein markers for meningiomas from patients' body fluids. In this study, using proximity labeling technology and non-tumor patient plasma as a control, we detected protein levels of EVs in plasma samples from meningioma patients before and after surgery. Through bioinformatics analysis, we discovered that the levels of EV count and protein count in meningioma patients were significantly higher than those in healthy controls, and were significantly decreased postoperatively. Among EV proteins in meningioma patients, the levels of MUC1, SIGLEC11, E-Cadherin, KIT, and TASCTD2 were found not only significantly elevated than those in healthy controls, but also significantly decreased after tumor resection. Moreover, using publicly available GEO databases, we verified that the mRNA level of MUC1, SIGLEC11, and CDH1 in meningiomas were significantly higher in comparison with normal dura mater tissues. Additionally, by analyzing human meningioma specimens collected in this study, we validated the protein levels of MUC1 and SIGLEC11 were significantly increased in WHO grade 2 meningiomas and were positively correlated with tumor proliferation levels. This study indicates that meningiomas secret EV proteins into circulating system, which may serve as specific markers for diagnosis, malignancy predicting and tumor recurrent assessment.

15.
J Biol Chem ; 300(7): 107482, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897567

ABSTRACT

Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.


Subject(s)
Gangliosides , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Gangliosides/metabolism , Mice , Humans , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Liposomes/metabolism , Lectins/metabolism , Lectins/chemistry , Protein Binding , Antigens, CD/metabolism , Antigens, CD/genetics
16.
Biomaterials ; 311: 122662, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38878482

ABSTRACT

Intrinsic lactate retention of chemically- or genetically-engineered bacteria therapy aggravates tumor immunosuppression, which will collaborate with immune escape to cause immunological surveillance failure. To address them, sonocatalytic oncolysis Escherichia coli (E.coli) that chemically chelated anti-CD24 and TiO1+x have been engineered to blockade CD24-siglec10 interaction, regulate microbiota colonization and curb its lactate metabolism, which are leveraged to revitalize immunological surveillance and repress breast cancer. The chemically-engineered E.coli inherited their parent genetic information and expansion function. Therefore, their intrinsic hypoxia tropism and CD24 targeting allow them to specifically accumulate and colonize in solid breast cancer to lyse tumor cells. The conjugated CD24 antibody is allowed to blockade CD24-Siglec10 signaling axis and revitalize immunological surveillance. More significantly, the chelated TiO1+x sonosensitizers produce ROS to render bacteria expansion controllable and curb immunosuppression-associated lactate birth that are usually neglected. Systematic experiments successfully vlaidate hypoxia-objective active targeting, sonocatalytic therapy, microbiota expansion-enabled oncolysis, CD24-Siglec10 communication blockade and precise microbiota abundance & lactate metabolism attenuations. These actions contribute to the potentiated anti-tumor immunity and activated anti-metastasis immune memory against breast cancer development. Our pioneering work provide a route to sonocatalytic cancer immunotherapy.


Subject(s)
Breast Neoplasms , CD24 Antigen , Escherichia coli , Lactic Acid , Animals , Female , CD24 Antigen/metabolism , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Escherichia coli/metabolism , Humans , Immunologic Surveillance , Mice , Cell Line, Tumor , Microbiota , Mice, Inbred BALB C , Tumor Escape
17.
Clin Transl Immunology ; 13(7): e1520, 2024.
Article in English | MEDLINE | ID: mdl-38939726

ABSTRACT

Objectives: Inflammatory markers such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are poorly informative about interferon (IFN)-related disorders. In these conditions, the measure of the interferon score (IS), obtained by measuring the expression of IFN-stimulated genes, has been proposed. Flow cytometry-based assays measuring sialic-acid-binding Ig-like lectin 1 (Siglec-1) expression could be a more practical tool for evaluating IFN-inflammation. The study compared Siglec-1 measures with IS and other inflammatory indexes. We compared Siglec-1 measures with IS and other inflammatory indexes in real-world paediatric rheumatology experience. Methods: We recruited patients with immuno-rheumatological conditions, acute infectious illness and patients undergoing orthopaedic surgery as controls. Siglec-1 expression was measured in all samples, and IS, ESR and CRP were also recorded if available. Results: Overall, 98 subjects were enrolled in the study, with a total of 104 measures of Siglec-1. Compared with IS, Siglec-1 expression showed good accuracy (86.0%), specificity (72.7%) and sensitivity (85.7%). The measure of the percentage of Siglec-1-positive cells performed best at low levels of IFN-inflammation, while the measure of mean fluorescence intensity performed best at higher levels. Ex vivo studies on IFN-stimulated monocytes confirmed this behaviour. There was no link between Siglec-1 expression and either ESR or CRP, and positive Siglec-1 results were found even when ESR and CRP were normal. A high Siglec-1 expression was also recorded in subjects with acute infections. Conclusion: Siglec-1 measurement by flow cytometry is an easy tool to detect IFN-related inflammation, even in subjects with normal results of common inflammation indexes.

18.
Adv Virus Res ; 119: 63-110, 2024.
Article in English | MEDLINE | ID: mdl-38897709

ABSTRACT

The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.


Subject(s)
Glycocalyx , Viruses , Glycocalyx/metabolism , Humans , Animals , Viruses/immunology , Viruses/metabolism , Polysaccharides/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology , Host-Pathogen Interactions/immunology
19.
Cell Mol Gastroenterol Hepatol ; 18(3): 101367, 2024.
Article in English | MEDLINE | ID: mdl-38849082

ABSTRACT

BACKGROUND & AIMS: Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS: Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS: Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS: During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.


Subject(s)
Dendritic Cells , Interferon-gamma , Interleukins , Mice, Knockout , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , Interferon-gamma/metabolism , Interleukins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Th1 Cells/immunology , STAT3 Transcription Factor/metabolism , Concanavalin A/pharmacology , Signal Transduction , Liver/pathology , Liver/immunology , Liver/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Male
20.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Article in English | MEDLINE | ID: mdl-38739106

ABSTRACT

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Microglia , Sialic Acid Binding Ig-like Lectin 2 , Animals , Female , Mice , Cell Polarity/drug effects , Cell Polarity/physiology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myelin-Oligodendrocyte Glycoprotein/immunology
SELECTION OF CITATIONS
SEARCH DETAIL