Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
J Biochem ; 174(6): 533-548, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37725528

ABSTRACT

Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.


Subject(s)
Parkinson Disease , Rotenone , Humans , Animals , Mice , Rotenone/pharmacology , Rotenone/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Cell Death , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
2.
J Biochem ; 174(3): 217-225, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37461189

ABSTRACT

Biochemical reactions in cells serve as the endogenous source of heat, maintaining a constant body temperature. This process requires proper control; otherwise, serious consequences can arise due to the unwanted but unavoidable responses of biological systems to heat. This review aims to present a range of responses to heat in biological systems across various spatial scales. We begin by examining the impaired thermogenesis of malignant hyperthermia in model mice and skeletal muscle cells, demonstrating that the progression of this disease is caused by a positive feedback loop between thermally driven Ca2+ signaling and thermogenesis at the subcellular scale. After we explore thermally driven force generation in both muscle and non-muscle cells, we illustrate how in vitro assays using purified proteins can reveal the heat-responsive properties of proteins and protein assemblies. Building on these experimental findings, we propose the concept of 'trans-scale thermal signaling'.


Subject(s)
Malignant Hyperthermia , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Ryanodine Receptor Calcium Release Channel/metabolism , Malignant Hyperthermia/etiology , Malignant Hyperthermia/metabolism , Calcium/metabolism , Muscle, Skeletal/metabolism
3.
J Nutr Sci ; 12: e49, 2023.
Article in English | MEDLINE | ID: mdl-37123395

ABSTRACT

The iron-regulatory hormone hepcidin is transcriptionally up-regulated by gluconeogenic signals. Recent evidence suggeststhat increases in circulating hepcidin may decrease dietary iron absorption following prolonged exercise, however evidence is limited on whether gluconeogenic signals contribute to post-exercise increases in hepcidin. Mice with genetic knockout of regulated in development and DNA response-1 (REDD1) display greater glycogen depletion following exercise, possibly indicating greater gluconeogenesis. The objective of the present study was to determine liver hepcidin, markers of gluconeogenesis and iron metabolism in REDD1 knockout and wild-type mice following prolonged exercise. Twelve-week-old male REDD1 knockout and wild-type mice were randomised to rest or 60 min treadmill running with 1, 3 or 6 h recovery (n = 5-8/genotype/group). Liver gene expression of hepcidin (Hamp) and gluconeogenic enzymes (Ppargc1a, Creb3l3, Pck1, Pygl) were determined by qRT-PCR. Effects of genotype, exercise and their interaction were assessed by two-way ANOVAs with Tukey's post-hoc tests, and Pearson correlations were used to assess the relationships between Hamp and study outcomes. Liver Hamp increased 1- and 4-fold at 3 and 6 h post-exercise, compared to rest (P-adjusted < 0⋅009 for all), and was 50% greater in REDD1 knockout compared to wild-type mice (P = 0⋅0015). Liver Ppargc1a, Creb3l3 and Pck1 increased with treadmill running (P < 0⋅0001 for all), and liver Ppargc1a, Pck1 and Pygl were greater with REDD1 deletion (P < 0⋅02 for all). Liver Hamp was positively correlated with liver Creb3l3 (R = 0⋅62, P < 0⋅0001) and Pck1 (R = 0⋅44, P = 0⋅0014). In conclusion, REDD1 deletion and prolonged treadmill running increased liver Hamp and gluconeogenic regulators of Hamp, suggesting gluconeogenic signalling of hepcidin with prolonged exercise.


Subject(s)
Hepcidins , Motor Activity , Animals , Male , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Gluconeogenesis/genetics , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Liver , Mice, Knockout
4.
JACC Basic Transl Sci ; 8(2): 174-185, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36908663

ABSTRACT

Diabetes mellitus (DM) is a main risk factor for diastolic dysfunction (DD) and heart failure with preserved ejection fraction. High-fat diet (HFD) mice presented with diabetes mellitus, DD, higher cardiac interleukin (IL)-1ß levels, and proinflammatory cardiac macrophage accumulation. DD was significantly ameliorated by suppressing IL-1ß signaling or depleting macrophages. Mice with macrophages unable to adopt a proinflammatory phenotype were low in cardiac IL-1ß levels and were resistant to HFD-induced DD. IL-1ß enhanced mitochondrial reactive oxygen species (mitoROS) in cardiomyocytes, and scavenging mitoROS improved HFD-induced DD. In conclusion, macrophage-mediated inflammation contributed to HFD-associated DD through IL-1ß and mitoROS production.

5.
Comput Struct Biotechnol J ; 21: 1759-1773, 2023.
Article in English | MEDLINE | ID: mdl-36915380

ABSTRACT

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are commonly used to model arrhythmogenic cardiomyopathy (ACM), a heritable cardiac disease characterized by severe ventricular arrhythmias, fibrofatty myocardial replacement and progressive ventricular dysfunction. Although ACM is inherited as an autosomal dominant disease, incomplete penetrance and variable expressivity are extremely common, resulting in different clinical manifestations. Here, we propose hiPSC-CMs as a powerful in vitro model to study incomplete penetrance in ACM. Six hiPSC lines were generated from blood samples of three ACM patients carrying a heterozygous deletion of exon 4 in the PKP2 gene, two asymptomatic (ASY) carriers of the same mutation and one healthy control (CTR), all belonging to the same family. Whole exome sequencing was performed in all family members and hiPSC-CMs were examined by ddPCR, western blot, Wes™ immunoassay system, patch clamp, immunofluorescence and RNASeq. Our results show molecular and functional differences between ACM and ASY hiPSC-CMs, including a higher amount of mutated PKP2 mRNA, a lower expression of the connexin-43 protein, a lower overall density of sodium current, a higher intracellular lipid accumulation and sarcomere disorganization in ACM compared to ASY hiPSC-CMs. Differentially expressed genes were also found, supporting a predisposition for a fatty phenotype in ACM hiPSC-CMs. These data indicate that hiPSC-CMs are a suitable model to study incomplete penetrance in ACM.

6.
JHEP Rep ; 5(4): 100687, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36923240

ABSTRACT

Background & Aims: Acetaminophen (APAP)-induced acute liver injury (AILI) is a leading cause of acute liver failure (ALF). N-acetylcysteine (NAC) is only effective within 24 h after APAP intoxication, raising an urgent need for alternative approaches to treat this disease. This study aimed to test whether cathelicidin (Camp), which is a protective factor in chronic liver diseases, protects mice against APAP-induced liver injury and ALF. Methods: A clinically relevant AILI model and an APAP-induced ALF model were generated in mice. Genetic and pharmacological approaches were used to interfere with the levels of cathelicidin in vivo. Results: An increase in hepatic pro-CRAMP/CRAMP (the precursor and mature forms of mouse cathelicidin) was observed in APAP-intoxicated mice. Upregulated cathelicidin was derived from liver-infiltrating neutrophils. Compared with wild-type littermates, Camp knockout had no effect on hepatic injury but dampened hepatic repair in AILI and reduced survival in APAP-induced ALF. CRAMP administration reversed impaired liver recovery observed in APAP-challenged Camp knockout mice. Delayed CRAMP, CRAMP(1-39) (the extended form of CRAMP), or LL-37 (the mature form of human cathelicidin) treatment exhibited a therapeutic benefit for AILI. Co-treatment of cathelicidin and NAC in AILI displayed a stronger hepatoprotective effect than NAC alone. A similar additive effect of CRAMP(1-39)/LL-37 and NAC was observed in APAP-induced ALF. The pro-reparative role of cathelicidin in the APAP-damaged liver was attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced neutrophil phagocytosis of necrotic cell debris in an autocrine manner. Conclusions: Cathelicidin reduces APAP-induced liver injury and ALF in mice by promoting liver recovery via facilitating inflammation resolution, suggesting a therapeutic potential for late-presenting patients with AILI with or without ALF. Impact and implications: Acetaminophen-induced acute liver injury is a leading cause of acute liver failure. The efficacy of N-acetylcysteine, the only clinically approved drug against acetaminophen-induced acute liver injury, is significantly reduced for late-presenting patients. We found that cathelicidin exhibits a great therapeutic potential in mice with acetaminophen-induced liver injury or acute liver failure, which makes up for the limitation of N-acetylcysteine therapy by specifically promoting liver repair after acetaminophen intoxication. The pro-reparative role of cathelicidin, as a key effector molecule of neutrophils, in the APAP-injured liver is attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced phagocytic function of neutrophils in an autocrine manner.

7.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Article in English | MEDLINE | ID: mdl-36817960

ABSTRACT

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

8.
J Biochem ; 174(1): 47-58, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36805939

ABSTRACT

The lipopolysaccharide (LPS)-triggered horseshoe crab coagulation cascade is composed of three protease zymogens, prochelicerase C (proC), prochelicerase B (proB) and the proclotting enzyme (proCE). In this study, we found that Ca 2+ ions increase the production of the clotting enzyme as a result of a cascade reaction reconstituted by recombinant proteins of wild-type (WT) proC, WT proB and WT proCE. We divided the cascade into three stages: autocatalytic activation of WT proC on the surface of LPS into WT α-chelicerase C (Stage 1); activation of WT proB on the surface of LPS into WT chelicerase B by WT α-chelicerase C (Stage 2) and activation of WT proce into WT CE by chelicerase B (Stage 3). Ca2+ ions enhanced the proteolytic activation in Stage 2, but not those in Stages 1 and 3. Moreover, we performed isothermal titration calorimetry to clarify the interaction of LPS or the recombinant zymogens with Ca2+ ions. LPS interacted with Ca2+ ions at an association constant of Ka = 4.7 × 104 M-1, but not with any of the recombinant zymogens. We concluded that LPS bound with Ca2+ ions facilitates the chain reaction of the cascade as a more efficient scaffold than LPS itself.


Subject(s)
Horseshoe Crabs , Lipopolysaccharides , Animals , Lipopolysaccharides/metabolism , Calcium/metabolism , Blood Coagulation , Enzyme Precursors/metabolism
9.
Heliyon ; 9(1): e12704, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36594041

ABSTRACT

Critically ill patients infected with SARS-CoV-2 display adaptive immunity, but it is unknown if they develop cross-reactivity to variants of concern (VOCs). We profiled cross-immunity against SARS-CoV-2 VOCs in naturally infected, non-vaccinated, critically ill COVID-19 patients. Wave-1 patients (wild-type infection) were similar in demographics to Wave-3 patients (wild-type/alpha infection), but Wave-3 patients had higher illness severity. Wave-1 patients developed increasing neutralizing antibodies to all variants, as did patients during Wave-3. Wave-3 patients, when compared to Wave-1, developed more robust antibody responses, particularly for wild-type, alpha, beta and delta variants. Within Wave-3, neutralizing antibodies were significantly less to beta and gamma VOCs, as compared to wild-type, alpha and delta. Patients previously diagnosed with cancer or chronic obstructive pulmonary disease had significantly fewer neutralizing antibodies. Naturally infected ICU patients developed adaptive responses to all VOCs, with greater responses in those patients more likely to be infected with the alpha variant, versus wild-type.

10.
Comput Struct Biotechnol J ; 21: 899-909, 2023.
Article in English | MEDLINE | ID: mdl-36698977

ABSTRACT

Amylomaltase can be used to synthesize large ring cyclodextrins (LR-CDs), applied as drug solubilizer, gene delivery vehicle and protein aggregation suppressor. This study aims to determine the functional amino acid positions of Corynebacterium glutamicum amylomaltase (CgAM) involved in LR-CD synthesis by site-directed mutagenesis approach and molecular dynamic simulation. Mutants named Δ167, Y23A, P228Y, E231Y, A413F and G417F were constructed, purified, and characterized. The truncated CgAM, Δ167 exhibited no starch transglycosylation activity, indicating that the N-terminal domain of CgAM is necessary for enzyme activity. The P228Y, A413F and G417F produced larger LR-CDs from CD36-CD40 as compared to CD29 by WT. A413F and G417F mutants produced significantly low LR-CD yield compared to the WT. The A413F mutation affected all tested enzyme activities (starch tranglycosylation, disproportionation and cyclization), while the G417F mutation hindered the cyclization activity. P228Y mutation significantly lowered the k cat of disproportionation activity, while E231Y mutant exhibited much higher k cat and K m values for starch transglycosylation, compared to that of the WT. In addition, Y23A mutation affected the kinetic parameters of starch transglycosylation and cyclization. Molecular dynamic simulation further confirmed these mutations' impacts on the CgAM and LR-CD interactions. Identified functional amino acids for LR-CD synthesis may serve as a model for future modification to improve the properties and yield of LR-CDs.

11.
Int J Cardiol Heart Vasc ; 44: 101168, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36620202

ABSTRACT

Aims: Na+/Ca2+ exchanger (NCX) upregulation in cardiac diseases like heart failure promotes as an independent proarrhythmic factor early and delayed afterdepolarizations (EADs/DADs) on the single cell level. Consequently, NCX inhibition protects against EADs and DADs in isolated cardiomyocytes. We here investigate, whether these promising cellular in vitro findings likewise apply to an in vivo setup. Methods/Results: Programmed ventricular stimulation (PVS) and isoproterenol were applied to a murine heterozygous NCX-knockout model (KO) to investigate ventricular arrhythmia initiation and perpetuation compared to wild-type (WT). KO displayed a reduced susceptibility towards isoproterenol-induced premature ventricular complexes. During PVS, initiation of single or double ectopic beats was similar between KO and WT. But strikingly, perpetuation of ventricular tachycardia (VT) was significantly increased in KO (animals with VT - KO: 82 %; WT: 47 %; p = 0.0122 / median number of VTs - KO: 4.5 (1.0, 6.25); WT: 0.0 (0.0, 4.0); p = 0.0039). The median VT duration was prolonged in KO (in s; KO: 0.38 (0.19, 0.96); WT: 0.0 (0.0, 0.60); p = 0.0239). The ventricular refractory period (VRP) was shortened in KO (in ms; KO: 15.1 ± 0.7; WT: 18.7 ± 0.7; p = 0.0013). Conclusions: Not the initiation, but the perpetuation of provoked whole-heart in vivo ventricular arrhythmia was increased in KO. As a potential mechanism, we found a significantly reduced VRP, which may promote perpetuation of reentrant ventricular arrhythmia. On a translational perspective, the antiarrhythmic concept of therapeutic NCX inhibition seems to be ambivalent by protecting from initiating afterdepolarizations but favoring arrhythmia perpetuation in vivo at least in a murine model.

12.
J Biochem ; 173(2): 129-138, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36477205

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) is a serine-threonine kinase that is activated by extracellular signals, such as nutrients and growth factors. It plays a key role in the control of various biological processes, such as protein synthesis and energy metabolism by mediating or regulating the phosphorylation of multiple target molecules, some of which remain to be identified. We have here reanalysed a large-scale phosphoproteomics data set for mTORC1 target molecules and identified pre-B cell leukemia transcription factor 2 (PBX2) as such a novel target that is dephosphorylated downstream of mTORC1. We confirmed that PBX2, but not other members of the PBX family, is dephosphorylated in an mTORC1 activity-dependent manner. Furthermore, pharmacological and gene knockdown experiments revealed that glycogen synthase kinase 3 (GSK3) and protein phosphatase 1 (PP1) are responsible for the phosphorylation and dephosphorylation of PBX2, respectively. Our results thus suggest that the balance between the antagonistic actions of GSK3 and PP1 determines the phosphorylation status of PBX2 and its regulation by mTORC1.


Subject(s)
Glycogen Synthase Kinase 3 , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Glycogen Synthase Kinase 3/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism
13.
J Orthop Translat ; 38: 241-255, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36514714

ABSTRACT

Objective: Knee osteoarthritis (KOA) is a highly prevalent musculoskeletal disorder characterized by degeneration of cartilage and abnormal remodeling of subchondral bone (SCB). Teriparatide (PTH (1-34)) is an effective anabolic drug for osteoporosis (OP) and regulates osteoprotegerin (OPG)/receptor activator of nuclear factor ligand (RANKL)/RANK signaling, which also has a therapeutic effect on KOA by ameliorating cartilage degradation and inhibiting aberrant remodeling of SCB. However, the mechanisms of PTH (1-34) in treating KOA are still uncertain and remain to be explored. Therefore, we compared the effect of PTH (1-34) on the post-traumatic KOA mouse model to explore the potential therapeutic effect and mechanisms. Methods: In vivo study, eight-week-old male mice including wild-type (WT) (n â€‹= â€‹54) and OPG-/- (n â€‹= â€‹54) were investigated and compared. Post-traumatic KOA model was created by destabilization of medial meniscus (DMM). WT mice were randomly assigned into three groups: the sham group (WT-sham; n â€‹= â€‹18), the DMM group (WT-DMM; n â€‹= â€‹18), and the PTH (1-34)-treated group (WT-DMM â€‹+ â€‹PTH (1-34); n â€‹= â€‹18). Similarly, the OPG-/- mice were randomly allocated into three groups as well. The designed mice were executed at the 4th, 8th, and 12th weeks to evaluate KOA progression. To further explore the chondro-protective of PTH (1-34), the ATDC5 chondrocytes were stimulated with different concentrations of PTH (1-34) in vitro. Results: Compared with the WT-sham mice, significant wear of cartilage in terms of reduced cartilage thickness and glycosaminoglycan (GAG) loss was detected in the WT-DMM mice. PTH (1-34) exhibited cartilage-protective by alleviating wear, retaining the thickness and GAG contents. Moreover, the deterioration of the SCB was alleviated and the expression of PTH1R/OPG/RANKL/RANK were found to increase after PTH (1-34) treatment. Among the OPG-/- mice, the cartilage of the DMM mice displayed typical KOA change with higher OARSI score and thinner cartilage. The damage of the cartilage was alleviated but the abnormal remodeling of SCB didn't show any response to the PTH (1-34) treatment. Compared with the WT-DMM mice, the OPG-/--DMM mice caught more aggressive KOA with thinner cartilage, sever cartilage damage, and more abnormal remodeling of SCB. Moreover, both the damaged cartilage from the WT-DMM mice and the OPG-/--DMM mice were alleviated but only the deterioration of SCB in WT-DMM mice was alleviated after the administration of PTH (1-34). In vitro study, PTH (1-34) could promote the viability of chondrocytes, enhance the synthesis of extracellular matrix (ECM) (AGC, COLII, and SOX9) at the mRNA and protein level, but inhibit the secretion of inflammatory cytokines (TNF-α and IL-6). Conclusion: Both wear of the cartilage was alleviated and aberrant remodeling of the SCB was inhibited in the WT mice, but only the cartilage-protective effect was observed in the OPG-/- mice. PTH (1-34) exhibited chondro-protective effect by decelerating cartilage degeneration in vivo as well as by promoting the proliferation and enhancing ECM synthesis of chondrocytes in vitro. The current investigation implied that the rescue of the disturbed SCB is dependent on the regulation of OPG while the chondro-protective effect is independent of modulation of OPG, which provides proof for the treatment of KOA. The translational potential of this article: Systemic administration of PTH (1-34) could exert a therapeutic effect on both cartilage and SCB in different mechanisms to alleviate KOA progression, which might be a novel therapy for KOA.

14.
Ophthalmol Sci ; 3(1): 100229, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36420180

ABSTRACT

Purpose: Pathogenic variants in FAM161A are the most common cause of retinitis pigmentosa in Israel. Two founder pathogenic variants explain the vast majority of cases of Jewish origin, 1 being a nonsense variant (p.Arg523∗). The aim of this study was to generate a knock-in (KI) mouse model harboring the corresponding p.Arg512∗ pathogenic variant and characterize the course of retinal disease. Design: Experimental study of a mouse animal model. Subjects/Participants/Controls: A total of 106 Fam161a knock-in mice and 29 wild-type mice with C57BL/6J background particiapted in this study. Methods: Homozygous Fam161a p.Arg512∗ KI mice were generated by Cyagen Biosciences. Visual acuity (VA) was evaluated using optomotor tracking response and retinal function was assessed by electroretinography (ERG). Retinal structure was examined in vivo using OCT and fundus autofluorescence imaging. Retinal morphometry was evaluated by histologic and immunohistochemical (IHC) analyses. Main Outcome Measures: Visual and retinal function assessments, clinical imaging examinations, quantitative histology, and IHC studies of KI as compared with wild-type (WT) mice retinas. Results: The KI model was generated by replacing 3 bp, resulting in p.Arg512∗. Homozygous KI mice that had progressive loss of VA and ERG responses until the age of 18 months, with no detectable response at 21 months. OCT showed complete loss of the outer nuclear layer at 21 months. Fundus autofluorescence imaging revealed progressive narrowing of blood vessels and formation of patchy hyper-autofluorescent and hypo-autofluorescent spots. Histologic analysis showed progressive loss of photoreceptor nuclei. Immunohistochemistry staining showed Fam161a expression mainly in photoreceptors cilia and the outer plexiform layer (OPL) in WT mice retinas, whereas faint expression was evident mainly in the cilia and OPL of KI mice. Conclusions: The Fam161a - p.Arg512∗ KI mouse model is characterized by widespread retinal degeneration with relatively slow progression. Surprisingly, disease onset is delayed and progression is slower compared with the previously reported knock-out model. The common human null mutation in the KI mouse model is potentially amenable for correction by translational read-through-inducing drugs and by gene augmentation therapy and RNA editing, and can serve to test these treatments as a first step toward possible application in patients. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

15.
IBRO Neurosci Rep ; 13: 500-512, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36451778

ABSTRACT

PlexinA1 (PlxnA1) is a transmembrane receptor for semaphorins (Semas), a large family of axonal guidance cues vital during neural development. PlxnA1 is expressed in embryonic interneurons, and PlxnA1 deletion in mice leads to less interneurons in the developing cortex. In addition, PlxnA1 has been identified as a schizophrenia susceptibility gene. In our previous study, PlxnA1 knockout (KO) mice under a BALB/cAJ genetic background exhibited significantly increased self-grooming and reduced prepulse inhibition, a reliable phenotype for investigating the neurobiology of schizophrenia. However, the mechanism underlying the abnormal behavior of PlxnA1 KO mice remains unclear. We first confirmed PlxnA1 mRNA expression in parvalbumin-expressing interneurons (PV cells) in the medial prefrontal cortex (mPFC) of adult mice. Immunohistochemical analysis (IHC) showed significantly decreased densities of both GABAergic neurons and PV cells in the mPFC of PlxnA1 KO mice compared with wild type mice (WT). PV cells were found to express molecule interacting with CasL 1 (MICAL1), an effector involved in Sema-Plxn signaling for axon guidance, suggesting MICAL1 and PlxnA1 co-expression in PV cells. Furthermore, IHC analysis of 8-oxo-dG, an oxidative stress marker, revealed significantly increased oxidative stress in PlxnA1-deficient PV cells compared with WT. Thus, increased oxidative stress and decreased PV cell density in the mPFC may determine the onset of PlxnA1 KO mice's abnormal behavior. Accordingly, deficient PlxnA1-mediated signaling may increase oxidative stress in PV cells, thereby disrupting PV-cell networks in the mPFC and causing abnormal behavior related to neuropsychiatric diseases.

16.
Metab Eng Commun ; 15: e00214, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36452447

ABSTRACT

Conditional promoters allowing both induction and silencing of gene expression are indispensable for basic and applied research. The xylP promoter (pxylP) from Penicillium chrysogenum was demonstrated to function in various mold species including Aspergillus fumigatus. pxylP allows high induction by xylan or its degradation product xylose with low basal activity in the absence of an inducer. Here we structurally characterized and engineered pxylP in A. fumigatus to optimize its application. Mutational analysis demonstrated the importance of the putative TATA-box and a pyrimidine-rich region in the core promoter, both copies of a largely duplicated 91-bp sequence (91bpDS), as well as putative binding sites for the transcription factor XlnR and a GATA motif within the 91bpDS. In agreement, pxylP activity was found to depend on XlnR, while glucose repression appeared to be indirect. Truncation of the originally used 1643-bp promoter fragment to 725 bp largely preserved the promoter activity and the regulatory pattern. Integration of a third 91bpDS significantly increased promoter activity particularly under low inducer concentrations. Truncation of pxylP to 199 bp demonstrated that the upstream region including the 91bpDSs mediates not only inducer-dependent activation but also repression in the absence of inducer. Remarkably, the 1579-bp pxylP was found to act bi-bidirectionally with a similar regulatory pattern by driving expression of the upstream-located arabinofuranosidase gene. The latter opens the possibility of dual bidirectional use of pxylP. Comparison with a doxycycline-inducible TetOn system revealed a significantly higher dynamic range of pxylP. Taken together, this study identified functional elements of pxylP and opened new methodological opportunities for its application.

17.
JACC CardioOncol ; 4(4): 458-470, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36444225

ABSTRACT

Background: Low QRS voltages (LQRSVs) are a common electrocardiographic feature in patients with light chain amyloidosis (AL) and transthyretin amyloidosis (ATTR) cardiac amyloidosis (CA). Objectives: The aim of this study was to identify clinical and echocardiographic correlates of LQRSV and to investigate their prognostic significance in patients with CA. Methods: This was a multicenter, retrospective study performed in 6 CA referral centers including consecutive patients with AL and ATTR CA. LQRSVs were defined as a QRS amplitude ≤5 mm (0.5 mV) in all peripheral leads. The study outcome was cardiovascular (CV) mortality. Results: Overall, 411 (AL CA: n = 120, ATTR CA: n = 291) patients were included. LQRSVs were present in 66 (55%) patients with AL CA and 103 (35%) with ATTR CA (P < 0.001). In AL CA, LQRSVs were independently associated with younger age (P = 0.015), higher New York Heart Association functional class (P = 0.016), and natriuretic peptides (P = 0.041); in ATTR CA, LQRSVs were independently associated with pericardial effusion (P = 0.008) and lower tricuspid annulus peak systolic excursion (P = 0.038). During a median follow-up of 33 months (Q1-Q3: 21-46), LQRSVs independently predicted CV death in both AL CA (HR: 1.76; 95% CI: 2.41-10.18; P = 0.031) and ATTR CA (HR: 2.64; 95% CI: 1.82-20.17; P = 0.005). Together with the National Amyloidosis Centre (NAC) staging, LQRSVs provided incremental prognostic value in ATTR CA (AUC for NAC model: 0.83 [95% CI: 0.77-0.89]; AUC for NAC + LQRSV model: 0.87 [95% CI: 0.81-0.93]; P = 0.040). Conclusions: LQRSVs are common but not ubiquitous in CA; they are more frequent in AL CA than in ATTR CA. LQRSVs reflect an advanced disease stage and independently predict CV death. In ATTR CA, LQRSVs can provide incremental prognostic accuracy over the NAC staging system in patients with intermediate risk.

18.
JACC CardioOncol ; 4(4): 442-454, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36444226

ABSTRACT

Background: Transthyretin amyloid cardiomyopathy (ATTR-CM) is increasingly recognized as a treatable cause of heart failure (HF). Advances in diagnosis and therapy have increased the number of patients diagnosed at early stages, but prognostic data on patients without HF symptoms are lacking. Moreover, it is unknown whether asymptomatic patients benefit from early initiation of transthyretin (TTR) stabilizers. Objectives: The aim of this study was to describe the natural history and prognosis of ATTR-CM in patients without HF symptoms. Methods: Clinical characteristics and outcomes of patients with ATTR-CM without HF symptoms were retrospectively collected at 6 international amyloidosis centers. Results: A total of 118 patients (78.8% men, median age 66 years [IQR: 53.8-75 years], 68 [57.6%] with variant transthyretin amyloidosis, mean left ventricular ejection fraction 60.5% ± 9.9%, mean left ventricular wall thickness 15.4 ± 3.1 mm, and 53 [45%] treated with TTR stabilizers at baseline or during follow-up) were included. During a median follow-up period of 3.7 years (IQR: 1-6 years), 38 patients developed HF symptoms (23 New York Heart Association functional class II and 14 functional class III or IV), 32 died, and 2 required cardiac transplantation. Additionally, 20 patients received pacemakers, 13 developed AF, and 1 had a stroke. Overall survival was 96.5% (95% CI: 91%-99%), 90.4% (95% CI: 82%-95%), and 82% (95% CI: 71%-89%) at 1, 3, and 5 years, respectively. Treatment with TTR stabilizers was associated with improved survival (HR: 0.31; 95% CI: 0.12-0.82; P = 0.019) and remained significant after adjusting for sex, age, ATTR-CM type, and estimated glomerular filtration rate (HR: 0.18; 95% CI: 0.06-0.55; P = 0.002). Conclusions: After a median follow-up period of 3.7 years, 1 in 3 patients with asymptomatic ATTR-CM developed HF symptoms, and nearly as many died or required cardiac transplantation. Treatment with TTR stabilizers was associated with improved prognosis.

19.
JACC Basic Transl Sci ; 7(10): 1038-1049, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36337927

ABSTRACT

CD4+ T cells turn pathological during heart failure (HF). We show that the expression of tumor necrosis factor (TNF)-α and tumor necrosis factor receptor (TNFR1) increases in HF-activated CD4+ T cells. However, the role of the TNF-α/TNFR1 axis in T-cell activation/proliferation is unknown. We show that TNFR1 neutralization during T-cell activation (ex vivo) or the loss of TNFR1 in adoptively transferred HF-activated CD4+ T cells (in vivo) augments their prosurvival and proliferative signaling. Importantly, TNFR1 neutralization does not affect CD69 expression or the pathological activity of HF-activated TNFR1-/- CD4+ T cells. These results show that during HF TNFR1 plays an important role in quelling prosurvival and proliferative signals in CD4+ T cells without altering their pathological activity.

20.
Cereb Circ Cogn Behav ; 3: 100133, 2022.
Article in English | MEDLINE | ID: mdl-36324401

ABSTRACT

Background: Cerebral amyloid angiopathy (CAA) is common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a transgenic rat model of capillary CAA type-1 that develops many pathological features of human disease. However, a complementary rat model of larger vessel CAA type-2 disease has been lacking. Methods: A novel transgenic rat model (rTg-D) was generated that produces human familial CAA Dutch E22Q mutant amyloid ß-protein (Aß) in brain and develops larger vessel CAA type-2. Quantitative biochemical and pathological analyses were performed to characterize the progression of CAA and associated pathologies in aging rTg-D rats. Results: rTg-D rats begin to accumulate Aß in brain and develop varying levels of larger vessel CAA type-2, in the absence of capillary CAA type-1, starting around 18 months of age. Larger vessel CAA was mainly composed of the Aß40 peptide and most prominent in surface leptomeningeal/pial vessels and arterioles of the cortex and thalamus. Cerebral microbleeds and small vessel occlusions were present mostly in the thalamic region of affected rTg-D rats. In contrast to capillary CAA type-1 the amyloid deposited within the walls of larger vessels of rTg-D rats did not promote perivascular astrocyte and microglial responses or accumulate the Aß chaperone apolipoprotein E. Conclusion: Although variable in severity, the rTg-D rats specifically develop larger vessel CAA type-2 that reflects many of the pathological features of human disease and provide a new model to investigate the pathogenesis of this condition.

SELECTION OF CITATIONS
SEARCH DETAIL