Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Cells ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891036

ABSTRACT

Small extracellular vesicles were shown to have similar functional roles to their parent cells without the defect of potential tumorigenicity, which made them a great candidate for regenerative medicine. The last twenty years have witnessed the rapid development of research on small extracellular vesicles. In this paper, we employed a scientometric synthesis method to conduct a retrospective analysis of small extracellular vesicles in the field of bone-related diseases. The overall background analysis consisted the visualization of the countries, institutions, journals, and authors involved in research. The current status of the research direction and future trends were presented through the analysis of references and keywords, which showed that engineering strategies, mesenchymal stem cell derived exosomes, and cartilage damage were the most concerning topics, and scaffold, osteoarthritis, platelet-rich plasma, and senescence were the future trends. We also discussed the current problems and challenges in practical applications, including the in-sight mechanisms, the building of relevant animal models, and the problems in clinical trials. By using CiteSpace, VOSviewer, and Bibliometrix, the presented data avoided subjective selectivity and tendency well, which made the conclusion more reliable and comprehensive. We hope that the findings can provide new perspectives for researchers to understand the evolution of this field over time and to search for novel research directions.


Subject(s)
Bone Diseases , Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Animals , Bone Diseases/pathology , Mesenchymal Stem Cells/metabolism
2.
Ageing Res Rev ; 99: 102372, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880342

ABSTRACT

Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.

3.
Int J Nanomedicine ; 19: 3233-3257, 2024.
Article in English | MEDLINE | ID: mdl-38601346

ABSTRACT

Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Delayed-Action Preparations , Cell Communication , Signal Transduction
4.
Function (Oxf) ; 5(2): zqae004, 2024.
Article in English | MEDLINE | ID: mdl-38486976

ABSTRACT

The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.


Subject(s)
Bone Diseases, Metabolic , Epigenesis, Genetic , Humans , Autophagy/genetics , Homeostasis , Autophagosomes , Bone Density
5.
Cell Commun Signal ; 22(1): 70, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273356

ABSTRACT

Accumulating evidence indicates that exosomes help to regulate bone homeostasis. The roles of bone-derived exosomes have been well-described; however, recent studies have shown that some non-bone-derived exosomes have better bone targeting ability than bone-derived exosomes and that their performance as a drug delivery vehicle for regulating bone homeostasis may be better than that of bone-derived exosomes, and the sources of non-bone-derived exosomes are more extensive and can thus be better for clinical needs. Here, we sort non-bone-derived exosomes and describe their composition and biogenesis. Their roles and specific mechanisms in bone homeostasis and bone-related diseases are also discussed. Furthermore, we reveal obstacles to current research and future challenges in the practical application of exosomes, and we provide potential strategies for more effective application of exosomes for the regulation of bone homeostasis and the treatment of bone-related diseases. Video Abstract.


Subject(s)
Exosomes , Extracellular Vesicles , Bone and Bones , Homeostasis , Drug Delivery Systems
6.
J Inflamm Res ; 16: 4661-4677, 2023.
Article in English | MEDLINE | ID: mdl-37872954

ABSTRACT

Ferroptosis is a new cell fate decision discovered in recent years. Unlike apoptosis, autophagy or pyroptosis, ferroptosis is characterized by iron-dependent lipid peroxidation and mitochondrial morphological changes. Ferroptosis is involved in a variety of physiological and pathological processes. Since its discovery, ferroptosis has been increasingly studied concerning bone-related diseases. In this review, we focus on the latest research progress and prospects, summarize the regulatory mechanisms of ferroptosis, and discuss the role of ferroptosis in the pathogenesis of bone-related diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and osteosarcoma (OS), as well as its therapeutic potential.

7.
Adv Healthc Mater ; 12(18): e2203361, 2023 07.
Article in English | MEDLINE | ID: mdl-36881547

ABSTRACT

As the global population ages, bone-related diseases have increasingly become a major social problem threatening human health. Exosomes, as natural cell products, have been used to treat bone-related diseases due to their superior biocompatibility, biological barrier penetration, and therapeutic effects. Moreover, the modified exosomes exhibit strong bone-targeting capabilities that may improve efficacy and avoid systemic side effects, demonstrating promising translational potential. However, a review of bone-targeted exosomes is still lacking. Thus, the recently developed exosomes for bone-targeting applications in this review are focused. The biogenesis and bone-targeting regulatory functions of exosomes, the constructive strategies of modified exosomes to improve bone-targeting, and their therapeutic effects for bone-related diseases are introduced. By summarizing developments and challenges in bone-targeted exosomes, It is striven to shed light on the selection of exosome constructive strategies for different bone diseases and highlight their translational potential for future clinical orthopedics.


Subject(s)
Bone Diseases , Exosomes , Humans , Drug Delivery Systems , Bone Diseases/therapy
8.
Int Immunopharmacol ; 118: 110075, 2023 May.
Article in English | MEDLINE | ID: mdl-36989900

ABSTRACT

Stabilization of bone structure and function involves multiple cell-to-cell and molecular interactions, in which the regulatory functions of post-translational modifications such as ubiquitination and deubiquitination shouldn't be underestimated. As the largest family of deubiquitinating enzymes, the ubiquitin-specific proteases (USPs) participate in the development of bone homeostasis and bone-related diseases through multiple classical osteogenic and osteolytic signaling pathways, such as BMP/TGF-ß pathway, NF-κB/p65 pathway, EGFR-MAPK pathway and Wnt/ß-catenin pathway. Meanwhile, USPs may also broadly regulate regulate hormone expression level, cell proliferation and differentiation, and may further influence bone homeostasis from gene fusion and nuclear translocation of transcription factors. The number of patients with bone-related diseases is currently enormous, making exploration of their pathogenesis and targeted therapy a hot topic. Pathological increases in the levels of inflammatory mediators such as IL-1ß and TNF-α lead to inflammatory bone diseases such as osteoarthritis, rheumatoid arthritis and periodontitis. While impaired body metabolism greatly increases the probability of osteoporosis. Abnormal physiological activity of bone-associated cells results in a variety of bone tumors. The regulatory role of USPs in bone-related disease has received particular attention from academics in recent studies. In this review, we focuse on the roles and mechanisms of USPs in bone homeostasis and bone-related diseases, with the expectation of informing targeted therapies in the clinic.


Subject(s)
Osteoporosis , Ubiquitin-Specific Proteases , Humans , Osteogenesis/genetics , Wnt Signaling Pathway , Cell Differentiation , Bone and Bones
9.
Pharmaceutics ; 15(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36678850

ABSTRACT

Bone-related diseases are major problems and heavy burdens faced by modern society. Current clinical approaches for the treatment of these pathological conditions often lead to complications and have limited therapeutic efficacy. In this context, the development of nanotherapeutic platforms, such as extracellular vesicles, can improve the relevant therapeutic effects. In particular, exosomes are nano-sized, lipid bilayer extracellular vesicles secreted by many cells in mammals. Due to their innate capacity to transport materials-including proteins, lipids, and genes-among cells, as well as their innate attraction to target cells, they are considered to be a crucial medium for cell communication and are involved in a number of biological processes. Exosomes have been used as drug delivery vehicles in recent bone tissue engineering studies, in order to regulate bone homeostasis. However, the precise workings of the exosome regulatory network in maintaining bone homeostasis and its potential for treating bone injury remain unclear. To provide a fresh perspective for the study of exosomes in drug delivery and bone-related diseases, in this paper, we review recent studies on the roles of exosomes for drug delivery in bone homeostasis and bone-related diseases, as well as the composition and characteristics of exosomes and their regulatory roles in bone homeostasis and bone-related diseases, aiming to provide new ideas for the therapeutic application of exosomes in the treatment of bone-related diseases.

10.
Bioact Mater ; 24: 263-312, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36632509

ABSTRACT

Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.

12.
Front Bioeng Biotechnol ; 10: 998988, 2022.
Article in English | MEDLINE | ID: mdl-36172014

ABSTRACT

Bone-related diseases caused by trauma, infection, and aging affect people's health and quality of life. The prevalence of bone-related diseases has been increasing yearly in recent years. Mild bone diseases can still be treated with conservative drugs and can be cured confidently. However, serious bone injuries caused by large-scale trauma, fractures, bone tumors, and other diseases are challenging to heal on their own. Open surgery must be used for intervention. The treatment method also faces the problems of a long cycle, high cost, and serious side effects. Studies have found that hydrogels have attracted much attention due to their good biocompatibility and biodegradability and show great potential in treating bone-related diseases. This paper mainly introduces the properties and preparation methods of hydrogels, reviews the application of hydrogels in bone-related diseases (including bone defects, bone fracture, cartilage injuries, and osteosarcoma) in recent years. We also put forward suggestions according to the current development status, pointing out a new direction for developing high-performance hydrogels more suitable for bone-related diseases.

13.
Int J Mol Sci ; 23(9)2022 May 08.
Article in English | MEDLINE | ID: mdl-35563641

ABSTRACT

PIEZO1 is a mechano-sensitive ion channel that can sense various forms of mechanical stimuli and convert them into biological signals, affecting bone-related diseases. The present study aimed to identify key genes and signaling pathways in Piezo1-regulated bone-related diseases and to explain the potential mechanisms using bioinformatic analysis. The differentially expressed genes (DEGs) in tendon, femur, and humerus bone tissue; cortical bone; and bone-marrow-derived macrophages were identified with the criteria of |log2FC| > 1 and adjusted p-value < 0.05 analysis based on a dataset from GSE169261, GSE139121, GSE135282, and GSE133069, respectively, and visualized in a volcano plot. Venn diagram analyses were performed to identify the overlapping DEGs expressed in the above-mentioned tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein−protein interaction (PPI) analysis, and module analysis were also conducted. Furthermore, qRT-PCR was performed to validate the above results using primary chondrocytes. As a result, a total of 222 overlapping DEGs and 12 mostly overlapping DEGs were identified. Key Piezo1-related genes, such as Lcn2, Dkk3, Obscn, and Tnnt1, were identified, and pathways, such as Wnt/ß-catenin and PI3k-Akt, were also identified. The present informatic study provides insight, for the first time, into the potential therapeutic targets of Piezo1-regulated bone-related diseases


Subject(s)
Computational Biology , Gene Expression Profiling , Computational Biology/methods , Gene Expression Profiling/methods , Gene Ontology , Phosphatidylinositol 3-Kinases/genetics , Protein Interaction Maps/genetics
14.
Front Pharmacol ; 13: 897539, 2022.
Article in English | MEDLINE | ID: mdl-35548357

ABSTRACT

Signal transducer and activator of transcription 3 (Stat3) is activated by phosphorylation and translocated to the nucleus to participate in the transcriptional regulation of DNA. Increasing evidences point that aberrant activation or deletion of the Stat3 plays a critical role in a broad range of pathological processes including immune escape, tumorigenesis, and inflammation. In the bone microenvironment, Stat3 acts as a common downstream response protein for multiple cytokines and is engaged in the modulation of cellular proliferation and intercellular interactions. Stat3 has direct impacts on disease progression by regulating mesenchymal stem cells differentiation, osteoclast activation, macrophage polarization, angiogenesis, and cartilage degradation. Here, we describe the theoretical basis and key roles of Stat3 in different bone-related diseases in combination with in vitro experiments and animal models. Then, we summarize and categorize the drugs that target Stat3, providing potential therapeutic strategies for their use in bone-related diseases. In conclusion, Stat3 could be a future target for bone-related diseases.

15.
Front Cell Dev Biol ; 9: 811666, 2021.
Article in English | MEDLINE | ID: mdl-35004702

ABSTRACT

Bone-related diseases seriously affect the lives of patients and carry a heavy economic burden on society. Treatment methods cannot meet the diverse clinical needs of affected patients. Exosomes participate in the occurrence and development of many diseases through intercellular communication, including bone-related diseases. Studies have shown that exosomes can take-up and "package" non-coding RNAs and "deliver" them to recipient cells, thereby regulating the function of recipient cells. The exosomal non-coding RNAs secreted by osteoblasts, osteoclasts, chondrocytes, and other cells are involved in the regulation of bone-related diseases by inhibiting osteoclasts, enhancing chondrocyte activity and promoting angiogenesis. Here, we summarize the role and therapeutic potential of exosomal non-coding RNAs in the bone-related diseases osteoporosis, osteoarthritis, and bone-fracture healing, and discuss the clinical application of exosomes in patients with bone-related diseases.

16.
Front Bioeng Biotechnol ; 9: 820468, 2021.
Article in English | MEDLINE | ID: mdl-35087811

ABSTRACT

Reactive oxygen species (ROS) are the key signaling molecules in many physiological signs of progress and are associated with almost all diseases, such as atherosclerosis, aging, and cancer. Bone is a specific connective tissue consisting of cells, fibers, and mineralized extracellular components, and its quality changes with aging and disease. Growing evidence indicated that overproduced ROS accumulation may disrupt cellular homeostasis in the progress of bone modeling and remodeling, leading to bone metabolic disease. Thus, ROS-responsive biomaterials have attracted great interest from many researchers as promising strategies to realize drug release or targeted therapy for bone-related diseases. Herein, we endeavor to introduce the role of ROS in the bone microenvironment, summarize the mechanism and development of ROS-responsive biomaterials, and their completion and potential for future therapy of bone-related diseases.

17.
Theranostics ; 10(25): 11837-11861, 2020.
Article in English | MEDLINE | ID: mdl-33052249

ABSTRACT

Recently, the rapid development of biomaterials has induced great interest in the precisely targeted treatment of bone-related diseases, including bone cancers, infections, and inflammation. Realizing noninvasive therapeutic effects, as well as improving bone tissue regeneration, is essential for the success of bone­related disease therapies. In recent years, researchers have focused on the development of stimuli-responsive strategies to treat bone-related diseases and to realize bone regeneration. Among the various external stimuli for targeted therapy, near infrared (NIR) light has attracted considerable interests due to its high tissue penetration capacity, minimal damage toward normal tissues, and easy remote control properties. The main objective of this systematic review was to reveal the current applications of NIR light-assisted phototherapy for bone-related disease treatment and bone tissue regeneration. Database collection was completed by June 1, 2020, and a total of 81 relevant studies were finally included. We outlined the various therapeutic applications of photothermal, photodynamic and photobiomodulation effects under NIR light irradiation for bone­related disease treatment and bone regeneration, based on the retrieved literatures. In addition, the advantages and promising applications of NIR light-responsive drug delivery systems for spatiotemporal-controlled therapy were summarized. These findings have revealed that NIR light-assisted phototherapy plays an important role in bone-related disease treatment and bone tissue regeneration, with significant promise for further biomedical and clinical applications.


Subject(s)
Bone Diseases/therapy , Bone Regeneration/radiation effects , Infrared Rays/therapeutic use , Low-Level Light Therapy/methods , Photochemotherapy/methods , Photothermal Therapy/methods , Animals , Bone Diseases/physiopathology , Bone Regeneration/drug effects , Bone Regeneration/physiology , Bone and Bones/drug effects , Bone and Bones/physiopathology , Bone and Bones/radiation effects , Clinical Trials as Topic , Disease Models, Animal , Drug Delivery Systems/methods , Humans , Nanoparticles/administration & dosage , Treatment Outcome
18.
Int J Biol Macromol ; 165(Pt A): 1264-1275, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33039536

ABSTRACT

Hyaluronic acid (HA) is a multifunctional high molecular weight polysaccharide produced by synoviocytes, fibroblasts, and chondrocytes, and is naturally found in many tissues and fluids, and more abundantly in articular cartilage and synovial fluid. Naturally occurring HA is thought to participate in many biological processes, such as regulation of cell adhesion and cell motility, manipulation of cell differentiation and proliferation, and providing mechanical properties to tissues (Girish and Kemparaju, 2007). Due to its excellent physicochemical properties such as high viscosity, elasticity, biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity, HA based formulations have a wide range of applications and serves as a promising rejuvenating biomacromolecule in biomedical applications. In recent decades, HA is currently a popular topic, and has been widely used in bone related diseases for its remarkable efficacy in articular cartilage lubrication, analgesia, anti-inflammation, immunomodulatory, chondroprotection, anti-cancer and etc. Moreover, the safety and tolerability of HA based formulations have also been well-documented for treatment of various types of bone related diseases (Chen et al., 2018). This review gives a deep understanding on the special benefits and provides a mechanism-based rationale for the use of HA in bone related diseases conditions with special reference to osteoarthritis (OA), rheumatoid arthritis (RA), bone metastatic cancers.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Bone Diseases/drug therapy , Hyaluronic Acid/therapeutic use , Osteoarthritis/drug therapy , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/pathology , Bone Diseases/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/growth & development , Cell Differentiation/drug effects , Chondrocytes/drug effects , Humans , Hyaluronic Acid/chemistry , Osteoarthritis/pathology , Rejuvenation/physiology
19.
Front Cell Dev Biol ; 8: 534, 2020.
Article in English | MEDLINE | ID: mdl-32714929

ABSTRACT

Super-enhancers (SEs) are a large cluster of cis-regulatory DNA elements that contain many binding motifs, which master transcription factors and cofactors bind to with high density. SEs usually regulate the expression of genes that can control the cell identity and fate, and SEs can be used to explain the patterns of the expression of cell-specific genes. Hence, it shows great potential for application in the treatment of diseases like cancer. At present, the clinical treatments for osteosarcoma, Ewing sarcoma, and other bone-related diseases remain challenging. The poor prognosis and difficult treatment of these diseases imposes heavy economic burden on patients and society. In recent years, research on SEs with respect to bone-related diseases has attracted increasing attention. In this paper, we first review the identification and functional mechanisms of SEs. Then, we integrate the findings of the emerging studies on SEs in bone-related diseases. Finally, we summarize recent strategies for targeting SEs for the treatment of bone-related diseases. This review aims to provide comprehensive insights into the roles of SEs in bone-related diseases.

20.
DNA Cell Biol ; 39(6): 926-937, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32352840

ABSTRACT

Increasing evidence has announced the emerging roles of long noncoding RNAs (lncRNAs) in modulating bone homeostasis due to their potential regulating effects on bone-related cells' proliferation, migration, differentiation and apoptosis. Thus, lncRNAs have been considered as a promising gene tool to facilitate the bone regeneration process and then to predict and cure bone-related diseases such as osteosarcoma, osteoporosis, and osteoarthritis. In this review, we first enumerated several kinds of dysregulated lncRNAs and concisely summarized their regulating role in bone formation as well as resorption process. The related mechanisms were also discussed, respectively. Then, the positive or negative behavior of these lncRNAs in bone-related diseases was elucidated. This review provides an in-depth sight about the lncRNA's clinical values and limitations, which is conducive to explore new gene targets and further establish new therapeutic strategies for bone-related disease.


Subject(s)
Bone Diseases/genetics , Bone and Bones/metabolism , Homeostasis/genetics , RNA, Long Noncoding/genetics , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...