Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Infection ; 52(4): 1357-1365, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502427

ABSTRACT

PURPOSE: The mechanisms that control inflammation in scrub typhus are not fully elucidated. The Notch pathways are important regulators of inflammation and infection, but have not been investigated in scrub typhus. METHODS: Plasma levels of the canonical Notch ligand Delta-like protein 1 (DLL1) were measured by enzyme immunoassay and RNA expression of the Notch receptors (NOTCH1, NOTCH2 and NOTCH4) in whole blood was analyzed by real-time PCR in patients with scrub typhus (n = 129), in patients with similar febrile illness without O. tsutsugamushi infection (n = 31) and in healthy controls (n = 31); all from the same area of South India. RESULTS: Our main results were: (i) plasma DLL1 was markedly increased in scrub typhus patients at hospital admission with a significant decrease during recovery. (ii) RNA expression of NOTCH4 was decreased at admission in whole blood. (iii) A similar pattern for DLL1 and NOTCH4 was seen in febrile disease controls. (iv) Admission DLL1 in plasma was associated with disease severity and short-term survival. (vi) Regulation of Notch pathways in O. tsutsugamushi-infected monocytes as evaluated by public repository data revealed enhanced canonical Notch activation with upregulation of DLL1 and downregulation of NOTCH4. CONCLUSION: Our findings suggest that scrub typhus patients are characterized by enhanced canonical Notch activation. Elevated plasma levels of DLL1 were associated with organ dysfunction and poor outcomes in these patients.


Subject(s)
Receptors, Notch , Scrub Typhus , Humans , Scrub Typhus/physiopathology , Scrub Typhus/blood , Male , Female , Middle Aged , Adult , Calcium-Binding Proteins/blood , Calcium-Binding Proteins/genetics , Aged , India , Orientia tsutsugamushi , Young Adult , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/blood , Membrane Proteins/genetics , Multiple Organ Failure
2.
Proc Natl Acad Sci U S A ; 120(23): e2214535120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252950

ABSTRACT

The emergence of the sensory organ precursor (SOP) from an equivalence group in Drosophila is a paradigm for studying single-cell fate specification through Notch-mediated lateral inhibition. Yet, it remains unclear how only a single SOP is selected from a relatively large group of cells. We show here that a critical aspect of SOP selection is controlled by cis-inhibition (CI), whereby the Notch ligands, Delta (Dl), cis-inhibit Notch receptors in the same cell. Based on the observation that the mammalian ligand Dl-like 1 cannot cis-inhibit Notch in Drosophila, we probe the role of CI in vivo. We develop a mathematical model for SOP selection where Dl activity is independently regulated by the ubiquitin ligases Neuralized and Mindbomb1. We show theoretically and experimentally that Mindbomb1 induces basal Notch activity, which is suppressed by CI. Our results highlight the trade-off between basal Notch activity and CI as a mechanism for singling out a SOP from a large equivalence group.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Membrane Proteins/physiology , Drosophila/metabolism , Receptors, Notch/genetics , Signal Transduction , Mammals/metabolism
3.
BMC Cancer ; 22(1): 918, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36008793

ABSTRACT

BACKGROUND: Selective activation of Delta-like 1 (DLL1)-Notch signaling is a new approach to activate CD8+ T cell and suppress tumor growth, while the efficacy remains modest. Lentinan (LNT) is a clinically used immunomodulation agent. Thus, we hypothesized that LNT could improve the efficacy of DLL1. METHODS: The effects of LNT combined with DLL1 on tumor growth were evaluated by growth curve and tumor weight in EO771 breast and LAP0297 lung tumor models. The impacts on immune cells and gene expression in tumor tissues were determined by flow cytometry, qPCR. Neutrophil depletion was used to investigate the mechanism of the combination therapy on tumor growth. The data sets were compared using unpaired student's t-test or ordinary one-way ANOVA. RESULTS:  LNT treatments additively improved the antitumor effects of DLL1 in EO771 breast tumor growth. Remarkably, LNT treatments synergistically enhanced the suppression of DLL1 on LAP0297 lung tumor growth, resulting in tumor regression. Mechanically, the combination of LNT and DLL1 interventions not only promoted the accumulation and activation of CD8+ T cells, but also increased intratumoral CD45+CD11b+Ly6G+ neutrophils. Reduced neutrophils by anti-Gr1 antibody administrations reversed the improved antitumor effects by LNT treatments in LAP0297 lung tumor. These results suggest that LNT treatments improve the inhibition of DLL1 on tumor growth via neutrophils. CONCLUSIONS: Our findings indicates that LNT and DLL1 may induce synergistical antitumor immunity via simultaneous modulating lymphoid and myeloid cell populations regardless of the type of tumor, providing a potential new strategy to potentiate cancer immunotherapy.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Breast Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , Female , Humans , Lentinan/pharmacology , Lentinan/therapeutic use , Lung Neoplasms/drug therapy , Neutrophils
4.
Animals (Basel) ; 12(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35739860

ABSTRACT

DLK1 is paternally expressed and is involved in metabolism switching, stem cell maintenance, cell proliferation, and differentiation. Porcine DLK1 was identified in our previous study as a candidate gene that regulates muscle development. In the present study, we characterized DLK1 expression in pigs, and the results showed that DLK1 was highly expressed in the muscles of pigs. In-vitro cellular tests showed that DLK1 promoted myoblast proliferation, migration, and muscular hypertrophy, and at the same time inhibited muscle degradation. The expression of myogenic and fusion markers and the formation of multinucleated myotubes were both upregulated in myoblasts with DLK1 overexpression. DLK1 levels in cultured myocytes were negatively correlated with the expression of key factors in the Notch pathway, suggesting that the suppression of Notch signaling pathways may mediate these processes. Collectively, our results suggest a biological function of DLK1 as an enhancer of muscle development by the inhibition of Notch pathways.

5.
Front Immunol ; 13: 852427, 2022.
Article in English | MEDLINE | ID: mdl-35371023

ABSTRACT

T-cell development in the thymus is dependent on Notch signaling induced by the interaction of Notch1, present on immigrant cells, with a Notch ligand, delta-like (Dll) 4, on the thymic epithelial cells. Phylogenetic analysis characterizing the properties of the Dll4 molecule suggests that Dll4 emerged from the common ancestor of lobe- and ray-finned fishes and diverged into bony fishes and terrestrial organisms, including mammals. The thymus evolved in cartilaginous fishes before Dll4, suggesting that T-cell development in cartilaginous fishes is dependent on Dll1 instead of Dll4. In this study, we compared the function of both Dll molecules in the thymic epithelium using Foxn1-cre and Dll4-floxed mice with conditional transgenic alleles in which the Dll1 or Dll4 gene is transcribed after the cre-mediated excision of the stop codon. The expression of Dll1 in the thymic epithelium completely restored the defect in the Dll4-deficient condition, suggesting that Dll1 can trigger Notch signaling that is indispensable for T-cell development in the thymus. Moreover, using bone marrow chimeras with Notch1- or Notch2-deficient hematopoietic cells, we showed that Dll1 is able to activate Notch signaling, which is sufficient to induce T-cell development, with both the receptors, in contrast to Dll4, which works only with Notch1, in the thymic environment. These results strongly support the hypothesis that Dll1 regulates T-cell development via Notch1 and/or Notch2 in the thymus of cartilaginous fishes and that Dll4 has replaced Dll1 in inducing thymic Notch signaling via Notch1 during evolution.


Subject(s)
Calcium-Binding Proteins , Intracellular Signaling Peptides and Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Epithelium/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Mammals/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Phylogeny
6.
Saudi Pharm J ; 30(1): 72-90, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35145347

ABSTRACT

Excessive interleukin (IL)-6 production is a driver for malignancy and drug resistance in colorectal cancer (CRC). Our study investigated a seven-week post-treatment with the anti-inflammatory drug, Diacerein (Diac), alone or in combination with 5-fluorouracil (5-FU), using a 1,2-dimethylhydrazine (DMH) rat model of CRC. Diac alone and 5-FU+Diac reduced serum levels of carcino-embryonic antigen (CEA), while all regimens decreased serum levels of colon cancer-specific antigen (CCSA), a more specific CRC biomarker. Additionally, Diac, 5-FU and their combination suppressed colonic content/gene expression of IL-6, its downstream oncogene, Kirsten rat sarcoma viral oncogene homolog (K-Ras), and consequently Notch intracellular domain and nuclear factor-kappa B (NF-κB) p65. In turn, NF-κB downstream factors, viz., matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), c-Myc, and B-cell lymphoma-2 (Bcl-2) were also downregulated, while E-cadherin was elevated. Additionally, the drugs reduced the immunoreactivity of CD31 to prove their anti-angiogenic effect, while the TUNEL assay confirmed the apoptotic effect. The apoptotic effect was confirmed by transferase dUTP nick-end labeling assay. Moreover, these drugs inhibited colon content of p-Akt, ß-catenin, and cyclin D1 immunoreactivity. The drugs also activated the tumor suppressor glycogen synthase kinase 3- ß (GSK3-ß) and upregulated the expression of the Nur77 gene, which represents the second arm of IL-6 signaling. However, only 5-FU upregulated miR-200a, another K-Ras downstream factor. The in-vitro cytotoxic and migration/invasion assays verified the molecular trajectories. Accordingly, we evaluated the antineoplastic effect of Diac alone and its possible chemosensitization effect when added to 5-FU. This combination may target critical oncogenic pathways, including the IL-6/K-Ras/Notch/NF-κB p65 axis, p-Akt/GSK3-ß/ß-catenin/cyclin D-1 hub, and Nur77.

7.
Exp Ther Med ; 23(1): 98, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34976140

ABSTRACT

Prostate cancer occurs in the prostatic epithelium and poses a threat to the health of middle-aged and older males. The objective of the present study was to explore the roles of microRNA (miRNA/miR)-130b in prostate cancer and potential molecular mechanisms in order to control the migration and invasion of prostate cancer. For this purpose, reverse transcription-PCR was performed to evaluate the mRNA levels of DLL1, phosphoinositide-3 kinase (PI3K), protein kinase B (Akt) and matrix metalloproteinase (MMP)9, and western blot analysis was carried out to detect the protein expression levels of DLL1, phosphorylated (p)-PI3K, p-Akt and MMP9. A Transwell assay was conducted to examine the invasion rate of prostate cancer cells. Furthermore, a scratch wound assay was performed to examine the migration rate of prostate cancer cells. A luciferase assay was performed to examine the interaction between miRNA and its target mRNA. The results revealed that miR-130b had abnormal (low) expression in tumor tissues compared with that in the adjacent normal tissue. An miR-130b mimic suppressed the expression of DLL1. The expression of p-PI3K, p-Akt and MMP9 in prostate cancer cells transfected with the miR-130b mimic was decreased in comparison to the negative control and control groups. Furthermore, migration and invasion were significantly suppressed in the miR-130b mimic group. In conclusion, a novel pathway interlinking miR-130b and MMP9, p-Akt and p-PI3K, which regulates the migration and invasion of prostate cancer cells, was identified. These findings provide an intriguing biomarker and treatment strategy for patients with prostate cancer.

8.
Cureus ; 13(8): e17001, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34540403

ABSTRACT

Objective Delta-like 1 (DLK1) and nesfatin-1 are adipokines that have been shown to affect glucose metabolism. We aimed to search serum DLK1 and nesfatin-1 concentrations at 24-28 weeks of pregnancy in women newly defined with gestational diabetes mellitus (GDM) and investigate the relationship of these adipokines with various metabolic parameters. Methods Serum levels of DLK1 and nesfatin-1 were evaluated in 44 women with GDM, and in 40 healthy pregnant women by enzyme-linked immunosorbent assay (ELISA) kits. While performing oral glucose tolerance test (OGTT) for GDM diagnosis at 24-28 weeks of pregnancy, homeostasis model assessment of insulin resistance (HOMA-IR), lipid profiles, glycosylated hemoglobin (HbA1c) were also measured. Results Maternal serum DLK1 and nesfatin-1 concentrations were found lower in pregnant women with GDM compared with healthy pregnant women (418.4±282.6 vs. 586.7±303 ng/L, p=0.002; 12.2±7.6 vs. 26.7±16.4 ng/ml, p<0.001, respectively). Maternal serum DLK1 levels correlated positively with HOMA-IR and fasting insulin (r=0.395, p=0.008; r=0.374, p=0.012, respectively). Conclusion We determined that DLK1 and nesfatin-1 levels were lower in GDM. Based on this study, it may be considered that DLK1 could be culpable for metabolic disorders in GDM.

9.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34519339

ABSTRACT

Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.


Subject(s)
Calcium-Binding Proteins/metabolism , MAP Kinase Signaling System , Neurogenesis , Receptors, Notch/metabolism , Animals , Binding Sites , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Cell Proliferation , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NIH 3T3 Cells , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Protein Binding
10.
Turk J Obstet Gynecol ; 18(2): 124-130, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34083652

ABSTRACT

Objective: Delta-like 1 (DLK1) is known to inhibit adipocyte differentiation and nesfatin-1 is a neuropeptide that plays a role in the regulation of nutrition and metabolism. We aimed to assess both the levels of DLK1 and nesfatin-1 in polycystic ovary syndrome (PCOS) and determine the association of DLK1 and nesfatin-1 with metabolic parameters. Materials and Methods: Forty-four patients with PCOS and 40 healthy women as the control group were included in this study. Venous blood samples of the participants were collected, and hormonal, metabolic parameters, DLK1 and nesfatin-1 blood levels were determined. Anthropometric parameters were also determined. For a double comparison, the Mann-Whitney U test was used for non-parametric numerical data, and Student's t-test was used for parametric numerical data. Bivariate correlations were investigated using Spearman's correlation analysis. The diagnostic performance of the parameters was evaluated using receiver operating characteristic curve analysis. Results: The findings showed that DLK1 and nesfatin-1 levels were lower among the PCOS group, and the differences in these values were found to be statistically significant. A significant negative correlation was found between DLK1 levels and body mass index (BMI), waist/hip ratio, visceral adiposity index (VAI), fasting serum insulin (FSI), homeostasis model of assessment-insulin resistance (HOMA-IR) and triglyceride levels. A significant negative correlation was found between nesfatin-1 levels and BMI, VAI, FSI, HOMA-IR and triglyceride. Conclusion: The findings showed that DLK1 and nesfatin-1 levels were lower in PCOS. Based on this study, DLK1 may be culpable for metabolic disorders in PCOS and can be a novel marker for PCOS in the future.

11.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34035167

ABSTRACT

The immunosuppressive and hypoxic tumor microenvironment (TME) remains a major obstacle to impede cancer immunotherapy. Here, we showed that elevated levels of Delta-like 1 (DLL1) in the breast and lung TME induced long-term tumor vascular normalization to alleviate tumor hypoxia and promoted the accumulation of interferon γ (IFN-γ)-expressing CD8+ T cells and the polarization of M1-like macrophages. Moreover, increased DLL1 levels in the TME sensitized anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA4) treatment in its resistant tumors, resulting in tumor regression and prolonged survival. Mechanically, in vivo depletion of CD8+ T cells or host IFN-γ deficiency reversed tumor growth inhibition and abrogated DLL1-induced tumor vascular normalization without affecting DLL1-mediated macrophage polarization. Together, these results demonstrate that elevated DLL1 levels in the TME promote durable tumor vascular normalization in a CD8+ T cell- and IFN-γ-dependent manner and potentiate anti-CTLA4 therapy. Our findings unveil DLL1 as a potential target to persistently normalize the TME to facilitate cancer immunotherapy.


Subject(s)
Blood Vessels/pathology , CD8-Positive T-Lymphocytes/immunology , Calcium-Binding Proteins/physiology , Neoplasms/blood supply , Neoplasms/pathology , Animals , Female , HEK293 Cells , Humans , Immunotherapy , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment
12.
Brain Sci ; 10(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322758

ABSTRACT

Lateral hypothalamic area (LHA) neurons expressing the neuropeptide orexin (OX) are implicated in obesity and anxio-depression. However, these neurons release OX as well as a host of other proteins that might contribute to normal physiology and disease states. We hypothesized that delta-like homolog 1 (DLK1), a protein reported to be co-expressed by all OX neurons, contributes to the regulation of energy balance and/or anxio-depression. Consistent with previous reports, we found that all rat OX neurons co-express DLK1. Yet, in mice and humans only a subset of OX neurons co-expressed DLK1. Since human OX-DLK1 distribution is more similar to mice than rats, mice are a comparable model to assess the human physiologic role of DLK1. We therefore used a viral lesion strategy to selectively delete DLK1 within the LHA of adult mice (DLK1Null) to reveal its role in body weight and behavior. Adult-onset DLK1 deletion had no impact on body weight or ingestive behavior. However, DLK1Null mice engaged in more locomotor activity than control mice and had decreased anxiety and depression measured via the elevated plus maze and forced swim tests. These data suggest that DLK1 expression via DLK1-expressing OX neurons primarily contributes to anxio-depression behaviors without impacting body weight.

13.
Am J Transl Res ; 12(10): 6723-6739, 2020.
Article in English | MEDLINE | ID: mdl-33194068

ABSTRACT

The mechanisms that regulate hematopoietic stem cell (HSC) regeneration after myelosuppressive injury are not well understood. Here, we showed that disruption of Notch signaling aggravated chemotherapy-induced myelosuppression in inducible genetic mice. Conversely, Notch activation correlated positively with clinical HSC engraftment. We used endothelial-targeted chimeric Notch ligand Delta-like 1 (D1R) to activate Notch signaling in hematopoietic stem/progenitor cells through micro-environmental cellular contact. Recombinant protein D1R contributed to the recovery of the HSC pool and sustained HSC vitality in response to various chemotherapeutic agents in vivo. Mechanistically, D1R treatment promoted HSC proliferation transiently, prevented HSC exhaustion, correlated with activation of the downstream phosphoinositide 3-kinase (PI3K)/extracellular-signal-regulated kinase (ERK)/BCL2 associated agonist of cell death (BAD) signaling axis during regeneration, and partially mediated upregulation of c-Myc in HSCs. These data reveal an unrecognized role for Notch signaling in promoting HSC repopulation after myelosuppressive chemotherapy and offer a new therapeutic approach to mitigate chemotherapy-induced injury.

14.
Bone ; 138: 115510, 2020 09.
Article in English | MEDLINE | ID: mdl-32622071

ABSTRACT

Vitamin D effects on bone and mineral metabolism are well recognized, and its anti-inflammatory actions are gaining particular interest. Delta-like 1 (DLK1) is a protein, expressed by progenitor cells of different tissues, and increases the size of progenitor cell population during the inflammatory phase of tissue regeneration. DLK1 also plays a role in energy metabolism as it antagonizes insulin signaling in bone. In this one-year randomized clinical trial of overweight elderly individuals that received either 600 or 3750 IU daily cholecalciferol we assessed the effect of vitamin D supplementation on pre-specified secondary outcomes: DLK1, leptin, adiponectin, C-Reactive Protein (CRP) and Vascular Cell Adhesion Molecule (VCAM). We also examined correlations between DLK1 and bone (BMD, bone markers), fat (adipokines, body composition), insulin sensitivity and inflammatory markers. Multivariate analyses were conducted to further explore these associations. Overall, there was a significant increase in serum DLK1 and leptin and a decrease in VCAM, but no change in CRP, after 12 months of vitamin D supplementation. DLK1 was negatively correlated with BMD and positively correlated with bone markers, associations that persisted after adjusting for age, gender and BMI. DLK1 was also positively associated with indices of insulin resistance and negatively with indices of insulin sensitivity. Correlations between DLK1 and fat parameters, such as adipokines, and DXA derived fat mass were less consistent. There were no correlations between DLK1 and inflammatory markers. In conclusion, twelve months supplementation of vitamin D3 increased serum DLK1. DLK1 was negatively associated with indices of bone health and fuel metabolism, and with 1,25(OH)2D levels. Similar to the role of DLK1 in animal models, our findings support the hypothesis that DLK1 can be targeted to regulate bone and energy metabolism and develop drugs to improve BMD and insulin sensitivity. However, further studies are needed to explore the role of DLK1 and its relationship to vitamin D metabolites in vivo.


Subject(s)
Dietary Supplements , Vitamin D , Aged , Animals , Bone Density , Calcium-Binding Proteins , Cholecalciferol , Energy Metabolism , Humans , Membrane Proteins , Vitamins
15.
Front Genet ; 10: 534, 2019.
Article in English | MEDLINE | ID: mdl-31275352

ABSTRACT

Skeletal development throughout the embryonic and postnatal phases is a dynamic process, based on bone remodeling and the balance between the activities of osteoclasts and osteoblasts modulating skeletal homeostasis. The Notch signaling pathway is a regulator of several developmental processes, and plays a crucial role in the development of the human skeleton by regulating the proliferation and differentiation of skeletal cells. The Delta Like-1 (DLL1) gene plays an important role in Notch signaling. We propose that an identified alteration in DLL1 protein may affect the downstream signaling. In this article, we present for the first time two siblings with a mutation in the DLL1 gene, presenting with congenital vertebral malformation. Using variable in silico prediction tools, it was predicted that the variant was responsible for the development of disease. Quantitative reverse-transcription polymerase chain reaction (PCR) for the Notch signaling pathway, using samples obtained from patients, showed a significant alteration in the expression of various related genes. Specifically, the expression of neurogenic locus notch homolog protein 1, SNW domain-containing protein 1, disintegrin, and metalloproteinase domain-containing proteins 10 and 17, was upregulated. In contrast, the expression of HEY1, HEY2, adenosine deaminase (ADA), and mastermind-like-1 (MAML-1) was downregulated. Furthermore, in a phosphokinase array, four kinases were significantly changed in patients, namely, p27, JANK1/2/3, mitogen- and stress-activated protein kinases 1 and 2, and focal adhesion kinase. Our results suggest an implication of a DLL1 defect related to the Notch signaling pathway, at least in part, in the morphologic abnormality observed in these patients. A limitation of our study was the low number of patients and samples. Further studies in this area are warranted to decipher the link between a DLL1 defect and skeletal abnormality.

16.
Front Cell Neurosci ; 13: 78, 2019.
Article in English | MEDLINE | ID: mdl-30894800

ABSTRACT

The transcription factor Pax6 controls multiple aspects of forebrain development. Conditional deletion of Pax6 in embryonic mouse cortex causes increased proliferation of cortical progenitor cells and a concomitant decrease in neural differentiation. Notch signaling regulates the balance between proliferation and differentiation of cortical progenitor cells, suggesting a possible connection between Pax6 and Notch signaling. We investigated how expression of the Notch ligand delta-like 1 (Dll1) is altered by loss of Pax6. Acute cortex-specific deletion of Pax6 resulted in a widespread decrease in the density of Dll1+ cells at embryonic days 12.5 and 13.5 (E12.5 and E13.5). In constitutive loss-of-function mutants, decreases in the densities of Dll1+ cells were more limited both spatially and temporally. Controlled over-expression of Pax6 had no detectable effect on Dll1 expression. The proneural transcription factor Neurog2 is a target of Pax6 that can activate Dll1 expression and we found clear co-expression of Neurog2 and Dll1 in radial glial progenitors, suggesting that Pax6's effect on Dll1 could be mediated through Neurog2. However, we found no change in Dll1+ cells in Neurog2 -/- cortex suggesting either that Neurog2 is not directly involved, or that its loss of function in embryonic cortex can be compensated for.

17.
Angiogenesis ; 21(2): 299-312, 2018 05.
Article in English | MEDLINE | ID: mdl-29383634

ABSTRACT

AIM: Delta-like 1 homolog (DLK1) is a non-canonical ligand of Notch signaling, which plays a pivotal role in vascular development and tumor angiogenesis. This study aimed to elucidate the function and mechanism of DLK1 in angiogenesis. METHODS AND RESULTS: By using in situ hybridization and immunohistochemical studies, expression analysis revealed a unique vascular tropism of DLK1 in vasculature of neuroblastoma and vascular tumors. Thus, it was hypothesized that DLK1 may be cleaved and then bound to endothelial cells, thereby regulating the endothelial function. To test such hypothesis, soluble DLK1 encompassing DLK1 extracellular domain (DLK1-EC) was generated and validated by its inhibitory function in adipogenesis assay. Recombinant DLK1-EC exhibited the preferential binding capability toward endothelial cells and stimulated the microvessels sprouting in aorta rings. Above all, implantation of DLK1-EC dose-dependently elicited the cornea neovascularization in rats. By using various angiogenesis assays, it was delineated that DLK1-EC stimulated the angiogenesis by promoting the proliferation, motility and tube formation of endothelial cells. By immunoblot and luciferase analysis, it was elucidated that DLK1-EC enhanced the expression and activities of Notch1/Akt/eNOS/Hes-1 signaling in dose- and time-dependent manners. Pharmaceutical blockage of Notch signaling using γ-secretase inhibitor DAPT abrogated the DLK1-EC-induced endothelial migration and Hes-1-driven luciferase activities. Furthermore, Notch1 inactivation by neutralizing antibodies or RNA interference reversed the DLK1-EC-induced angiogenesis. CONCLUSIONS: The present study unveils the pro-angiogenic function and mechanism of soluble DLK1 through activation of Notch1 signaling in endothelial cells.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/metabolism , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/metabolism , Animals , Calcium-Binding Proteins , Human Umbilical Vein Endothelial Cells/pathology , Humans , Neovascularization, Pathologic/pathology , Rats , Rats, Sprague-Dawley
18.
Protein Expr Purif ; 146: 8-16, 2018 06.
Article in English | MEDLINE | ID: mdl-29366964

ABSTRACT

Notch signalling is an evolutionary conserved cell-to-cell communication pathway crucial for development and tissue homeostasis. Abnormal Notch signalling by mutations or deregulated expression of its receptors and/or ligands can lead to cancer making it a potential therapeutic target. Delta-like1 (DLL1) is a ligand of the Notch pathway implicated in different types of cancer, including breast cancer. Herein, we produced rhDLL1-DE3, a novel soluble form of DLL1 protein, which contains the DSL domain and EGF1-3 repeats critical for Notch pathway activation. cDNA fragments of human DLL1, encoding truncated versions of DLL1 with regions required to activate Notch receptors, were cloned and expressed as histidine-fused proteins in bacterial and mammalian cells. Expression tests in mammalian cells showed almost exclusively expression of the rhDLL1-DE3 protein form comprising the minimal binding regions DSL to EGF3 to Notch receptors. The highest yield of rhDLL1-DE3 was obtained from E. coli inclusion bodies. The produced protein, with purity higher than 95% bound to human Notch1 recombinant protein, by both Biolayer interferometry and ELISA assays. Cellular assays revealed rhDLL1-DE3 was biologically active as it increased expression of Notch-dependent genes in inducible pluripotent and breast cancer cells. Moreover, rhDLL1-DE3 allowed the generation of polyclonal antibodies by immunization that efficiently recognized DLL1 proteins by immunoblot, and caused a significant decrease of Notch1 expression in MCF7 breast cancer cells. The rhDLL1-DE3 protein might thus be used for Notch pathway activation and to generate anti-DLL1 monoclonal antibodies by immunization or phage display technology to unveil the effect of DLL1 in breast cancer.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptor, Notch1/metabolism , Receptors, Notch/metabolism , Signal Transduction , Antibodies/immunology , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Calcium-Binding Proteins , Cell Line , Female , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/immunology , MCF-7 Cells , Membrane Proteins/chemistry , Membrane Proteins/immunology , Models, Molecular , Protein Binding , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
19.
Clin Immunol ; 187: 58-67, 2018 02.
Article in English | MEDLINE | ID: mdl-29038036

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells, and Notch ligand Delta-like-1 (DLL1) on DCs was implicated in type 1T helper (Th1) differentiation. In this study, we produced genetically engineered bone marrow-derived DCs that expressed DLL1 (DLL1-DCs) by adenoviral transduction. DLL1-DCs exerted a fully mature phenotype, and had positive effects on expression levels of interleukin (IL)-12 and costimulatory molecules. Coculture of allogeneic T cells with ovalbumin (OVA)-pulsed DLL1-DCs enhanced T cell proliferative responses and promoted Th1 cell differentiation. Furthermore, adoptive transfer of OVA-stimulated DLL1-DCs into asthmatic mice alleviated the cardinal features of allergic asthma, including immunoglobulin E (IgE) production, airway hyperresponsiveness (AHR), airway inflammation, and production of Th2-type cytokines. Notably, enhanced levels of the Th1-biased IgG2a response and interferon (IFN)-γ production were observed in these mice. Taken together, these data indicate that DLL1-DCs promoted Th1 cell development to alter the Th1/Th2 ratio and ameliorate Th2-mediated allergic asthma in mice.


Subject(s)
Asthma/immunology , Dendritic Cells/immunology , Hypersensitivity/immunology , Intercellular Signaling Peptides and Proteins/immunology , Th2 Cells/immunology , Adoptive Transfer , Animals , Calcium-Binding Proteins , Cell Differentiation , Cell Proliferation , Down-Regulation , Female , Immunoglobulin E/immunology , Intercellular Signaling Peptides and Proteins/genetics , Interleukin-12/immunology , Lymphocyte Activation , Mice , Ovalbumin , Th1 Cells/immunology
20.
Immunol Res ; 66(1): 87-96, 2018 02.
Article in English | MEDLINE | ID: mdl-29181775

ABSTRACT

Food allergy includes sensitization phase and effect phase, and effect cells degranulate and secrete cytokines in the effect phase, causing allergic clinical symptoms. We have demonstrated that Notch signaling plays an important role in the sensitization phase, but its role in effect phases still remains unclear. In this study, we investigated the role of Notch signaling in degranulation and cytokine production of the effect phase response. A RBL-2H3 cell model was used and Notch signaling was induced by priming with Notch ligands. Our results showed after priming with Notch ligand, Delta-like1(Dll1)-Fc, ß-hexosaminidase release, and cytokines production, including TGF-ß, IL-1ß, IL-4, IL-6, and IL-13, were increased significantly, and the enhancement was abolished after DAPT treatment, a γ-secretase inhibitor, indicating that Dll1 Notch signaling enhanced RBL-2H3 cell degranulation and cytokine production. Western blot analysis showed that Dll1 Notch signaling augmented high-affinity IgE receptors-mediated phosphorylation of MAPKs through suppressing the expression of downstream tyrosine kinases 1 (Dok-1). Besides, a passive systemic anaphylaxis mouse model was used to confirm the role of Notch signaling. And our data showed that allergic clinical features of mice were alleviated, and the level of degranulation was decreased significantly after inhibiting Notch signaling in vivo. Therefore, we demonstrated Notch ligand Dll1 enhanced RBL-2H3 cell degranulation and cytokine production through a novel Notch/Dok-1/MAPKs pathway, suggesting Notch signaling played a key role in the effect phase of food allergy.


Subject(s)
Anaphylaxis/immunology , Basophils/immunology , Food Hypersensitivity/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Notch/metabolism , Animals , Cell Degranulation , Cell Line , Cytokines/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Recombinant Fusion Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL