Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 934
Filter
1.
Food Chem ; 463(Pt 1): 141143, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39255697

ABSTRACT

Cooked note is an undesired flavor in green tea, while the key odorants and inhibition mechanisms were unknown. Here, volatiles of four green tea samples and two thermal reaction models of methionine-glucose and methional were assessed using gas chromatography­sulfur chemiluminescence detector and two dimensional gas chromatography-time-of-flight mass spectrometry. Nonvolatiles of reaction models were determined using ultra performance liquid chromatography-Q-Exactive orbitrap mass spectrometry. Four cooked smelling sulfur-containing odorants including dimethyl trisulfide, dimethyl sulfide, diethyl disulfide, and methanethiol having odor activity values > 1 were characterized in tea samples. Aroma addition tests confirmed dimethyl trisulfide (> 0.4 µg/L) as a reliable predictor of the cooked note. Seven sulfur-containing odorants were detected in reaction models. The addition of (-)-epigallocatechin gallate depleted glucose and interrupted the reaction, thus reduced sulfur-containing odorants' amounts. The study provides a novel insight on targeted strategic guidance for mitigating cooked off-flavor during the thermal processing of green tea production.

2.
Int Immunopharmacol ; 141: 112950, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39159563

ABSTRACT

Multiple myeloma (MM) is an incurable plasma cell malignancy that has prompted investigations into new potential therapeutic avenues. Epigallocatechin-3-gallate (EGCG), a major component of green tea, confers antioxidant, anti-inflammatory, and anti-tumor properties. Previous studies have shown that EGCG inhibits proliferation and induces apoptosis of multiple myeloma cells, however its underlying molecular mechanisms are largely unknown. In this study, we accordingly sought to examine the therapeutic effects and underlying mechanisms of EGCG on MM. Initially, using CCK8 (Cell Counting Kit-8) assays and Annexin V-FITC/PI staining, we demonstrated that EGCG dose-dependently reduced cell viability and induced apoptosis in the MM cell lines MM.1S and RPMI 8226. Subsequently, mRNA sequencing of EGCG-treated MM.1S cells revealed a significant upregulation of genes associated with endoplasmic reticulum stress (ERS), including P-eIF2α (phosphorylation-eukaryotic translation initiation factor 2 alpha), ATF4 (activating transcription factor 4), CHOP (C/EBP homologous protein, DDIT3), and PUMA (p53 upregulated modulator of apoptosis, BBC3), which were confirmed at the protein level by western blotting. Furthermore, treatment with the eIF2α inhibitor ISRIB reduced the rates of EGCG-induced apoptosis and promoted increases in the protein expression of all four ER stress-related molecules in MM cells. Additionally, mRNA-seq data revealed a downregulation of α-Tubulin 1b (TUBA1B) expression in EGCG-treated MM cells, which was confirmed by western blotting and immunofluorescence analyses. Moreover, we utilized a mouse model to show that EGCG inhibited myeloma tumor growth, which was inhibited by ISRIB. In summary, the findings of this novel study indicated that EGCG promotes apoptosis of MM cells, both via activation of the ER stress pathway and disruption of cytoskeletal integrity. These findings highlight the multi-faceted anti-tumor effects of EGCG and its potential clinical application in MM treatment.

3.
Food Chem Toxicol ; 191: 114906, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39095006

ABSTRACT

The study aimed to examine effects of (-)-epigallocatechin-3-gallate (EGCG) on energy metabolism and mitochondrial dynamics in mouse model of renal injury caused by doxorubicin (DOX). Here, mice were divided into Control group, EGCG-only treated group, DOX group, and three doses of EGCG plus DOX groups. Our results showed that EGCG behaved beneficial effects against kidney injury via attenuation of pathological changes in kidney tissue, which was confirmed by reducing serum creatinine (SCr), blood urea nitrogen (BUN), and apoptosis. Subsequently, changes in reactive oxygen species generation, malondialdehyde content, and activities of antioxidant enzymes were considerably ameliorated in EGCG + DOX groups when compared to DOX group. Furthermore, EGCG-evoked renal protection was associated with increases of mitochondrial membrane potential and decreases of mitochondrial fission protein Dynamin-related protein 1 (Drp1). Moreover, changing glycolysis into mitochondrial oxidative phosphorylation was observed, evidenced by controlling activities of malate dehydrogenase (MDH) and hexokinase (HK) in EGCG + DOX groups when compared to DOX group, indicating that reprogramming energy metabolism was linked to EGCG-induced renal protection in mice. Therefore, EGCG was demonstrated to have a protective effect against kidney injury by reducing oxidative damage, metabolic disorders, and mitochondrial dysfunction, suggesting that EGCG has potential as a feasible strategy to prevent kidney injury.


Subject(s)
Catechin , Doxorubicin , Dynamins , Mitochondrial Dynamics , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Mice , Mitochondrial Dynamics/drug effects , Male , Doxorubicin/toxicity , Dynamins/metabolism , Kidney/drug effects , Kidney/metabolism , Homeostasis/drug effects , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Mitochondria/drug effects , Mitochondria/metabolism , Energy Metabolism/drug effects , Oxidative Stress/drug effects , Antioxidants/pharmacology
4.
Nat Prod Res ; : 1-5, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093995

ABSTRACT

Epigallocatechin gallate (EGCG) is a prominent catechin found in green tea polyphenols and has shown promising anti-tumor properties. However, the exact regulatory mechanism of EGCG on liver cancer is not fully revealed. In this study, we conducted integrative analyses using the SwissTargetPrediction and GeneCards repositories, which identified 98 targets. These targets were used to construct a protein-protein interaction network using STRING and visualised with Cytoscape. Central to this network are hub proteins, notably TNF and PIK3CA, suggesting pivotal roles in the therapeutic landscape. Gene Ontology (GO) enrichment analysis unveiled 1,570 biological terms with a notable preponderance within oxidative stress response processes. Complementary pathway enrichment via the Kyoto Encyclopaedia of Genes and Genomes (KEGG) highlighted 134 pathways, with the PI3K-Akt pathway emerging as prominent. In silico molecular docking supported these findings, revealing binding energies of EGCG-target complexes below -7.0 kcal/mol, indicative of robust interactions. Moreover, cellular assays including CCK-8, wound-healing, and Transwell modalities, established EGCG's inhibitory concentration-dependent effects on HepG2 cell proliferation, migration, and invasion. Apoptotic assays affirmed by FACS, evidenced enhanced apoptosis with escalating EGCG concentrations, underpinned by modulations in caspase activity and apoptotic protein levels. Notably, Western blot analysis demonstrated the attenuation of the PI3K/AKT signalling cascade by EGCG, paralleling the inhibitory profile of LY294002. These multifaceted inhibitory effects underscore EGCG's potential as an anti-tumor agent, deploying a strategic blockade of oncogenic pathways and augmenting apoptotic mechanisms, which provide a strong rationale for its application in liver cancer therapeutics.

5.
Biomed Mater ; 19(5)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39121887

ABSTRACT

Guided bone regeneration (GBR) membranes play an important role in oral bone regeneration. However, enhancing their bone regeneration potential and antibacterial properties is crucial. Herein, silk fibroin (SF)/polycaprolactone (PCL) core-shell nanofibers loaded with epigallocatechin gallate (EGCG) were prepared using emulsion electrospinning. The nanofibrous membranes were characterized via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, water contact angle (CA) measurement, mechanical properties testing, drug release kinetics, and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) free radical scavenging assay. Mouse pre-osteoblast MC3T3-E1 cells were used to assess the biological characteristics, cytocompatibility, and osteogenic differentiation potential of the nanofibrous membrane. Additionally, the antibacterial properties againstStaphylococcus aureus (S. aureus)andEscherichia coli (E. coli)were evaluated. The nanofibers prepared by emulsion electrospinning exhibited a stable core-shell structure with a smooth and continuous surface. The tensile strength of the SF/PCL membrane loaded with EGCG was 3.88 ± 0.15 Mpa, the water CA was 50°, and the DPPH clearance rate at 24 h was 81.73% ± 0.07%. The EGCG release rate of membranes prepared by emulsion electrospinning was reduced by 12% within 72 h compared to that of membranes prepared via traditional electrospinning.In vitroexperiments indicate that the core-shell membranes loaded with EGCG demonstrated good cell compatibility and promoted adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the EGCG-loaded membranes exhibited inhibitory effects onE. coliandS. aureus. These findings indicate that core-shell nanofibrous membranes encapsulated with EGCG prepared using emulsion electrospinning possess good antioxidant, osteogenic, and antibacterial properties, making them potential candidates for research in GBR materials.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration , Catechin , Emulsions , Escherichia coli , Fibroins , Nanofibers , Osteogenesis , Polyesters , Staphylococcus aureus , Animals , Fibroins/chemistry , Polyesters/chemistry , Mice , Bone Regeneration/drug effects , Catechin/analogs & derivatives , Catechin/chemistry , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Emulsions/chemistry , Staphylococcus aureus/drug effects , Osteogenesis/drug effects , Escherichia coli/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Guided Tissue Regeneration/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Tissue Engineering/methods , Cell Differentiation/drug effects , Materials Testing , Membranes, Artificial , Tensile Strength , Drug Liberation , Spectroscopy, Fourier Transform Infrared , 3T3 Cells , Cell Line
6.
Food Chem ; 460(Pt 3): 140753, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39116773

ABSTRACT

The astringency of green tea is an integrated result of the synergic and antagonistic effects of individual tea components, whose mechanism is highly complex and not completely understood. Herein, we used an epigallocatechin gallate (EGCG)/caffeine (CAF)/saliva model to simulate the oral conditions during tea drinking. The effect of CAF on the interaction between EGCG and salivary proteins was first investigated using molecular docking and isothermal titration calorimetry (ITC). Then, the rheological properties and the micro-network structure of saliva were studied to relate the molecular interactions and perceived astringency. The results revealed that CAF partially occupied the binding sites of EGCG to salivary proteins, inhibiting their interaction and causing changes in the elastic network structure of the salivary film, thereby reducing astringency.


Subject(s)
Caffeine , Catechin , Molecular Docking Simulation , Saliva , Salivary Proteins and Peptides , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Humans , Caffeine/chemistry , Caffeine/pharmacology , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism , Saliva/chemistry , Saliva/metabolism , Tea/chemistry , Protein Binding , Taste , Adult , Astringents/chemistry , Astringents/pharmacology , Male , Young Adult
7.
J Obes Metab Syndr ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098053

ABSTRACT

Background: The combined effects of metformin and epigallocatechin-3-gallate (EGCG) on cortisol, 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), and blood glucose levels have not been investigated. This study evaluated the effectiveness of combining EGCG with metformin in regulating those levels in a rat model of diet-induced diabetes and obesity. Methods: Thirty diabetic and obese rats on a high-fat diet were treated daily for 28 days with EGCG (100 mg/kg of body weight/day), metformin (200 mg/kg of body weight/day), or both. Control groups comprised lean rats, untreated obese diabetic rats, and metformin-only-treated rats. Blood samples were collected to measure cortisol and fasting blood glucose (FBG) levels and liver tissue samples were examined for 11ß-HSD1 levels. Results: Rats receiving combination therapy had significantly reduced cortisol levels (from 36.70±15.13 to 31.25±7.10 ng/mL) compared with the untreated obese diabetic rats but not the rats receiving monotherapy. Rats receiving combination therapy and EGCG monotherapy had significantly lower 11ß-HSD1 levels compared with the untreated obese diabetic rats (92.68±10.82 and 93.74±18.11 ng/L vs. 120.66±14.00 ng/L). Combination therapy and metformin monotherapy significantly reduced FBG levels (440.83±133.3 to 140.50±7.36 mg/dL and 480.67±86.32 to 214.17±102.78 mg/dL, respectively) by approximately 68.1% and 55.4% compared with rats receiving EGCG monotherapy and untreated obese diabetic rats. Conclusion: Combining EGCG with metformin exhibited synergistic effects compared with monotherapy for managing diabetes, leading to improved outcomes in reduction of baseline cortisol levels along with reduction in 11ß-HSD1 and blood glucose levels.

8.
Nutrients ; 16(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39203859

ABSTRACT

Multiple sclerosis (MS) is a chronic, debilitating neurological condition for which current treatments often focus on managing symptoms without curing the underlying disease. Recent studies have suggested that dietary supplements could potentially modify disease progression and enhance quality of life. This systematic review aims to evaluate the efficacy and safety of epigallocatechin-3-gallate (EGCG) as a dietary supplement in patients with MS, with a specific focus on its impact on disease progression, symptom management, and overall quality of life. We conducted a comprehensive systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, utilizing an exhaustive search across the databases PubMed, Scopus, and Web of Science up to 23 February 2024. Eligible studies were randomized controlled trials. Nine clinical trials involving 318 participants were analyzed, with dosages ranging from 600 mg to 1200 mg of EGCG daily, although most studies had only a 4-month follow-up period. Results indicated that EGCG supplementation, particularly when combined with coconut oil, led to significant improvements in metabolic health markers and functional abilities such as gait speed and balance. One trial observed significant improvements in the Berg balance scale score from an average of 49 to 52 after four months of treatment with 800 mg of EGCG daily. Additionally, interleukin-6 levels significantly decreased, suggesting anti-inflammatory effects. Measures of quality of life such as the Beck Depression Inventory (BDI) scale showed significant improvements after EGCG supplementation. However, primary outcomes like disease progression measured by the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) of lesion activities showed minimal or no significant changes across most studies. EGCG supplementation appears to provide certain symptomatic and functional benefits in MS patients, particularly in terms of metabolic health and physical functionality. However, it does not significantly impact the primary disease progression markers such as EDSS scores and MRI lesions. These findings underscore the potential of EGCG as a supportive treatment in MS management, though its role in altering disease progression remains unclear. Future research should focus on long-term effects and optimal dosing to further elucidate its therapeutic potential.


Subject(s)
Catechin , Dietary Supplements , Multiple Sclerosis , Quality of Life , Catechin/analogs & derivatives , Catechin/administration & dosage , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis/diet therapy , Randomized Controlled Trials as Topic , Disease Progression , Female , Male , Adult , Treatment Outcome , Middle Aged
9.
Food Chem ; 462: 141026, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39216373

ABSTRACT

Quantitative monitoring of the concentrations of epigallocatechin gallate (EGCG) and cysteine (Cys) is of great significance for promoting human health. In this study, iron/aluminum bimetallic MOF material MIL-53 (Fe, Al) was rapidly prepared under room temperature using a co-precipitation method, followed by investigating the peroxidase-like (POD-like) activity of MIL-53(Fe, Al) using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate. The results showed that the Michaelis -Menten constants of TMB and H2O2 as substrates were 0.167 mM and 0.108 mM, respectively. A colorimetric sensing platform for detecting EGCG and Cys was developed and successfully applied for analysis and quantitative detection using a smartphone. The linear detection range for EGCG was 15∼80 µM (R2=0.994) and for Cys was 7∼95 µM (R2=0.998). The limits of detection (LOD) were 0.719 µM and 0.363 µM for EGCG and Cys, respectively. This work provides a new and cost-effective approach for the real-time analysis of catechins and amino acids.

10.
Plant Foods Hum Nutr ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186142

ABSTRACT

Green tea possesses a range of beneficial effects, including anti-obesity, antioxidant, and anti-inflammatory properties, owing to its biologically active components, primarily catechins such as epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG). However, few studies have investigated the four catechin monomers simultaneously, and the molecular mechanisms of their anti-obesity effects have not been fully elucidated. In this study, we investigated the effects of four catechin monomers on the differentiation of 3T3-L1 preadipocytes of mice. Our findings demonstrated that four catechin monomers EC/ECG/EGC/EGCG (12, 25, 50 µM) dose-dependently inhibited the differentiation of 3T3-L1 preadipocytes and reduced triglyceride content. EGCG exhibited the most potent inhibitory effect with an optimal concentration of 50 µM. In addition, transcriptome sequencing and lipidomic analysis of EGCG-treated 3T3-L1 preadipocytes revealed that Ptgs2 and Pim1 were the most differentially expressed genes involved in regulating adipocyte differentiation. The results suggested that EGCG up-regulated the expression of the Pla2g2e gene and down-regulated the expression of the Pla2g4a and Pla2g2a genes via the glycerophospholipid metabolic pathway, which subsequently elevated lysophosphatidylcholine (LPC) levels, influencing the differentiation process of 3T3-L1 preadipocytes.

11.
Nutrients ; 16(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39064787

ABSTRACT

Chronic obesity is an alarmingly growing global public health concern, posing substantial challenges for the prevention of chronic diseases, including hyperinsulinemia, type 2 diabetes, hyperlipidemia, hypertension, and coronary artery disease, and there is an urgent need for early mitigation strategies. We previously reported the obesity-reducing effects of green tea and ß-cryptoxanthin intake. However, since tea has a complex mixture of compounds, it remained unclear which component contributed the most to this effect. Using high-performance liquid chromatography, we analyzed the components of tea in this study to determine if consumption of any combination of these compounds with ß-cryptoxanthin had an obesity-reducing effect. Consuming epigallocatechin gallate (EGCG), a component of green tea, and ß-cryptoxanthin for 4 weeks led to a decrease in body weight. Moreover, the weight and size of the white adipose tissues were significantly reduced, and blood biochemistry test results were comparable to normal values, with particular improvement in liver function. This indicated that intake of EGCG and ß-cryptoxanthin reduces obesity in both subcutaneous and visceral fat. These findings suggest that simultaneous intake of EGCG and ß-cryptoxanthin not only reduces obesity but also has a systemic beneficial effect on the body's normal physiological function.


Subject(s)
Beta-Cryptoxanthin , Catechin , Obesity , Catechin/analogs & derivatives , Catechin/pharmacology , Obesity/drug therapy , Beta-Cryptoxanthin/pharmacology , Male , Animals , Tea/chemistry , Drug Synergism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Anti-Obesity Agents/pharmacology , Mice, Inbred C57BL , Weight Loss/drug effects
12.
Biochem Biophys Res Commun ; 734: 150424, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39083974

ABSTRACT

To explore the therapeutic effects along with the molecular mechanisms of epigallocatechin gallate (EGCG) in non-alcoholic fatty liver disease (NAFLD) treatment using network pharmacology as well as animal experiments. Firstly, the Traditional Chinese Medicine (TCM) Systems Pharmacology Database was searched to identify the potential targets of EGCG. The DisGeNET Database was used to screen the potential targets of NAFLD. The GeneCards Database was searched to identify related genes involved in pyroptosis. Subsequently, the intersecting genes of EGCG targeting pyroptosis to regulate NAFLD were obtained using a Venn diagram. Simultaneously, the aforementioned intersecting genes were used to construct a drug-disease target protein-protein interaction (PPI) network. The DAVID database was adopted for Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The main pathway-target network was determined. Next, the potential mechanism of EGCG targeting pyroptosis to regulate NAFLD was investigated and validated through in vivo experiments. 626 potential targets of EGCG, 447 target genes of NAFLD, and 568 potential targets of pyroptosis were identified. The number of common targets between EGCG, NAFLD, and pyroptosis was 266. GO biological process items and 92 KEGG pathways were determined based on the analysis results. Animal experiments demonstrated that EGCG could ameliorate body weight, glucolipid metabolism, steatosis, and liver injury, enhance insulin sensitivity, and improve glucose tolerance in NAFLD mice through the classical pathway of pyroptosis. EGCG could effectively treat NAFLD through multiple targets and pathways. It was concluded that EGCG ameliorates hepatocyte steatosis, pyroptosis, dyslipidemia, and inflammation in NAFLD mice fed a high-fat diet (HFD), and the protective mechanism could be associated with the NLRP3-Caspase-1-GSDMD classical pyroptosis pathway.

13.
Int J Biochem Mol Biol ; 15(3): 51-59, 2024.
Article in English | MEDLINE | ID: mdl-39021869

ABSTRACT

INTRODUCTION: Human epidemiological studies have shown that diets rich in plant polyphenols have beneficial effects on various diseases including cancer. Epigallocatechin Gallate, a flavonoid polyphenol molecule, has been shown to be both chemotherapeutic and chemo-preventive in the treatment of several forms of cancer, including lung cancer. 80% of cancers of the lungs are non-small cell lung cancers. OBJECTIVE: The study was carried out to see the effects of Epigallocatechin Gallate in non-small cell lung cancer cells (A549) using in-vitro studies. MATERIALS AND METHODS: Cell Viability Assay was performed using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Wound Healing assay was also performed at different concentrations of the compound. Dexamethasone and Doxorubicin, the drugs with anti-cancer properties served as control. A549 cell lines were used. RESULTS: In the current study, it was demonstrated using Cell viability assay and Wound Healing assay that Epigallocatechin gallate exhibits anti-proliferative activity on A549 lung cancer cells and inhibits cancer cell proliferation in a concentration and time-dependent manner. It was observed that Epigallocatechin gallate (P = 0.0016, P = 0.0018) could significantly inhibit the growth of lung cancer cells with IC50 values 60.55 ± 1.0 µM. The result of wound Healing assay suggests that Epigallocatechin gallate can inhibit the proliferation and migration of A549 cells with concentrations near or higher to 50 µM. CONCLUSION: Epigallocatechin gallate's protective effect has been shown in A549 lung adenocarcinoma cells in a time and dose-dependent manner. This suggests the implication of Epigallocatechin gallate for the prevention and therapy for lung cancer.

14.
Heliyon ; 10(13): e34036, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071691

ABSTRACT

Loxosceles spp. spiders can cause serious public health issues. Chemical control is commonly used, leading to health and environmental problems. Identifying molecular targets and using them with natural compounds can help develop safer and eco-friendlier biopesticides. We studied the kinetics and predicted structural characteristics of arginine kinase (EC 2.7.3.3) from Loxosceles laeta (LlAK), a key enzyme in the energy metabolism of these organisms. Additionally, we explored (-)-epigallocatechin gallate (EGCG), a green tea flavonoid, as a potential lead compound for the LlAK active site through fluorescence and in silico analysis, such as molecular docking and molecular dynamics (MD) simulation and MM/PBSA analyses. The results indicate that LlAK is a highly efficient enzyme (K m Arg 0.14 mM, K m ATP 0.98 mM, k cat 93 s-1, k cat/K m Arg 630 s-1 mM-1, k cat/K m ATP 94 s-1 mM-1), which correlates with its structure similarity to others AKs (such as Litopenaeus vannamei, Polybetes pythagoricus, and Rhipicephalus sanguineus) and might be related to its important function in the spider's energetic metabolism. Furthermore, the MD and MM/PBSA analysis suggests that EGCG interacted with LlAK, specifically at ATP/ADP binding site (RMSD <1 nm) and its interaction is energetically favored for its binding stability (-40 to -15 kcal/mol). Moreover, these results are supported by fluorescence quenching analysis (K d 58.3 µM and K a 1.71 × 104 M-1). In this context, LlAK is a promising target for the chemical control of L. laeta, and EGCG could be used in combination with conventional pesticides to manage the population of Loxosceles species in urban areas.

15.
Int J Biol Macromol ; 275(Pt 1): 133467, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945319

ABSTRACT

Hyaluronic acid (HA) serves as a vitreous substitute owing to its ability to mimic the physical functions of native vitreous humor. However, pure HA hydrogels alone do not provide sufficient protection against potential inflammatory risks following vitrectomy. In this study, HA was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) to form HA hydrogels (HB). Subsequently, the anti-inflammatory agent epigallocatechin gallate (EGCG) was added to the hydrogel (HBE) for ophthalmic applications as a vitreous substitute. The characterization results indicated the successful preparation of HB with transparency, refractive index, and osmolality similar to those of native vitreous humor, and with good injectability. The anti-inflammatory ability of HBE was also confirmed by the reduced expression of inflammatory genes in retinal pigment epithelial cells treated with HBE compared with those treated with HB. In a New Zealand white rabbit model undergoing vitreous substitution treatment, HBE 50 (EGCG 50 µM addition) exhibited positive results at 28 days post-surgery. These outcomes included restored intraocular pressure, improved electroretinogram responses, minimal increase in corneal thickness, and no inflammation during histological examination. This study demonstrated the potential of an injectable HA-BDDE cross-linked hydrogel containing EGCG as a vitreous substitute for vitrectomy applications, offering prolonged degradation time and anti-inflammatory effects postoperatively.


Subject(s)
Catechin , Hyaluronic Acid , Hydrogels , Vitreous Body , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Animals , Hydrogels/chemistry , Rabbits , Vitreous Body/drug effects , Vitreous Body/surgery , Vitreous Body/metabolism , Cross-Linking Reagents/chemistry , Electroretinography , Butylene Glycols/chemistry , Butylene Glycols/pharmacology , Humans , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Vitrectomy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Injections
16.
Clin Nutr ; 43(8): 1769-1780, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936303

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS: A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS: ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS: The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER: ChiCTR2300076741; https://www.chictr.org.cn/.


Subject(s)
Catechin , Dipeptidyl Peptidase 4 , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Catechin/analogs & derivatives , Catechin/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Male , Humans , Mice , Dipeptidyl Peptidase 4/metabolism , Liver/drug effects , Liver/metabolism , Diet, High-Fat/adverse effects , Middle Aged , Female , Disease Models, Animal , Adult , Hep G2 Cells
17.
J Reprod Immunol ; 164: 104263, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838579

ABSTRACT

BACKGROUND AND PURPOSE: Epigallocatechin gallate (EGCG), a natural antioxidant, has shown protective effect in many diseases. We explore the effect and potential regulatory mechanisms of EGCG in preeclampsia (PE)-like rats. METHODS AND MATERIALS: PE was mimicked in pregnant rats. EGCG was orally administered at a dosage of 25(Low, L) or 50 mg/kg (High, H) from gestational day (GD) 6-17. The blood pressure signatures, heart rates were monitored. The 24-h proteinuria and serum were analyzed. On GD 18, rats were sacrificed, and pups and placentas were weighed. Kidneys and placentas were analyzed using immunohistochemistry (IHC) and hematoxylin-eosin staining (H&E). Placentas were examined using western blot for sFlt1, eNOS, Nrf2, HO-1, SLC7A11. MDA, GSH, GPx and Fe2+ were measured. RESULTS: EGCG inhibits systolic blood pressure, BUN, CREA, ALT, AST, UA and proteinuria levels in PE-like rats. EGCG enhances the pup weight and crown-rump length and reduces the rate of fetus growth restriction in PE group. Endothelial dysfunction and infiltration of inflammatory cells were found in kidney cortex and placenta tissues in PE group and were inhibited by EGCG treatment. sFlt1 was activated in placentas in PE group and inhibited by EGCG while eNOS/Nrf2/HO-1 were inhibited in PE group and restored by EGCG. MDA and Fe concentrations were elevated in PE group and reduced by EGCG while the GSH level, SLC7A11 and the GPx activity were inhibited in PE group and restored by EGCG. CONCLUSION: EGCG alleviates inflammation, endothelial dysfunction and placental ferroptosis, improves pregnancy outcomes in PE-like rats via eNOS/Nrf2/HO-1.


Subject(s)
Catechin , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Pre-Eclampsia , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/administration & dosage , Pregnancy , Female , NF-E2-Related Factor 2/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/immunology , Pre-Eclampsia/pathology , Rats , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Disease Models, Animal , Placenta/drug effects , Placenta/pathology , Placenta/metabolism , Pregnancy Outcome , Humans , Inflammation/drug therapy , Inflammation/immunology , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism
18.
Cancer Cell Int ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840243

ABSTRACT

Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.

19.
Food Res Int ; 189: 114536, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876589

ABSTRACT

Walnut isolate protein (WPI)-epigallocatechin gallate (EGCG) conjugates can be employed to creat food-grade delivery systems for preserving bioactive compounds. In this study, WPI-EGCG nanoparticles (WENPs) were developed for encapsulating lycopene (LYC) using the ultrasound-assisted method. The results indicated successful loading of LYC into these WENPs, forming the WENPs/LYC (cylinder with 200-300 nm in length and 14.81-30.05 nm in diameter). Encapsulating LYC in WENPs led to a notable decrease in release rate and improved stability in terms of thermal, ultraviolet (UV), and storage conditions compared to free LYC. Simultaneously, WENPs/LYC exhibited a synergistic and significantly higher antioxidant activity with an EC50 value of 23.98 µg/mL in HepG2 cells compared to free LYC's 31.54 µg/mL. Treatment with WENPs/LYC led to a dose-dependent restoration of intracellular antioxidant enzyme activities (SOD, CAT, and GSH-Px) and inhibition of intracellular malondialdehyde (MDA) formation. Furthermore, transcriptome analysis indicated that enrichment in glutathione metabolism and peroxisome processes following WENPs/LYC addition. Quantitative real-time reverse transcription PCR (qRT-PCR) verified the expression levels of related genes involved in the antioxidant resistance pathway of WENPs/LYC on AAPH-induced oxidative stress. This study offers novel perspectives into the antioxidant resistance pathway of WENPs/LYC, holding significant potential in food industry.


Subject(s)
Antioxidants , Catechin , Juglans , Lycopene , Nanoparticles , Lycopene/pharmacology , Lycopene/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Juglans/chemistry , Humans , Nanoparticles/chemistry , Hep G2 Cells , Plant Proteins , Malondialdehyde/metabolism , Drug Stability , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects
20.
Food Chem ; 458: 140241, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38944926

ABSTRACT

Tea is widely consumed in both beverages and food. Epigallocatechin gallate (EGCG) is the most crucial active ingredient in tea. Currently, knowledges on transformation processes of EGCG during tea processing are lacking. Understanding the chemical reactions of EGCG and its products during tea processing is important for assessing the safety of tea-containing food. Here, we revealed the formation of persistent free radicals (PFRs) from EGCG under the influence of heating and light irradiation, which was substantiated with evidence. These PFRs exhibited stability for >30 min in simulated gastric fluid. Furthermore, we observed potential effects of these PFRs on DNA damage and cell cytotoxicity in vitro. By combining electron paramagnetic resonance spectrometer with Fourier transform ion cyclotron resonance mass spectrometry, we elucidated the pathways involved in free radical formation. These findings are expected to contribute to a comprehensive understanding of free radical chemistry in tea-containing food.


Subject(s)
Catechin , DNA Damage , Tea , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , DNA Damage/drug effects , Tea/chemistry , Free Radicals/chemistry , Humans , Camellia sinensis/chemistry , Cell Survival/drug effects , Food Handling
SELECTION OF CITATIONS
SEARCH DETAIL