Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.937
Filter
1.
Adv Mater ; : e2405981, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970528

ABSTRACT

Ferroelectric materials, traditionally comprising inorganic ceramics and polymers, are commonly used in medical implantable devices. However, their nondegradable nature often necessitates secondary surgeries for removal. In contrast, ferroelectric molecular crystals have the advantages of easy solution processing, lightweight, and good biocompatibility, which are promising candidates for transient (short-term) implantable devices. Despite these benefits, the discovered biodegradable ferroelectric materials remain limited due to the absence of efficient design strategies. Here, inspired by the polar structure of polyvinylidene fluoride (PVDF), a ferroelectric molecular crystal 1H,1H,9H,9H-perfluoro-1,9-nonanediol (PFND), which undergoes a cubic-to-monoclinic ferroelectric plastic phase transition at 339 K, is discovered. This transition is facilitated by a 2D hydrogen bond network formed through O-H···O interactions among the oriented PFND molecules, which is crucial for the manifestation of ferroelectric properties. In this sense, by reducing the number of -CF2- groups from ≈5 000 in PVDF to seven in PFND, it is demonstrated that this ferroelectric compound only needs simple solution processing while maintaining excellent biosafety, biocompatibility, and biodegradability. This work illuminates the path toward the development of new biodegradable ferroelectric molecular crystals, offering promising avenues for biomedical applications.

2.
Sci Rep ; 14(1): 15480, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969700

ABSTRACT

Water dynamics inside hydrophobic confinement, such as carbon nanotubes (CNTs), has garnered significant attention, focusing on water diffusion. However, a crucial aspect remains unexplored - the influence of confinement size on water ordering and intrinsic hydrogen bond dynamics. To address this gap, we conducted extensive molecular dynamics simulations to investigate local ordering and intrinsic hydrogen bond dynamics of water molecules within CNTs of various sizes (length:20 nm, diameters: 1.0 nm to 5.0 nm) over a wide range of temperatures (260K, 280K, 300K, and 320K). A striking observation emerged: in smaller CNTs, water molecules adopt an icy structure near tube walls while maintaining liquid state towards the center. Notably, water behavior within a 2.0 nm CNT stands out as an anomaly, distinct from other CNT sizes considered in this study. This anomaly was explained through the formation of water layers inside CNTs. The hydrogen bond correlation function of water within CNTs decayed more slowly than bulk water, with an increasing rate as CNT diameter increased. In smaller CNTs, water molecules hold onto their hydrogen bond longer than larger ones. Interestingly, in larger CNTs, the innermost layer's hydrogen bond lasts a shorter time compared to the other layers, and this changes with temperature.

3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 783-788, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38974154

ABSTRACT

The pyrazolo-pyrimidine moiety in the title mol-ecule, C13H12N4S, is planar with the methyl-sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol-ecule an approximate L shape. In the crystal, C-H⋯π(ring) inter-actions and C-H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π-π inter-actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter-actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.

5.
Food Chem ; 458: 140295, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38981397

ABSTRACT

Curcumin (Cur) as a natural food additive and photosensitizer has been widely applied on photodynamic sterilization and preservation for food, but the poor aqueous solubility and light stability restrict its extensive application. In this study, we report a Cur nanocapsules (Cur-CDs) made by carbon dots (CDs). Attributing to the hydrogen bonds formed between Cur and CDs, Cur-CDs exhibits excellent Cur aqueous solubility each to 9286.98 ng/mL (enhanced by 246.27 times) and light stability (enhanced by 1.51 times). The photogenerated electron transmission from Cur to CDs in addition resulted in >1.23 and 1.60 times generation of •O2- and •OH, compared to that of bare Cur. Accordingly, 5.73 × 103 CFU L. monocytogenes, and 5.43 × 103 CFU S. aureus were killed by 0.06 mg/mL Cur-CDs within 20 mins of blue light, showing the promising potential in the development and application of safe and environmentally friendly non-thermal sterilization technology based on Cur-CDs.

6.
Magn Reson Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981694

ABSTRACT

Hydrogen bonding is a crucial feature of biomolecules, but its characterization in glycans dissolved in aqueous solutions is challenging due to rapid hydrogen exchange between hydroxyl groups and H2O. In principle, the scalar (J) coupling constant can reveal the relative orientation of the atoms in the molecule. In contrast to J-coupling through H-bonds reported in proteins and nucleic acids, research on J-coupling through H-bonds in glycans dissolved in water is lacking. Here, we use sucrose as a model system for H-bonding studies; its structure, which consists of glucose (Glc) and fructose (Frc), is well-studied, and it is readily available. We apply the in-phase, antiphase-HSQC-TOCSY and quantify previously unreported through H-bond J-values for Frc-OH1-Glc-OH2 in H2O. While earlier reports of Brown and Levy indicate this H-bond as having only a single direction, our reported findings indicate the potential presence of two involving these same atoms, namely, G2OH âž” F1O and F1OH âž” G2O (where F and G stand for Frc and Glc, respectively). The calculated density functional theory J-values for the G2OH âž” F1O agree with the experimental values. Additionally, we detected four other possible H-bonds in sucrose, which require different phi, psi (ϕ, ψ) torsion angles. The ϕ, ψ values are consistent with previous predictions of du Penhoat et al. and Venable et al. Our results will provide new insights into the molecular structure of sucrose and its interactions with proteins.

7.
Angew Chem Int Ed Engl ; : e202408622, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982982

ABSTRACT

Ethanolamine hydrates containing from one to seven water molecules were identified via rotational spectroscopy with the aid of accurate quantum chemical methods considering anharmonic vibrational corrections. Ethanolamine undergoes significant conformational changes upon hydration to form energetically favorable hydrogen bond networks. The final structures strongly resemble the pure (H2O)3-9 complexes reported before when replacing two water molecules by ethanolamine. The 14N nuclear quadrupole coupling constants of all the ethanolamine hydrates have been determined and show a remarkable correlation with the strength of hydrogen bonds involving the amino group. After addition of the seventh water molecule, both hydrogen atoms of the amino group actively contribute to hydrogen bond formation, reinforcing the network and introducing approximately 21-27% ionicity towards the formation of protonated amine. The findings highlight the critical role of microhydration in altering the electronic environment of ethanolamine, enhancing our understanding of amine hydration dynamics.

8.
Environ Sci Pollut Res Int ; 31(32): 45204-45216, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958860

ABSTRACT

Ionic polymers functionalized with hydroxyl, carboxyl, and amino groups can enhance the catalytic activity of catalysts. However, the straightforward preparation of bifunctional ionic polymers containing abundant ionic active sites and hydrogen bond donors remains challenging. In this study, a series of porous ionic polymers (BZIs) containing different hydrogen bond donors (-NH2, -OH, -COOH) were prepared through a simple one-pot Friedel-Crafts alkylation using benzimidazole derivatives and benzyl bromide. The structures and properties of BZIs were characterized by various techniques such as Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state nuclear magnetic resonance, and scanning electron microscopy. Among the prepared catalysts (BZI-NH2, BZI-OH, and BZI-COOH), BZI-NH2 exhibited the highest catalytic activity and recyclability, achieving a yield of 97% in the CO2 cycloaddition. The synergistic effect of Br-, hydrogen bond donors (-NH-, -NH2), and N+ in BZI-NH2 was found to contribute to its superior catalytic performance. DFT calculations were employed to study the effect of hydrogen bonds, Br-, and N+ in BZI-NH2 and BZI-OH on the CO2 cycloaddition. Using BZI-NH2 as an example, a mechanism was proposed for the synergistic effect between amino groups and bromide ions in catalyzing the CO2 cycloaddition reaction.


Subject(s)
Benzimidazoles , Carbon Dioxide , Cycloaddition Reaction , Benzimidazoles/chemistry , Catalysis , Carbon Dioxide/chemistry , Hydrogen Bonding , Polymers/chemistry
9.
Sci Total Environ ; 947: 174747, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004361

ABSTRACT

La (oxy)hydroxide-based materials have been recognized as promising adsorbents for aqueous phosphate (P) removal. However, comprehending the adsorption behavior of P onto La (oxy)hydroxide particles remains challenging, given the heterogeneous low-crystalline surface encompassing La oligomers and free La3+ ions. In this study, a hydrogen (H) bond capping method was developed to construct La (oxy)hydroxide oligomers (LHOs) to simulate the low-crystalline La on the surface of La (oxy)hydroxide particles. The P uptake capacity was compared among free La3+ ions, LHOs, and La nanoparticle (La-NP) with maximum capacities of 1967.3 ± 30.8 mg/g, 461.1 ± 53.7 mg/g and 62.5 ± 6.0 mg/g, respectively. The FT-IR, Raman, in situ-XRD and XPS deconvolution analyses revealed that the removal of P by free La3+ ions mainly involve the process of chemical precipitation to form LaPO4·0.5H2O. Conversely, the elimination of P by LHOs is primarily attributed to inner-sphere complexation and hydroxyl exchange effect between LaOOH and P. Based on this study, the free La3+ ions and La oligomers on the surface of La (oxy)hydroxide particles play a primary role in P adsorption. These results also suggest that the successively decreased adsorption capacity of La (oxy)hydroxide-based adsorbents in the continuously adsorption/desorption cycles might be due to the irreversible inactivation and recrystallization of free La3+ ions and La oligomers on the surface.

10.
Small ; : e2403842, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966890

ABSTRACT

Constructing versatile metal nanoclusters (NCs) assemblies through noncovalent weak interactions between inter-ligands is a long-standing challenge in interfacial chemistry, while compelling interfacial hydrogen-bond-driven metal NCs assemblies remain unexplored so far. Here, the study reports an amination-ligand o-phenylenediamine-coordinated copper NCs (CuNCs), demonstrating the impact of interfacial hydrogen-bonds (IHBs) motifs on the luminescent behaviors of metal NCs as the alteration of protic solvent. Experimental results supported by theoretical calculation unveil that the flexibility of interfacial ligand and the distance of cuprophilic CuI···CuI interaction between intra-/inter-NCs can be tailored by manipulating the cooperation between the diverse IHBs motifs reconstruction, therewith the IHBs-modulated fundamental structure-property relationships are established. Importantly, by utilizing the IHBs-mediated optical polychromatism of aminated CuNCs, portable visualization of humidity sensing test-strips with fast response is successfully manufactured. This work not only provides further insights into exploring the interfacial chemistry of NCs based on inter-ligands hydrogen-bond interactions, but also offers a new opportunity to expand the practical application for optical sensing of metal NCs.

11.
Article in English | MEDLINE | ID: mdl-38995665

ABSTRACT

Two ionic hydrogen-bonded organic frameworks (iHOFs) assembled from 4-cyano-N-(4-cyanobenzyl)pyridinium, have been crystallized with Br- and antimony(III) pentabromide, [SbBr5]2-, as counter-ions and characterized. These are 4-cyano-N-(4-cyanobenzyl)pyridinium bromide, C14H10N3+·Br-, and bis[4-cyano-N-(4-cyanobenzyl)pyridinium] antimony(III) pentabromide, (C14H10N3)2[SbBr5]. The CH...NC interactions induced by templating anions construct disparate frameworks. Hirshfeld surface analysis indicated that these crystals exhibit two types of hydrogen-bonding interactions, specifically CH...NC and CH...Br. Consecutive reverse-parallel CH...NC hydrogen-bonding interactions in these crystals induced the formation of a large number of CH...NC bonds which exhibit both cis and trans configurations.

12.
Article in English | MEDLINE | ID: mdl-39028307

ABSTRACT

Cocrystals of thiourea with pyrazine N-oxide as thiourea-pyrazine N-oxide (2/1), C4H4N2O·2CH4N2S, (I), and with phenazine as thiourea-phenazine (6/7), 7C12H8N2·6CH4N2S, (II), both crystallize in the monoclinic space group P21/c. In the crystalline state, molecules of both components are linked by N-H...N hydrogen bonds. In addition, there are R22(8) hydrogen-bond synthons between thiourea molecules in both crystal structures. Furthermore, bifurcated hydrogen bonds between the -NH groups in the thiourea molecule and the N and O atoms in the N-oxide ring [in (I)], as well as the N atom in the central phenazine ring [in (II)], play a significant role in both structures. This emerging motif was thoroughly examined using quantum chemistry methods.

13.
Article in English | MEDLINE | ID: mdl-39011746

ABSTRACT

Bismuth-based halide perovskites have shown great potential for direct X-ray detection, attributable to their nontoxicity and advantages in detection sensitivity and spatial resolution. However, the practical application of such materials still faces the critical challenge of combining both high sensitivity and low detection limits. Here, we report a new type of zero-dimensional (0D) perovskite (HIS)BiI5 (1, where HIS2+ = histamine) with high sensitivity and a low detection limit. Structurally, the strong N-H···I hydrogen bonds between HIS2+ cations and inorganic frameworks enhance the rigidity of the structure and diminish the intermolecular distance between adjacent inorganic [Bi2I10]4- dimers. By virtue of such structural merits, single crystal 1 exhibits excellent physical properties perpendicular to both the (001) and (010) faces. Perpendicular to the (010) face, 1 exhibited a high electrical resistivity (2.31 × 1011 Ω cm) and a large carrier mobility-lifetime product (µτ) (2.81 × 10-4 cm2 V-1) under X-ray illumination. Benefiting from these superior physical properties, it demonstrates an excellent X-ray detection capability with a sensitivity of approximately 103 µC Gyair-1 cm-2 and a detection limit of 36 nGyair s-1 in both directions perpendicular to the (001) and (010) crystal faces. These results provide a promising candidate material for the development of new, lead-free, high-performance X-ray detectors.

14.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998909

ABSTRACT

Inspired by the outstanding nature of flavonoid derivatives in the fields of chemistry and medicine, in this work we mainly focus on exploring the photo-induced properties of the novel Et2N-substituted flavonoid (ENF) fluorophore theoretically. Considering the potential photo-induced properties in different solvents and the chalcogen atomic electronegativity-associated photoexcitation, by time-dependent density functional theory (TDDFT) methods we primarily explore the intramolecular hydrogen bonding interactions and photo-induced charge redistribution behaviors. Via comparing geometrical data and the infrared (IR) spectral shifts-associated hydroxy moiety of ENF, we confirm that the intramolecular hydrogen bond O-H···O should be enhanced with facilitating an excited-state intramolecular proton-transfer (ESIPT) reaction. Particularly, the charge reorganization around hydrogen bonding moieties further reveals the tendency of ESIPT behavior. Combined with the construction of the potential energy surface and the search for reaction transition states, we finally confirmed the solvent-polarity-regulated behaviors as well as the chalcogen elements' electronegativity-dependent ESIPT mechanisms for the ENF fluorophore. We sincerely wish our work could accelerate the further development and applications of flavonoid derivatives.

15.
J Mol Model ; 30(7): 225, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913204

ABSTRACT

CONTEXT: Inspired by the excellent potential application prospects from the precisely controlled attributes displayed by fluorine-substituted-bis(salicylidene)-1,5-diaminonaphthalene (F-BSD) and its derivatives in the domains of photochemistry and photophysics, our present undertaking predominantly focuses on exploring the complexities of photo-induced excited state reactions for F-BSD fluorophores dissolved in solvents with diverse levels of polarity. Our simulations reveal that the excited state intramolecular double proton transfer (ESIDPT) reaction for F-BSD chemosensor can be significantly regulated by solvent polarity-dependent hydrogen bonding interactions and charge recombination induced by photoexcitation, which result from variations in geometries and vertical excitation charge reorganizations. By constructing potential energy surfaces (PESs), we also demonstrate that the stepwise ESIDPT reaction of F-BSD occurs with alternative dual intramolecular hydrogen bonds (O1-H2···N3 or O4-H5···N6). Interestingly, we affirm polar solvents should be conducive to the first-step of ESIDPT process, while nonpolar solvents are in favor of the second step. We sincerely hope solvent polarity-dependent ESIDPT behavior will pave the way for future design of novel luminescent materials. METHODS: The molecular geometries were optimized by DFT//TDDFT D3-B3LYP/TZVP theoretical level with IEFPCM solvent model in S0 and S1 states, respectively. This work also explores the energy level of target molecules with the computational vertical absorption spectra by TDDFT. All the simulations were carried out based on Gaussian 16 software. The core-valence bifurcation (CVB) indexes were obtained by using Multiwfn 3.8. Potential energy surfaces were constructed by the DFT//TDDFT D3-B3LYP/TZVP level based on restricted optimization, also the transition state (TS) forms were searched using the same level.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124585, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38850825

ABSTRACT

The studies of two isomers of ascorbic acid and their deuteroanalogues, presented in the paper, have been accomplished by vibrational spectroscopy methods and quantum-chemical simulations. The spectroscopic research of L-ascorbic and D-isoascorbic acids have been carried out by the infrared (IR) and Raman (R) techniques. On the basis of the obtained results the spectral interpretation of the hydrogen bonded groups of ascorbic acids has been performed. Car-Parrinello Molecular Dynamics (CPMD) and Density Functional Theory (DFT) have been employed to support spectroscopic experimental findings and shed light onto the bridged proton dynamics in the L- and D- isomers of ascorbic acids. The accurate assignments of the hydrogen bond modes have been accomplished with the application of deuterosubstitution, CPMD-solid state simulations and Potential Energy Distribution (PED) analysis. The spectral and structural results have shown that dependency ν(OH) = f(γ(OH)) is the most common for the OHO hydrogen bond, whereas dependency d(OO) = f(γ(OH)) differs as for the ionic and resonance assisted hydrogen bonds.

17.
Chempluschem ; : e202400314, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847398

ABSTRACT

Equilibrium dissociation energies De of the hydrogen-bonded complexes HAl⋅⋅⋅HX and HGa⋅⋅⋅HX (X=F, Cl, Br, I, CN, CCH, and CP) were calculated ab initio at the CCSD(T)-(F12c)/cc-pVDZ-F12 level of theory. The gradients of graphs of De versus the electrophilicity EHX of the Lewis acids HX yielded the nucleophilicities NM-X of the Group 13 atoms M in these diatomic molecules. Molecular electrostatic surfaces potentials reveal that H-Al and H-Ga are bi-nucleophilic and that the H ends of these H-M molecules are more nucleophilic than the M ends for M=Al and Ga, but not when M=boron. Therefore, the complexes M-H⋅⋅⋅HX were investigated using the same approach. It was concluded for M=Al and Ga that, for a given X, the M-H⋅⋅⋅HX complexes were more strongly bound than the corresponding H-M⋅⋅⋅HX complexes for both M=Al and Ga but the reverse order applies for M = boron. The effects of substituting the H atoms in the M-H molecules by F atoms and by methyl groups were investigated to measure the -I and +I inductive effects relative to H, respectively, on the nucleophilicities of the molecules M-H when M is acting as hydrogen-bond acceptor in complexes H-M⋅⋅⋅H-X.

18.
Food Chem ; 455: 139876, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823143

ABSTRACT

Enrofloxacin (ENR) residues in animal-derived food and water threaten human health. Simple, low-cost and on-site detection methods are urgently needed. Blue emitting carbon quantum dots (CQDs) and orange rhodamine B (RhB) were used as recognition and reference signals, respectively, to construct a ratiometric fluorescence sensor. After the addition of ENR, the color of the sensor changed from orange to blue because hydrogen bonding induced a considerable increase in CQDs fluorescence. Based on this mechanism, a simple and low cost on-site portable sensing platform was constructed, which integrated a stable UV light strip and a smartphone with voice-controlled phototaking function and an RGB app. The t-test results of spiked ENR recoveries for diluted milk, honey and drinking water revealed no significant differences between the ratiometric fluorescent sensor and portable sensing platform. Thus, this portable sensing platform provides a novel strategy for on-site quantification of quinolone antibiotics in foodstuffs and environmental water.


Subject(s)
Anti-Bacterial Agents , Enrofloxacin , Food Contamination , Hydrogen Bonding , Milk , Quantum Dots , Smartphone , Enrofloxacin/analysis , Quantum Dots/chemistry , Milk/chemistry , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Animals , Fluorescence , Water Pollutants, Chemical/analysis , Honey/analysis , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Drinking Water/analysis , Carbon/chemistry , Rhodamines/chemistry
19.
Int J Biol Macromol ; 273(Pt 2): 132892, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878921

ABSTRACT

TASK-3 generates a background K+ conductance which when inhibited by acidification depolarizes membrane potential and increases cell excitability. These channels sense pH by protonation of histidine residue H98, but recent evidence revealed that several other amino acid residues also contribute to TASK-3 pH sensitivity, suggesting that the pH sensitivity is determined by an intermolecular network. Here we use electrophysiology and molecular modeling to characterize the nature and requisite role(s) of multiple amino acids in pH sensing by TASK-3. Our results suggest that the pH sensor H98 and consequently pH sensitivity is influenced by remote amino acids that function as a hydrogen-bonding network to modulate ionic conductivity. Among the residues in the network, E30 and K79 are the most important for passing external signals near residue S31 to H98. The hydrogen-bond network plays a key role in selectivity or pH sensing in mTASK-3, and E30 and S31 in the network can modulate the conductive properties (E30) or reverse the pH sensitivity and selectivity of the channel (S31). Molecular dynamics simulations and pK1/2 calculation revealed that double mutants involving H98 + S31 primarily regulate the structure stability of the pore selectivity filter and pore loop regions, further strengthen the stability of the cradle suspension system, and alter the ionization state of E30 and K79, thereby preventing pore conformational change that normally occurs in response to varying extracellular pH. These results demonstrate that crucial residues in the hydrogen-bond network can remotely tune the pH sensing of mTASK-3 and may be a potential allosteric regulatory site for therapeutic molecule development.


Subject(s)
Hydrogen Bonding , Molecular Dynamics Simulation , Potassium Channels, Tandem Pore Domain , Hydrogen-Ion Concentration , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Humans , Mutation , Animals
20.
J Mol Graph Model ; 131: 108805, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838616

ABSTRACT

Aiming at shedding light on the molecular interactions in deep eutectic solvents (DESs), the DESs based on tetrabutylammonium bromide (TBAB) as hydrogen bond acceptor (HBA) and carboxylic acids (CAs) (formic acid (FA), oxalic acid (OA), and malonic acid (MA)) as hydrogen bond donor (HBD) were investigated by both experimental and theoretical techniques. The thermal behaviors of the prepared DESs were investigated by differential scanning calorimetry (DSC) method. In order to study the hydrogen bond formation between the DESs constituents, the FT-IR analysis was carried out. The large positive deviations of the iso solvent activity lines of ternary HBA + HBD + 2-propanol mixtures determined by the isopiestic technique from the semi-ideal behavior indicate that CAs interact strongly with TBAB and therefore they can form DESs. Molecular dynamics (MD) simulations were performed to present an atomic-scale image of the components and describe the microstructure of DESs. From the MD simulations, the radial distribution functions (RDFs), coordination numbers (CNs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) were calculated to investigate the interaction between the components and three-dimensional visualization of the DESs. The obtained results confirmed the importance of hydrogen bonds in the formation of TBAB/CAs DESs.


Subject(s)
Carboxylic Acids , Deep Eutectic Solvents , Hydrogen Bonding , Molecular Dynamics Simulation , Quaternary Ammonium Compounds , Quaternary Ammonium Compounds/chemistry , Carboxylic Acids/chemistry , Deep Eutectic Solvents/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Solvents/chemistry , Calorimetry, Differential Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...