Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Med Phys ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088750

ABSTRACT

BACKGROUND: Although cone beam computed tomography (CBCT) has lower resolution compared to planning CTs (pCT), its lower dose, higher high-contrast resolution, and shorter scanning time support its widespread use in clinical applications, especially in ensuring accurate patient positioning during the image-guided radiation therapy (IGRT) process. PURPOSE: While CBCT is critical to IGRT, CBCT image quality can be compromised by severe stripe and scattering artifacts. Tumor movement secondary to respiratory motion also decreases CBCT resolution. In order to improve the image quality of CBCT, we propose a Lung Diffusion Model (L-DM) framework. METHODS: Our proposed algorithm is based on a conditional diffusion model trained on pCT and deformed CBCT (dCBCT) image pairs to synthesize lung CT images from dCBCT images and benefit CBCT-based radiotherapy. dCBCT images were used as the constraint for the L-DM. The image quality and Hounsfield unit (HU) values of the synthetic CTs (sCT) images generated by the proposed L-DM were compared to three selected mainstream generation models. RESULTS: We verified our model in both an institutional lung cancer dataset and a selected public dataset. Our L-DM showed significant improvement in the four metrics of mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and structural similarity index measure (SSIM). In our institutional dataset, our proposed L-DM decreased the MAE from 101.47 to 37.87 HU and increased the PSNR from 24.97 to 29.89 dB, the NCC from 0.81 to 0.97, and the SSIM from 0.80 to 0.93. In the public dataset, our proposed L-DM decreased the MAE from 173.65 to 58.95 HU, while increasing the PSNR, NCC, and SSIM from 13.07 to 24.05 dB, 0.68 to 0.94, and 0.41 to 0.88, respectively. CONCLUSIONS: The proposed L-DM significantly improved sCT image quality compared to the pre-correction CBCT and three mainstream generative models. Our model can benefit CBCT-based IGRT and other potential clinical applications as it increases the HU accuracy and decreases the artifacts from input CBCT images.

2.
Biomed Phys Eng Express ; 10(5)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39137798

ABSTRACT

Investigating U-Net model robustness in medical image synthesis against adversarial perturbations, this study introduces RobMedNAS, a neural architecture search strategy for identifying resilient U-Net configurations. Through retrospective analysis of synthesized CT from MRI data, employing Dice coefficient and mean absolute error metrics across critical anatomical areas, the study evaluates traditional U-Net models and RobMedNAS-optimized models under adversarial attacks. Findings demonstrate RobMedNAS's efficacy in enhancing U-Net resilience without compromising on accuracy, proposing a novel pathway for robust medical image processing.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Retrospective Studies , Brain/diagnostic imaging
3.
Article in English | MEDLINE | ID: mdl-39178886

ABSTRACT

Some pathologies such as cancer and dementia require multiple imaging modalities to fully diagnose and assess the extent of the disease. Magnetic resonance imaging offers this kind of polyvalence, but examinations take time and can require contrast agent injection. The flexible synthesis of these imaging sequences based on the available ones for a given patient could help reduce scan times or circumvent the need for contrast agent injection. In this work, we propose a deep learning architecture that can perform the synthesis of all missing imaging sequences from any subset of available images. The network is trained adversarially, with the generator consisting of parallel 3D U-Net encoders and decoders that optimally combines their multi-resolution representations with a fusion operation learned by an attention network trained conjointly with the generator network. We compare our synthesis performance with 3D networks using other types of fusion and a comparable number of trainable parameters, such as the mean/variance fusion. In all synthesis scenarios except one, the synthesis performance of the network using attention-guided fusion was better than the other fusion schemes. We also inspect the encoded representations and the attention network outputs to gain insights into the synthesis process, and uncover desirable behaviors such as prioritization of specific modalities, flexible construction of the representation when important modalities are missing, and modalities being selected in regions where they carry sequence-specific information. This work suggests that a better construction of the latent representation space in hetero-modal networks can be achieved by using an attention network.

4.
J Med Imaging (Bellingham) ; 11(4): 044008, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39185475

ABSTRACT

Purpose: In brain diffusion magnetic resonance imaging (dMRI), the volumetric and bundle analyses of whole-brain tissue microstructure and connectivity can be severely impeded by an incomplete field of view (FOV). We aim to develop a method for imputing the missing slices directly from existing dMRI scans with an incomplete FOV. We hypothesize that the imputed image with a complete FOV can improve whole-brain tractography for corrupted data with an incomplete FOV. Therefore, our approach provides a desirable alternative to discarding the valuable brain dMRI data, enabling subsequent tractography analyses that would otherwise be challenging or unattainable with corrupted data. Approach: We propose a framework based on a deep generative model that estimates the absent brain regions in dMRI scans with an incomplete FOV. The model is capable of learning both the diffusion characteristics in diffusion-weighted images (DWIs) and the anatomical features evident in the corresponding structural images for efficiently imputing missing slices of DWIs in the incomplete part of the FOV. Results: For evaluating the imputed slices, on the Wisconsin Registry for Alzheimer's Prevention (WRAP) dataset, the proposed framework achieved PSNR b 0 = 22.397 , SSIM b 0 = 0.905 , PSNR b 1300 = 22.479 , and SSIM b 1300 = 0.893 ; on the National Alzheimer's Coordinating Center (NACC) dataset, it achieved PSNR b 0 = 21.304 , SSIM b 0 = 0.892 , PSNR b 1300 = 21.599 , and SSIM b 1300 = 0.877 . The proposed framework improved the tractography accuracy, as demonstrated by an increased average Dice score for 72 tracts ( p < 0.001 ) on both the WRAP and NACC datasets. Conclusions: Results suggest that the proposed framework achieved sufficient imputation performance in brain dMRI data with an incomplete FOV for improving whole-brain tractography, thereby repairing the corrupted data. Our approach achieved more accurate whole-brain tractography results with an extended and complete FOV and reduced the uncertainty when analyzing bundles associated with Alzheimer's disease.

5.
Front Neurol ; 15: 1383773, 2024.
Article in English | MEDLINE | ID: mdl-38988603

ABSTRACT

Background: Cross-modality image estimation can be performed using generative adversarial networks (GANs). To date, SPECT image estimation from another medical imaging modality using this technique has not been considered. We evaluate the estimation of SPECT from MRI and PET, and additionally assess the necessity for cross-modality image registration for GAN training. Methods: We estimated interictal SPECT from PET and MRI as a single-channel input, and as a multi-channel input to the GAN. We collected data from 48 individuals with epilepsy and converted them to 3D isotropic images for consistence across the modalities. Training and testing data were prepared in native and template spaces. The Pix2pix framework within the GAN network was adopted. We evaluated the addition of the structural similarity index metric to the loss function in the GAN implementation. Root-mean-square error, structural similarity index, and peak signal-to-noise ratio were used to assess how well SPECT images were able to be synthesised. Results: High quality SPECT images could be synthesised in each case. On average, the use of native space images resulted in a 5.4% percentage improvement in SSIM than the use of images registered to template space. The addition of structural similarity index metric to the GAN loss function did not result in improved synthetic SPECT images. Using PET in either the single channel or dual channel implementation led to the best results, however MRI could produce SPECT images close in quality. Conclusion: Synthesis of SPECT from MRI or PET can potentially reduce the number of scans needed for epilepsy patient evaluation and reduce patient exposure to radiation.

6.
Med Image Anal ; 97: 103276, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39068830

ABSTRACT

Radiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast. Still, it lacks electron density information, while cone beam CT (CBCT) lacks direct electron density calibration and is mainly used for patient positioning. Adopting MRI-only or CBCT-based adaptive radiotherapy eliminates the need for CT planning but presents challenges. Synthetic CT (sCT) generation techniques aim to address these challenges by using image synthesis to bridge the gap between MRI, CBCT, and CT. The SynthRAD2023 challenge was organized to compare synthetic CT generation methods using multi-center ground truth data from 1080 patients, divided into two tasks: (1) MRI-to-CT and (2) CBCT-to-CT. The evaluation included image similarity and dose-based metrics from proton and photon plans. The challenge attracted significant participation, with 617 registrations and 22/17 valid submissions for tasks 1/2. Top-performing teams achieved high structural similarity indices (≥0.87/0.90) and gamma pass rates for photon (≥98.1%/99.0%) and proton (≥97.3%/97.0%) plans. However, no significant correlation was found between image similarity metrics and dose accuracy, emphasizing the need for dose evaluation when assessing the clinical applicability of sCT. SynthRAD2023 facilitated the investigation and benchmarking of sCT generation techniques, providing insights for developing MRI-only and CBCT-based adaptive radiotherapy. It showcased the growing capacity of deep learning to produce high-quality sCT, reducing reliance on conventional CT for treatment planning.

7.
Med Image Anal ; 97: 103263, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39013205

ABSTRACT

The lack of large datasets and high-quality annotated data often limits the development of accurate and robust machine-learning models within the medical and surgical domains. In the machine learning community, generative models have recently demonstrated that it is possible to produce novel and diverse synthetic images that closely resemble reality while controlling their content with various types of annotations. However, generative models have not been yet fully explored in the surgical domain, partially due to the lack of large datasets and due to specific challenges present in the surgical domain such as the large anatomical diversity. We propose Surgery-GAN, a novel generative model that produces synthetic images from segmentation maps. Our architecture produces surgical images with improved quality when compared to early generative models thanks to the combination of channel- and pixel-level normalization layers that boost image quality while granting adherence to the input segmentation map. While state-of-the-art generative models often generate overfitted images, lacking diversity, or containing unrealistic artefacts such as cartooning; experiments demonstrate that Surgery-GAN is able to generate novel, realistic, and diverse surgical images in three different surgical datasets: cholecystectomy, partial nephrectomy, and radical prostatectomy. In addition, we investigate whether the use of synthetic images together with real ones can be used to improve the performance of other machine-learning models. Specifically, we use Surgery-GAN to generate large synthetic datasets which we then use to train five different segmentation models. Results demonstrate that using our synthetic images always improves the mean segmentation performance with respect to only using real images. For example, when considering radical prostatectomy, we can boost the mean segmentation performance by up to 5.43%. More interestingly, experimental results indicate that the performance improvement is larger in the set of classes that are under-represented in the training sets, where the performance boost of specific classes reaches up to 61.6%.

8.
Comput Med Imaging Graph ; 116: 102405, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38824716

ABSTRACT

Over the past decade, deep-learning (DL) algorithms have become a promising tool to aid clinicians in identifying fetal head standard planes (FHSPs) during ultrasound (US) examination. However, the adoption of these algorithms in clinical settings is still hindered by the lack of large annotated datasets. To overcome this barrier, we introduce FetalBrainAwareNet, an innovative framework designed to synthesize anatomically accurate images of FHSPs. FetalBrainAwareNet introduces a cutting-edge approach that utilizes class activation maps as a prior in its conditional adversarial training process. This approach fosters the presence of the specific anatomical landmarks in the synthesized images. Additionally, we investigate specialized regularization terms within the adversarial training loss function to control the morphology of the fetal skull and foster the differentiation between the standard planes, ensuring that the synthetic images faithfully represent real US scans in both structure and overall appearance. The versatility of our FetalBrainAwareNet framework is highlighted by its ability to generate high-quality images of three predominant FHSPs using a singular, integrated framework. Quantitative (Fréchet inception distance of 88.52) and qualitative (t-SNE) results suggest that our framework generates US images with greater variability compared to state-of-the-art methods. By using the synthetic images generated with our framework, we increase the accuracy of FHSP classifiers by 3.2% compared to training the same classifiers solely with real acquisitions. These achievements suggest that using our synthetic images to increase the training set could provide benefits to enhance the performance of DL algorithms for FHSPs classification that could be integrated in real clinical scenarios.

10.
Med Image Anal ; 97: 103246, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38943835

ABSTRACT

Accurate instrument segmentation in the endoscopic vision of minimally invasive surgery is challenging due to complex instruments and environments. Deep learning techniques have shown competitive performance in recent years. However, deep learning usually requires a large amount of labeled data to achieve accurate prediction, which poses a significant workload. To alleviate this workload, we propose an active learning-based framework to generate synthetic images for efficient neural network training. In each active learning iteration, a small number of informative unlabeled images are first queried by active learning and manually labeled. Next, synthetic images are generated based on these selected images. The instruments and backgrounds are cropped out and randomly combined with blending and fusion near the boundary. The proposed method leverages the advantage of both active learning and synthetic images. The effectiveness of the proposed method is validated on two sinus surgery datasets and one intraabdominal surgery dataset. The results indicate a considerable performance improvement, especially when the size of the annotated dataset is small. All the code is open-sourced at: https://github.com/HaonanPeng/active_syn_generator.

11.
Surv Ophthalmol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762072

ABSTRACT

Generative AI has revolutionized medicine over the past several years. A generative adversarial network (GAN) is a deep learning framework that has become a powerful technique in medicine, particularly in ophthalmology and image analysis. In this paper we review the current ophthalmic literature involving GANs, and highlight key contributions in the field. We briefly touch on ChatGPT, another application of generative AI, and its potential in ophthalmology. We also explore the potential uses for GANs in ocular imaging, with a specific emphasis on 3 primary domains: image enhancement, disease identification, and generating of synthetic data. PubMed, Ovid MEDLINE, Google Scholar were searched from inception to October 30, 2022 to identify applications of GAN in ophthalmology. A total of 40 papers were included in this review. We cover various applications of GANs in ophthalmic-related imaging including optical coherence tomography, orbital magnetic resonance imaging, fundus photography, and ultrasound; however, we also highlight several challenges, that resulted in the generation of inaccurate and atypical results during certain iterations. Finally, we examine future directions and considerations for generative AI in ophthalmology.

12.
Data Brief ; 54: 110474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38779413

ABSTRACT

Sustainability is an important topic in the field of materials science and civil engineering. In particular, concrete, as a building material, needs to be of high quality to ensure its durability. Damage and failure processes such as cracks in concrete can be evaluated non-destructively by micro-computed tomography. Cracks can be detected in the images, for example via edge-detection filters or machine learning models. To study the goodness, robustness, and generalizability of these methods, annotated 3d image data are of fundamental importance. However, data acquisition and, in particular, its annotation is often tedious and error-prone. To overcome data shortage, realistic data can be synthesized. The data set described in this article addresses the lack of freely available annotated 3d images of cracked concrete. To this end, seven concrete samples without cracks were scanned via micro-computed tomography. Realizations of a dedicated stochastic geometry model are discretized to binary images and morphologically transformed to mimic real crack structures. These are superimposed on the concrete images and simultaneously yield the label images that distinguish crack from non-crack regions. The data set contains 1 344 of such image pairs and includes a large variety of crack structures. The data set may be used for training machine learning models and for objectively testing crack segmentation methods.

13.
Comput Med Imaging Graph ; 115: 102387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703602

ABSTRACT

Dual-energy computed tomography (CT) is an excellent substitute for identifying bone marrow edema in magnetic resonance imaging. However, it is rarely used in practice owing to its low contrast. To overcome this problem, we constructed a framework based on deep learning techniques to screen for diseases using axial bone images and to identify the local positions of bone lesions. To address the limited availability of labeled samples, we developed a new generative adversarial network (GAN) that extends expressions beyond conventional augmentation (CA) methods based on geometric transformations. We theoretically and experimentally determined that combining the concepts of data augmentation optimized for GAN training (DAG) and Wasserstein GAN yields a considerably stable generation of synthetic images and effectively aligns their distribution with that of real images, thereby achieving a high degree of similarity. The classification model was trained using real and synthetic samples. Consequently, the GAN technique used in the diagnostic test had an improved F1 score of approximately 7.8% compared with CA. The final F1 score was 80.24%, and the recall and precision were 84.3% and 88.7%, respectively. The results obtained using the augmented samples outperformed those obtained using pure real samples without augmentation. In addition, we adopted explainable AI techniques that leverage a class activation map (CAM) and principal component analysis to facilitate visual analysis of the network's results. The framework was designed to suggest an attention map and scattering plot to visually explain the disease predictions of the network.


Subject(s)
Deep Learning , Edema , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Edema/diagnostic imaging , Radiography, Dual-Energy Scanned Projection/methods , Neural Networks, Computer , Bone Marrow Diseases/diagnostic imaging , Bone Marrow/diagnostic imaging , Algorithms
14.
Neural Netw ; 178: 106405, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815471

ABSTRACT

Automated detection of cervical abnormal cells from Thin-prep cytologic test (TCT) images is crucial for efficient cervical abnormal screening using computer-aided diagnosis systems. However, the construction of the detection model is hindered by the preparation of the training images, which usually suffers from issues of class imbalance and incomplete annotations. Additionally, existing methods often overlook the visual feature correlations among cells, which are crucial in cervical lesion cell detection as pathologists commonly rely on surrounding cells for identification. In this paper, we propose a distillation framework that utilizes a patch-level pre-training network to guide the training of an image-level detection network, which can be applied to various detectors without changing their architectures during inference. The main contribution is three-fold: (1) We propose the Balanced Pre-training Model (BPM) as the patch-level cervical cell classification model, which employs an image synthesis model to construct a class-balanced patch dataset for pre-training. (2) We design the Score Correction Loss (SCL) to enable the detection network to distill knowledge from the BPM model, thereby mitigating the impact of incomplete annotations. (3) We design the Patch Correlation Consistency (PCC) strategy to exploit the correlation information of extracted cells, consistent with the behavior of cytopathologists. Experiments on public and private datasets demonstrate the superior performance of the proposed distillation method, as well as its adaptability to various detection architectures.


Subject(s)
Neural Networks, Computer , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/diagnosis , Female , Diagnosis, Computer-Assisted/methods , Algorithms , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Cervix Uteri/cytology
15.
Med Phys ; 51(8): 5468-5478, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38588512

ABSTRACT

PURPOSE: Positron Emission Tomography (PET) has been a commonly used imaging modality in broad clinical applications. One of the most important tradeoffs in PET imaging is between image quality and radiation dose: high image quality comes with high radiation exposure. Improving image quality is desirable for all clinical applications while minimizing radiation exposure is needed to reduce risk to patients. METHODS: We introduce PET Consistency Model (PET-CM), an efficient diffusion-based method for generating high-quality full-dose PET images from low-dose PET images. It employs a two-step process, adding Gaussian noise to full-dose PET images in the forward diffusion, and then denoising them using a PET Shifted-window Vision Transformer (PET-VIT) network in the reverse diffusion. The PET-VIT network learns a consistency function that enables direct denoising of Gaussian noise into clean full-dose PET images. PET-CM achieves state-of-the-art image quality while requiring significantly less computation time than other methods. Evaluation with normalized mean absolute error (NMAE), peak signal-to-noise ratio (PSNR), multi-scale structure similarity index (SSIM), normalized cross-correlation (NCC), and clinical evaluation including Human Ranking Score (HRS) and Standardized Uptake Value (SUV) Error analysis shows its superiority in synthesizing full-dose PET images from low-dose inputs. RESULTS: In experiments comparing eighth-dose to full-dose images, PET-CM demonstrated impressive performance with NMAE of 1.278 ± 0.122%, PSNR of 33.783 ± 0.824 dB, SSIM of 0.964 ± 0.009, NCC of 0.968 ± 0.011, HRS of 4.543, and SUV Error of 0.255 ± 0.318%, with an average generation time of 62 s per patient. This is a significant improvement compared to the state-of-the-art diffusion-based model with PET-CM reaching this result 12× faster. Similarly, in the quarter-dose to full-dose image experiments, PET-CM delivered competitive outcomes, achieving an NMAE of 0.973 ± 0.066%, PSNR of 36.172 ± 0.801 dB, SSIM of 0.984 ± 0.004, NCC of 0.990 ± 0.005, HRS of 4.428, and SUV Error of 0.151 ± 0.192% using the same generation process, which underlining its high quantitative and clinical precision in both denoising scenario. CONCLUSIONS: We propose PET-CM, the first efficient diffusion-model-based method, for estimating full-dose PET images from low-dose images. PET-CM provides comparable quality to the state-of-the-art diffusion model with higher efficiency. By utilizing this approach, it becomes possible to maintain high-quality PET images suitable for clinical use while mitigating the risks associated with radiation. The code is availble at https://github.com/shaoyanpan/Full-dose-Whole-body-PET-Synthesis-from-Low-dose-PET-Using-Consistency-Model.


Subject(s)
Image Processing, Computer-Assisted , Models, Statistical , Positron-Emission Tomography , Radiation Dosage , Signal-To-Noise Ratio , Positron-Emission Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Diffusion , Whole Body Imaging/methods
16.
Comput Med Imaging Graph ; 114: 102365, 2024 06.
Article in English | MEDLINE | ID: mdl-38471330

ABSTRACT

PURPOSE: Improved integration and use of preoperative imaging during surgery hold significant potential for enhancing treatment planning and instrument guidance through surgical navigation. Despite its prevalent use in diagnostic settings, MR imaging is rarely used for navigation in spine surgery. This study aims to leverage MR imaging for intraoperative visualization of spine anatomy, particularly in cases where CT imaging is unavailable or when minimizing radiation exposure is essential, such as in pediatric surgery. METHODS: This work presents a method for deformable 3D-2D registration of preoperative MR images with a novel intraoperative long-length tomosynthesis imaging modality (viz., Long-Film [LF]). A conditional generative adversarial network is used to translate MR images to an intermediate bone image suitable for registration, followed by a model-based 3D-2D registration algorithm to deformably map the synthesized images to LF images. The algorithm's performance was evaluated on cadaveric specimens with implanted markers and controlled deformation, and in clinical images of patients undergoing spine surgery as part of a large-scale clinical study on LF imaging. RESULTS: The proposed method yielded a median 2D projection distance error of 2.0 mm (interquartile range [IQR]: 1.1-3.3 mm) and a 3D target registration error of 1.5 mm (IQR: 0.8-2.1 mm) in cadaver studies. Notably, the multi-scale approach exhibited significantly higher accuracy compared to rigid solutions and effectively managed the challenges posed by piecewise rigid spine deformation. The robustness and consistency of the method were evaluated on clinical images, yielding no outliers on vertebrae without surgical instrumentation and 3% outliers on vertebrae with instrumentation. CONCLUSIONS: This work constitutes the first reported approach for deformable MR to LF registration based on deep image synthesis. The proposed framework provides access to the preoperative annotations and planning information during surgery and enables surgical navigation within the context of MR images and/or dual-plane LF images.


Subject(s)
Imaging, Three-Dimensional , Surgery, Computer-Assisted , Child , Humans , Imaging, Three-Dimensional/methods , Spine/diagnostic imaging , Spine/surgery , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Algorithms , Surgery, Computer-Assisted/methods
17.
Comput Biol Med ; 172: 108296, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493600

ABSTRACT

PET/CT devices typically use CT images for PET attenuation correction, leading to additional radiation exposure. Alternatively, in a standalone PET imaging system, attenuation and scatter correction cannot be performed due to the absence of CT images. Therefore, it is necessary to explore methods for generating pseudo-CT images from PET images. However, traditional PET-to-CT synthesis models encounter conflicts in multi-objective optimization, leading to disparities between synthetic and real images in overall structure and texture. To address this issue, we propose a staged image generation model. Firstly, we construct a dual-stage generator, which synthesizes the overall structure and texture details of images by decomposing optimization objectives and employing multiple loss functions constraints. Additionally, in each generator, we employ improved deep perceptual skip connections, which utilize cross-layer information interaction and deep perceptual selection to effectively and selectively leverage multi-level deep information and avoid interference from redundant information. Finally, we construct a context-aware local discriminator, which integrates context information and extracts local features to generate fine local details of images and reasonably maintain the overall coherence of the images. Experimental results demonstrate that our approach outperforms other methods, with SSIM, PSNR, and FID metrics reaching 0.8993, 29.6108, and 29.7489, respectively, achieving the state-of-the-art. Furthermore, we conduct visual experiments on the synthesized pseudo-CT images in terms of image structure and texture. The results indicate that the pseudo-CT images synthesized in this study are more similar to real CT images, providing accurate structure information for clinical disease analysis and lesion localization.


Subject(s)
Positron Emission Tomography Computed Tomography , Radiation Exposure , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging
18.
Eur J Radiol ; 174: 111402, 2024 May.
Article in English | MEDLINE | ID: mdl-38461737

ABSTRACT

PURPOSE: To assess the feasibility and clinical value of synthetic diffusion kurtosis imaging (DKI) generated from diffusion weighted imaging (DWI) through multi-task reconstruction network (MTR-Net) for tumor response prediction in patients with locally advanced rectal cancer (LARC). METHODS: In this retrospective study, 120 eligible patients with LARC were enrolled and randomly divided into training and testing datasets with a 7:3 ratio. The MTR-Net was developed for reconstructing Dapp and Kapp images from apparent diffusion coefficient (ADC) images. Tumor regions were manually segmented on both true and synthetic DKI images. The synthetic image quality and manual segmentation agreement were quantitatively assessed. The support vector machine (SVM) classifier was used to construct radiomics models based on the true and synthetic DKI images for pathological complete response (pCR) prediction. The prediction performance for the models was evaluated by the receiver operating characteristic (ROC) curve analysis. RESULTS: The mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) for tumor regions were 0.212, 24.278, and 0.853, respectively, for the synthetic Dapp images and 0.516, 24.883, and 0.804, respectively, for the synthetic Kapp images. The Dice similarity coefficient (DSC), positive predictive value (PPV), sensitivity (SEN), and Hausdorff distance (HD) for the manually segmented tumor regions were 0.786, 0.844, 0.755, and 0.582, respectively. For predicting pCR, the true and synthetic DKI-based radiomics models achieved area under the curve (AUC) values of 0.825 and 0.807 in the testing datasets, respectively. CONCLUSIONS: Generating synthetic DKI images from DWI images using MTR-Net is feasible, and the efficiency of synthetic DKI images in predicting pCR is comparable to that of true DKI images.


Subject(s)
Neoplasms, Second Primary , Rectal Neoplasms , Humans , Retrospective Studies , Neoadjuvant Therapy , Diffusion Magnetic Resonance Imaging/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Chemoradiotherapy
19.
Phys Med Biol ; 69(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38537289

ABSTRACT

Objective.Four-dimensional computed tomography (4DCT) imaging consists in reconstructing a CT acquisition into multiple phases to track internal organ and tumor motion. It is commonly used in radiotherapy treatment planning to establish planning target volumes. However, 4DCT increases protocol complexity, may not align with patient breathing during treatment, and lead to higher radiation delivery.Approach.In this study, we propose a deep synthesis method to generate pseudo respiratory CT phases from static images for motion-aware treatment planning. The model produces patient-specific deformation vector fields (DVFs) by conditioning synthesis on external patient surface-based estimation, mimicking respiratory monitoring devices. A key methodological contribution is to encourage DVF realism through supervised DVF training while using an adversarial term jointly not only on the warped image but also on the magnitude of the DVF itself. This way, we avoid excessive smoothness typically obtained through deep unsupervised learning, and encourage correlations with the respiratory amplitude.Main results.Performance is evaluated using real 4DCT acquisitions with smaller tumor volumes than previously reported. Results demonstrate for the first time that the generated pseudo-respiratory CT phases can capture organ and tumor motion with similar accuracy to repeated 4DCT scans of the same patient. Mean inter-scans tumor center-of-mass distances and Dice similarity coefficients were 1.97 mm and 0.63, respectively, for real 4DCT phases and 2.35 mm and 0.71 for synthetic phases, and compares favorably to a state-of-the-art technique (RMSim).Significance.This study presents a deep image synthesis method that addresses the limitations of conventional 4DCT by generating pseudo-respiratory CT phases from static images. Although further studies are needed to assess the dosimetric impact of the proposed method, this approach has the potential to reduce radiation exposure in radiotherapy treatment planning while maintaining accurate motion representation. Our training and testing code can be found athttps://github.com/cyiheng/Dynagan.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/radiotherapy , Movement , Motion , Four-Dimensional Computed Tomography/methods , Respiration , Radiotherapy Planning, Computer-Assisted/methods
20.
Cell Rep Med ; 5(3): 101463, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38471502

ABSTRACT

[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.


Subject(s)
Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Tomography, X-Ray Computed , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL