Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Life Sci ; 351: 122816, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38862064

ABSTRACT

AIMS: Parkinson's disease (PD) remains a substantial clinical challenge due to the progressive loss of midbrain dopaminergic (DA) neurons in nigrostriatal pathway. In this study, human amniotic epithelial stem cells (hAESCs)-derived dopaminergic neuron-like cells (hAESCs-DNLCs) were generated, with the aim of providing new therapeutic approach to PD. MATERIALS AND METHODS: hAESCs, which were isolated from discarded placentas, were induced to differentiate into hAESCs-DNLCs by following a "two stages" induction protocol. The differentiation efficiency was assessed by quantitative real-time PCR (qRT-PCR), immunocytochemistry (ICC), and ELISA. Immunogenicity, cell viability and tumorigenicity of hAESCs-DNLC were analyzed before in vivo experiments. Subsequently, hAESCs-DNLCs were transplanted into PD rats, behavioral tests were monitored after graft, and the regeneration of DA neurons was detected by immunohistochemistry (IHC). Furthermore, to trace hAESCs-DNLCs in vivo, cells were pre-labeled with PKH67 green fluorescence. KEY FINDINGS: hAESCs were positive for pluripotent markers and highly expressed neural stem cells (NSCs) markers. Based on this, we established an induction method reliably generates hAESCs-DNLCs, which was evidenced by epithelium-to-neuron morphological changes, elevated expressions of neuronal and DA neuronal markers, and increased secretion of dopamine. Moreover, hAESCs-DNLCs maintained high cell viability, no tumorigenicity and low immunogenicity, suggesting hAESCs-DNLCs an attractive implant for PD therapy. Transplantation of hAESCs-DNLCs into PD rats significantly ameliorated motor disorders, as well as enhanced the reinnervation of TH+ DA neurons in nigrostriatal pathway. SIGNIFICANCE: Our study has demonstrated evident therapeutic effects of hAESCs-DNLCs, and provides a safe and promising solution for PD.


Subject(s)
Amnion , Cell Differentiation , Dopaminergic Neurons , Parkinson Disease , Rats, Sprague-Dawley , Animals , Dopaminergic Neurons/metabolism , Rats , Humans , Amnion/cytology , Parkinson Disease/therapy , Female , Epithelial Cells/metabolism , Disease Models, Animal , Male , Neural Stem Cells/transplantation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Pregnancy , Stem Cell Transplantation/methods , Cells, Cultured
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732137

ABSTRACT

Gonadotoxic agents could impair spermatogenesis and may lead to male infertility. The present study aimed to evaluate the effect of IL-1ß on the development of spermatogenesis from cells isolated from seminiferous tubules (STs) of normal and busulfan-treated immature mice in vitro. Cells were cultured in a 3D in vitro culture system for 5 weeks. We examined the development of cells from the different stages of spermatogenesis by immunofluorescence staining or qPCR analyses. Factors of Sertoli and Leydig cells were examined by qPCR analysis. We showed that busulfan (BU) treatment significantly reduced the expression of testicular IL-1ß in the treated mice compared to the control group (CT). Cultures of cells from normal and busulfan-treated immature mice induced the development of pre-meiotic (Vasa), meiotic (Boule), and post-meiotic (acrosin) cells. However, the percentage of developed Boule and acrosin cells was significantly lower in cultures of busulfan-treated mice compared to normal mice. Adding IL-1ß to both cultures significantly increased the percentages of Vasa, Boule, and acrosin cells compared to their controls. However, the percentage of Boule and acrosin cells was significantly lower from cultures of busulfan-treated mice that were treated with IL-1ß compared to cultures treated with IL-1ß from normal mice. Furthermore, addition of IL-1ß to cultures from normal mice significantly increased only the expression of androgen receptor and transferrin but no other factors of Sertoli cells compared to their CT. However, the addition of IL-1ß to cultures from busulfan-treated mice significantly increased only the expression of androgen-binding protein and the FSH receptor compared to their CT. Adding IL-1ß to cultures of normal mice did not affect the expression of 3ßHSD compared to the CT, but it significantly reduced its expression in cultures from busulfan-treated mice compared to the CT. Our findings demonstrate the development of different stages of spermatogenesis in vitro from busulfan-treated mice and that IL-1ß could potentiate this development in vitro.


Subject(s)
Busulfan , Interleukin-1beta , Spermatogenesis , Animals , Busulfan/pharmacology , Spermatogenesis/drug effects , Male , Interleukin-1beta/metabolism , Mice , Sertoli Cells/metabolism , Sertoli Cells/drug effects , Sertoli Cells/cytology , Testis/metabolism , Testis/drug effects , Testis/cytology , Leydig Cells/metabolism , Leydig Cells/drug effects , Seminiferous Tubules/drug effects , Seminiferous Tubules/metabolism , Cells, Cultured
3.
Front Cell Dev Biol ; 12: 1383928, 2024.
Article in English | MEDLINE | ID: mdl-38694820

ABSTRACT

The generation of iPSC-derived hepatocyte-like cells (HLCs) is a powerful tool for studying liver diseases, their therapy as well as drug development. iPSC-derived disease models benefit from their diverse origin of patients, enabling the study of disease-associated mutations and, when considering more than one iPSC line to reflect a more diverse genetic background compared to immortalized cell lines. Unfortunately, the use of iPSC-derived HLCs is limited due to their lack of maturity and a rather fetal phenotype. Commercial kits and complicated 3D-protocols are cost- and time-intensive and hardly useable for smaller working groups. In this study, we optimized our previously published protocol by fine-tuning the initial cell number, exchanging antibiotics and basal medium composition and introducing the small molecule forskolin during the HLC maturation step. We thereby contribute to the liver research field by providing a simple, cost- and time-effective 2D differentiation protocol. We generate functional HLCs with significantly increased HLC hallmark gene (ALB, HNF4α, and CYP3A4) and protein (ALB) expression, as well as significantly elevated inducible CYP3A4 activity.

4.
Chem Biol Interact ; 395: 111011, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38653352

ABSTRACT

Immune homeostasis is key to guarantee that the immune system can elicit effector functions against pathogens and at the same time raise tolerance towards other antigens. A disturbance of this delicate balance may underlie or at least trigger pathologies. Endocrine disrupting chemicals (EDCs) are increasingly recognized as risk factors for immune dysregulation. However, the immunotoxic potential of specific EDCs and their mixtures is still poorly understood. Thus, we aimed to investigate the effect of bisphenol A (BPA) and benzophenone-3 (BP-3), alone and in combination, on in vitro differentiation of T helper (TH)17 cells and regulatory T (Treg) cells. Naïve T cells were isolated from mouse lymphoid tissues and differentiated into the respective TH population in the presence of 0.001-10 µM BP-3 and/or 0.01-100 µM BPA. Cell viability, proliferation and the expression of TH lineage specific transcription factors and cytokines was measured by flow cytometry and CBA/ELISA. Moreover, the transcription of hormone receptors as direct targets of EDCs was quantified by RT-PCR. We found that the highest BPA concentration adversely affected TH cell viability and proliferation. Moreover, the general differentiation potential of both TH populations was not altered in the presence of both EDCs. However, EDC exposure modulated the emergence of TH17 and Treg cell intermediate states. While BPA and BP-3 promoted the development of TH1-like TH17 cells under TH17-differentiating conditions, TH2-like Treg cells occurred under Treg polarization. Interestingly, differential effects could be observed in mixtures of the two tested compounds compared with the individual compounds. Notably, estrogen receptor ß expression was decreased under TH17-differentiating conditions in the presence of BPA and BP-3 as mixture. In conclusion, our study provides solid evidence for both, the immune disruptive potential and the existence of cumulative effects of real nature EDC mixtures on T cell in vitro differentiation.


Subject(s)
Benzhydryl Compounds , Benzophenones , Cell Differentiation , Phenols , T-Lymphocytes, Regulatory , Th17 Cells , Phenols/toxicity , Phenols/pharmacology , Animals , Benzhydryl Compounds/toxicity , Benzophenones/pharmacology , Benzophenones/toxicity , Cell Differentiation/drug effects , Mice , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/drug effects , Th17 Cells/cytology , Th17 Cells/metabolism , Cell Survival/drug effects , Cytokines/metabolism , Cell Proliferation/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/pharmacology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/cytology , Cells, Cultured
5.
Biomimetics (Basel) ; 9(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38667264

ABSTRACT

In recent years, polyelectrolytes have been successfully used as an alternative to non-collagenous proteins to promote interfibrillar biomineralization, to reproduce the spatial intercalation of mineral phases among collagen fibrils, and to design bioinspired scaffolds for hard tissue regeneration. Herein, hybrid nanofibers were fabricated via electrospinning, by using a mixture of Poly ɛ-caprolactone (PCL) and cationic cellulose derivatives, i.e., cellulose-bearing imidazolium tosylate (CIMD). The obtained fibers were self-assembled with Sodium Alginate (SA) by polyelectrolyte interactions with CIMD onto the fiber surface and, then, treated with simulated body fluid (SBF) to promote the precipitation of calcium phosphate (CaP) deposits. FTIR analysis confirmed the presence of SA and CaP, while SEM equipped with EDX analysis mapped the calcium phosphate constituent elements, estimating an average Ca/P ratio of about 1.33-falling in the range of biological apatites. Moreover, in vitro studies have confirmed the good response of mesenchymal cells (hMSCs) on biomineralized samples, since day 3, with a significant improvement in the presence of SA, due to the interaction of SA with CaP deposits. More interestingly, after a decay of metabolic activity on day 7, a relevant increase in cell proliferation can be recognized, in agreement with the beginning of the differentiation phase, confirmed by ALP results. Antibacterial tests performed by using different bacteria populations confirmed that nanofibers with an SA-CIMD complex show an optimal inhibitory response against S. mutans, S. aureus, and E. coli, with no significant decay due to the effect of CaP, in comparison with non-biomineralized controls. All these data suggest a promising use of these biomineralized fibers as bioinspired membranes with efficient antimicrobial and osteoconductive cues suitable to support bone healing/regeneration.

6.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645166

ABSTRACT

Islet transplantation for treatment of diabetes is limited by availability of donor islets and requirements for immunosuppression. Stem cell-derived islets might circumvent these issues. SC-islets effectively control glucose metabolism post transplantation, but do not yet achieve full function in vitro with current published differentiation protocols. We aimed to identify markers of mature subpopulations of SC-ß cells by studying transcriptional changes associated with in vivo maturation of SC-ß cells using RNA-seq and co-expression network analysis. The ß cell-specific hormone islet amyloid polypeptide (IAPP) emerged as the top candidate to be such a marker. IAPP+ cells had more mature ß cell gene expression and higher cellular insulin content than IAPP- cells in vitro. IAPP+ INS+ cells were more stable in long-term culture than IAPP- INS+ cells and retained insulin expression after transplantation into mice. Finally, we conducted a small molecule screen to identify compounds that enhance IAPP expression. Aconitine up-regulated IAPP and could help to optimize differentiation protocols.

7.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396838

ABSTRACT

Spermatogenesis is the process of proliferation and differentiation of spermatogonial cells to meiotic and post-meiotic stages and sperm generation. Normal spermatogenesis occurs in vivo at 34 °C to 35 °C, and high temperatures are known to cause male infertility. The aim of the present study was to examine the effect of temperature (35 °C compared to 37 °C) on the viability/apoptosis of developed cells, on the development of different stages of spermatogenesis in 3D in vitro culture conditions, and the functionality of Sertoli cells under these conditions. We used isolated cells from seminiferous tubules of sexually immature mice. The cells were cultured in methylcellulose (as a three-dimensional (3D) in vitro culture system) and incubated in a CO2 incubator at 35 °C or 37 °C. After two to six weeks, the developed cells and organoids were collected and examined for cell viability and apoptosis markers. The development of different stages of spermatogenesis was evaluated by immunofluorescence staining or qPCR analysis using specific antibodies or primers, respectively, for cells at each stage. Factors that indicate the functionality of Sertoli cells were assessed by qPCR analysis. The developed organoids were examined by a confocal microscope. Our results show that the percentages and/or the expression levels of the developed pre-meiotic, meiotic, and post-meiotic cells were significantly higher at 35 °C compared to those at 37 °C, including the expression levels of the androgen receptor, the FSH receptor, transferrin, the androgen-binding protein (ABP), and the glial-derived nerve growth factor (GDNF) which were similarly significantly higher at 35 °C than at 37 °C. The percentages of apoptotic cells (according to acridine orange staining) and the expression levels of BAX, FAS, and CASPAS 3 were significantly higher in cultures incubated at 37 °C compared to those incubated at 35 °C. These findings support the in vivo results regarding the negative effect of high temperatures on the process of spermatogenesis and suggest a possible effect of high temperatures on the viability/apoptosis of spermatogenic cells. In addition, increasing the temperature in vitro also impaired the functionality of Sertoli cells. These findings may deepen our understanding of the mechanisms behind optimal conditions for normal spermatogenesis in vivo and in vitro.


Subject(s)
Sertoli Cells , Testis , Male , Mice , Animals , Sertoli Cells/metabolism , Testis/metabolism , Temperature , Semen , Spermatogenesis , Spermatogonia/metabolism
8.
Cells ; 13(2)2024 01 11.
Article in English | MEDLINE | ID: mdl-38247824

ABSTRACT

The differentiation of ESCs into cardiomyocytes in vitro is an excellent and reliable model system for studying normal cardiomyocyte development in mammals, modeling cardiac diseases, and for use in drug screening. Mouse ESC differentiation still provides relevant biological information about cardiac development. However, the current methods for efficiently differentiating ESCs into cardiomyocytes are limiting. Here, we describe the "WNT Switch" method to efficiently commit mouse ESCs into cardiomyocytes using the small molecule WNT signaling modulators CHIR99021 and XAV939 in vitro. This method significantly improves the yield of beating cardiomyocytes, reduces number of treatments, and is less laborious.


Subject(s)
Eye Diseases, Hereditary , Mouse Embryonic Stem Cells , Myocytes, Cardiac , Retinal Degeneration , Vision Disorders , Animals , Mice , Cell Differentiation , Drug Evaluation, Preclinical , Mammals
9.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076957

ABSTRACT

Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-ß signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.

10.
Cells ; 12(24)2023 12 18.
Article in English | MEDLINE | ID: mdl-38132179

ABSTRACT

Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson's disease. In the present study, we report the generation of a human induced pluripotent stem cell (iPSC) line capable of purifying and tracing nascent midbrain dopaminergic progenitors and their differentiated progeny via the expression of a Blue Fluorescent Protein (BFP). This was achieved by CRISPR/Cas9-assisted knock-in of BFP and Cre into the safe harbour locus AAVS1 and an early midbrain dopaminergic lineage marker gene LMX1A, respectively. Immunocytochemical analysis and single-cell RNA sequencing of iPSC-derived neural cultures confirm developmental recapitulation of the human fetal midbrain and high-quality midbrain cells. By modelling Parkinson's disease-related drug toxicity using 1-Methyl-4-phenylpyridinium (MPP+), we showed a preferential reduction of BFP+ cells, a finding demonstrated independently by cell death assays and single-cell transcriptomic analysis of MPP+ treated neural cultures. Together, these results highlight the importance of disease-relevant cell types in stem cell modelling.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Gene Expression Profiling , Mesencephalon
11.
Bioimpacts ; 13(4): 289-300, 2023.
Article in English | MEDLINE | ID: mdl-37645025

ABSTRACT

Introduction: Pluripotent stem cells have been used by various researchers to differentiate and characterize endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) for the clinical treatment of vascular injuries. Studies continue to differentiate and characterize the cells with higher vascularization potential and low risk of malignant transformation to the recipient. Unlike previous studies, this research aimed to differentiate induced pluripotent stem (iPS) cells into endothelial progenitor cells (EPCs) and VSMCs using a step-wise technique. This was achieved by elucidating the spatio-temporal expressions of the stage-specific genes and proteins during the differentiation process. The presence of highly expressed oncogenes in iPS cells was also investigated during the differentiation period. Methods: Induced PS cells were differentiated into lateral mesoderm cells (Flk1+). The Flk1+ populations were isolated on day 5.5 of the mesodermal differentiation period. Flk1+ cells were further differentiated into EPCs and VSMCs using VEGF165 and platelet-derived growth factor-BB (PDGF-BB), respectively, and then characterized using gene expression levels, immunocytochemistry (ICC), and western blot (WB) methods. During the differentiation steps, the expression levels of the marker genes and proto-oncogenic Myc and Klf4 genes were simultaneously studied. Results: The optimal time for the isolation of Flk1+ cells was on day 5.5. EPCs and VSMCs were differentiated from Flk1+ cells and characterized with EPC-specific markers, including Kdr, Pecam1, CD133, Cdh5, Efnb2, Vcam1; and VSMC-specific markers, including Acta2, Cnn1, Des, and Myh11. Differentiated cells were validated based on their temporal gene expressions, protein synthesis, and localization at certain time points. Significant decreases in Myc and Klf4 gene expression levels were observed during the EPCs and VSMC differentiation period. Conclusion: EPCs and VSMCs were successfully differentiated from iPS cells and characterized by gene expression levels, ICC, and WB. We observed significant decreases in oncogene expression levels in the differentiated EPCs and VSMCs. In terms of safety, the described methodology provided a better safety margin. EPCs and VSMC obtained using this method may be good candidates for transplantation and vascular regeneration.

12.
Dev Cell ; 58(21): 2292-2308.e6, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37591246

ABSTRACT

Basic helix-loop-helix genes, particularly proneural genes, are well-described triggers of cell differentiation, yet information on their dynamics is limited, notably in human development. Here, we focus on Neurogenin 3 (NEUROG3), which is crucial for pancreatic endocrine lineage initiation. By monitoring both NEUROG3 gene expression and protein in single cells using a knockin dual reporter in 2D and 3D models of human pancreas development, we show an approximately 2-fold slower expression of human NEUROG3 than that of the mouse. We observe heterogeneous peak levels of NEUROG3 expression and reveal through long-term live imaging that both low and high NEUROG3 peak levels can trigger differentiation into hormone-expressing cells. Based on fluorescence intensity, we statistically integrate single-cell transcriptome with dynamic behaviors of live cells and propose a data-mapping methodology applicable to other contexts. Using this methodology, we identify a role for KLK12 in motility at the onset of NEUROG3 expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Nerve Tissue Proteins , Humans , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pancreas/metabolism , Cell Differentiation/genetics , Endocrine System/metabolism
13.
J Pathol ; 261(2): 139-155, 2023 10.
Article in English | MEDLINE | ID: mdl-37555362

ABSTRACT

Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols , Keratin-19/genetics , Keratin-19/metabolism , DNA Methylation , Proto-Oncogene Proteins p21(ras)/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Gene Expression , Pancreatic Neoplasms
14.
Stem Cell Res Ther ; 14(1): 189, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507794

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS: With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS: Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS: The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.


Subject(s)
Brain Tissue Transplantation , Human Embryonic Stem Cells , Huntington Disease , Rats , Animals , Humans , Huntington Disease/therapy , Corpus Striatum/physiology , Neurons , Disease Models, Animal
15.
Cell Rep Methods ; 3(5): 100466, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37323565

ABSTRACT

Orbital shaker-based suspension culture systems have been in widespread use for differentiating human pluripotent stem cell (hPSC)-derived pancreatic progenitors toward islet-like clusters during endocrine induction stages. However, reproducibility between experiments is hampered by variable degrees of cell loss in shaking cultures, which contributes to variable differentiation efficiencies. Here, we describe a 96-well-based static suspension culture method for differentiation of pancreatic progenitors into hPSC-islets. Compared with shaking culture, this static 3D culture system induces similar islet gene expression profiles during differentiation processes but significantly reduces cell loss and improves cell viability of endocrine clusters. This static culture method results in more reproducible and efficient generation of glucose-responsive, insulin-secreting hPSC-islets. The successful differentiation and well-to-well consistency in 96-well plates also provides a proof of principle that the static 3D culture system can serve as a platform for small-scale compound screening experiments as well as facilitating further protocol development.


Subject(s)
Islets of Langerhans , Pluripotent Stem Cells , Humans , Insulin/metabolism , Reproducibility of Results , Cell Differentiation , Insulin, Regular, Human/metabolism
16.
Front Cell Dev Biol ; 11: 1166351, 2023.
Article in English | MEDLINE | ID: mdl-37325555

ABSTRACT

Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.

17.
Stem Cells ; 41(8): 775-791, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37228023

ABSTRACT

Cytochrome P450 3A4 (CYP3A4) is involved in first-pass metabolism in the small intestine and is heavily implicated in oral drug bioavailability and pharmacokinetics. We previously reported that vitamin D3 (VD3), a known CYP enzyme inducer, induces functional maturation of iPSC-derived enterocyte-like cells (iPSC-ent). Here, we identified a Notch activator and CYP modulator valproic acid (VPA), as a promotor for the maturation of iPSC-ent. We performed bulk RNA sequencing to investigate the changes in gene expression during the differentiation and maturation periods of these cells. VPA potentiated gene expression of key enterocyte markers ALPI, FABP2, and transporters such as SULT1B1. RNA-sequencing analysis further elucidated several function-related pathways involved in fatty acid metabolism, significantly upregulated by VPA when combined with VD3. Particularly, VPA treatment in tandem with VD3 significantly upregulated key regulators of enterohepatic circulation, such as FGF19, apical bile acid transporter SLCO1A2 and basolateral bile acid transporters SLC51A and SLC51B. To sum up, we could ascertain the genetic profile of our iPSC-ent cells to be specialized toward fatty acid absorption and metabolism instead of transporting other nutrients, such as amino acids, with the addition of VD3 and VPA in tandem. Together, these results suggest the possible application of VPA-treated iPSC-ent for modelling enterohepatic circulation.


Subject(s)
Induced Pluripotent Stem Cells , Valproic Acid , Humans , Valproic Acid/pharmacology , Valproic Acid/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Induced Pluripotent Stem Cells/metabolism , Enterocytes/metabolism , Cells, Cultured
18.
Methods Mol Biol ; 2655: 211-220, 2023.
Article in English | MEDLINE | ID: mdl-37212999

ABSTRACT

Several studies highlighted the importance of the polycomb repressive complex 2 (PRC2) already at the beginning of development. Although the crucial function of PRC2 in regulating lineage commitment and cell-fate specification has been well-established, the in vitro study of the exact mechanisms for which H3K27me3 is indispensable for proper differentiation is still challenging. In this chapter, we report a well-established and reproducible differentiation protocol to generate striatal medium spiny neurons as a tool to explore PRC2 role in brain development.


Subject(s)
Polycomb Repressive Complex 2 , Polycomb Repressive Complex 2/genetics , Cell Differentiation/physiology
19.
Theranostics ; 13(6): 1949-1973, 2023.
Article in English | MEDLINE | ID: mdl-37064874

ABSTRACT

Rationale: Pancreatic lineage specification follows the formation of tripotent pancreatic progenitors (PPs). Current protocols rebuilding PPs in vitro have an endocrine lineage bias and are mostly based on PDX1/NKX6-1 coexpression neglecting other markers decisive for PP heterogeneity and lineage potential. However, true tripotent PPs are of utmost interest to study also exocrine disorders such as pancreatic cancer and to simultaneously generate all three pancreatic lineages from the same ancestor. Methods: Here, we performed a comprehensive compound testing to advance the generation of multipotent progenitors, which were further characterized for their trilineage potential in vitro and in vivo. The heterogeneity and cell-cell communication across the PP subpopulations were analyzed via single-cell transcriptomics. Results: We introduce a novel PP differentiation platform based on a comprehensive compound screening with an advanced design of experiments computing tool to reduce impurities and to increase Glycoprotein-2 expression and subsequent trilineage potential. Superior PP tripotency was proven in vitro by the generation of acinar, endocrine, and ductal cells as well as in vivo upon orthotopic transplantation revealing all three lineages at fetal maturation level. GP2 expression levels at PP stage ascribed varying pancreatic lineage potential. Intermediate and high GP2 levels were superior in generating endocrine and duct-like organoids (PDLO). FACS-based purification of the GP2high PPs allowed the generation of pancreatic acinar-like organoids (PALO) with proper morphology and expression of digestive enzymes. scRNA-seq confirmed multipotent identity, positioned the GP2/PDX1/NKX6-1high population next to human fetal tip and trunk progenitors and identified novel ligand-receptor (LR) interactions in distinct PP subpopulations. LR validation experiments licensed midkine and VEGF signaling to increase markers labelling the single cell clusters with high GP2 expression. Conclusion: In this study, we guide human pluripotent stem cells into multipotent pancreatic progenitors. This common precursor population, which has the ability to mature into acinar, ductal and functional ß-cells, serves as a basis for studying developmental processes and deciphering early cancer formation in a cell type-specific context. Using single-cell RNA sequencing and subsequent validation studies, we were able to dissect PP heterogeneity and specific cell-cell communication signals.


Subject(s)
Insulin-Secreting Cells , Pluripotent Stem Cells , Humans , Pancreas/metabolism , Cell Differentiation/physiology , Insulin-Secreting Cells/metabolism , Organoids
20.
Methods Mol Biol ; 2618: 121-132, 2023.
Article in English | MEDLINE | ID: mdl-36905513

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells controlling the activation of T cells and thus regulating adaptive immune response against pathogens or tumors. Modeling human DC differentiation and function is crucial for our understanding of immune response and the development of new therapies. Considering DC rarity in human blood, in vitro systems allowing their faithful generation are needed. This chapter will describe a DC differentiation method based on the co-culture of CD34+ cord blood progenitors together with mesenchymal stromal cells (eMSCs) engineered to deliver growth factors and chemokines.


Subject(s)
Dendritic Cells , Fetal Blood , Humans , Cells, Cultured , Antigens, CD34/metabolism , Cell Differentiation , Cell Adhesion Molecules
SELECTION OF CITATIONS
SEARCH DETAIL