Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999794

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.


Subject(s)
Colon , Diet, Western , Enterohemorrhagic Escherichia coli , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Diet, Western/adverse effects , Colon/microbiology , Feces/microbiology , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Fatty Acids, Volatile/metabolism , Bile Acids and Salts/metabolism , Escherichia coli O157
2.
Bioengineered ; 15(1): 2325713, 2024 12.
Article in English | MEDLINE | ID: mdl-38471972

ABSTRACT

Different dog sizes are associated with variations in large intestinal physiology including gut microbiota, which plays a key role in animal health. This study aims to evaluate, using the CANIM-ARCOL (Canine Mucosal Artificial Colon), the relative importance of gut microbes versus physicochemical and nutritional parameters of the canine colonic environment in shaping microbiota structure and functions. CANIM-ARCOL was set up to reproduce nutrient availability, bile acid profiles, colonic pH, and transit time from small, medium, or large dogs according to in vivo data, while bioreactors were all inoculated with a fecal sample collected from medium size dogs (n = 2). Applying different dog size parameters resulted in a positive association between size and gas or SCFA production, as well as distinct microbiota profiles as revealed by 16S Metabarcoding. Comparisons with in vivo data from canine stools and previous in vitro results obtained when CANIM-ARCOL was inoculated with fecal samples from three dog sizes revealed that environmental colonic parameters were sufficient to drive microbiota functions. However, size-related fecal microbes were necessary to accurately reproduce in vitro the colonic ecosystem of small, medium, and large dogs. For the first time, this study provides mechanistic insights on which parameters from colonic ecosystem mainly drive canine microbiota in relation to dog size. The CANIM-ARCOL can be used as a relevant in vitro platform to unravel interactions between food or pharma compounds and canine colonic microbiota, under different dog size conditions. The potential of the model will be extended soon to diseased situations (e.g. chronic enteropathies or obesity).


Environmental colonic parameters (such as nutrient availability, transit time, or pH) were sufficient to drive microbiota at the functional level in the CANIM-ARCOL in vitro gut model.Size-related fecal microbes were necessary to accurately reproduce the colonic environment of small, medium, and large dogs.CANIM-ARCOL model can be used as a relevant in vitro tool to decipher the relative importance of microbiota versus environmental colonic parameters in food and pharma studies.


Subject(s)
Ecosystem , Gastrointestinal Microbiome , Dogs , Animals , Colon , Intestinal Mucosa , Feces
3.
Int J Antimicrob Agents ; 63(4): 107102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325721

ABSTRACT

As in humans, antibiotics are widely used in dogs to treat gastrointestinal infections, contributing to the global burden of antimicrobial resistance on both human and animal health. Close contact between pets and their owners can lead to horizontal transfer of gut microbes, including transmission of antibiotic resistance. Nevertheless, until now, the impact of antibiotics on the canine gut microbiota has been poorly described. The aim of this study was to adapt the canine mucosal artificial colon (CANIM-ARCOL) model, reproducing the main nutritional, physicochemical and microbial parameters found in the large intestine of the dog to simulate an antibiotic-induced perturbation. Following initial investigation of five antibiotic cocktails at in-field doses, a 5-day regimen of metronidazole/enrofloxacin (ME) was selected for further model development. Two CANIM-ARCOL bioreactors were inoculated with a faecal sample (n=2 donors) and run in parallel for 26 days under control or antibiotic conditions. ME reduced microbial diversity and induced major shifts in bacterial populations, leading to a state of dysbiosis characterized by an increase in the relative abundance of Streptococcaceae, Lactobacillaceae and Enterobacteriaceae, and a decrease in the relative abundance of Bacteroidaceae, Fusobacteriota and Clostridiaceae. Overall, mucus-associated microbiota were less impacted by antibiotics than luminal microbes. Microbial alterations were associated with drastic decreases in gas production and short-chain fatty acid concentrations. Finally, the model was well validated through in-vitro-in-vivo comparisons in a study in dogs. The CANIM-ARCOL model provides a relevant platform as an alternative to in-vivo assays for an in-depth understanding of antibiotic-microbiota interactions and further testing of restoration strategies at individual level.


Subject(s)
Anti-Bacterial Agents , Microbiota , Dogs , Animals , Humans , Anti-Bacterial Agents/adverse effects , Dysbiosis/chemically induced , Intestinal Mucosa/microbiology , Colon/microbiology , Metronidazole/pharmacology
4.
Appl Microbiol Biotechnol ; 108(1): 166, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261090

ABSTRACT

Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: • CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters • Gut microbiota associated to different dog sizes is accurately maintained in vitro • The model can help to move toward personalized approach considering dog body weight.


Subject(s)
Actinobacteria , Ecosystem , Dogs , Animals , Colon , Ammonia , Anaerobiosis
5.
mSystems ; 8(5): e0055523, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37615437

ABSTRACT

IMPORTANCE: The initial interactions between the colonic epithelium and the bacterium are likely critical in the establishment of Clostridioides difficile infection, one of the major causes of hospital-acquired diarrhea worldwide. Molecular interactions between C. difficile and human gut cells have not been well defined mainly due to the technical challenges of studying cellular host-pathogen interactions with this anaerobe. Here we have examined transcriptional changes occurring in the pathogen and host cells during the initial 24 hours of infection. Our data indicate several changes in metabolic pathways and virulence-associated factors during the initial bacterium-host cell contact and early stages of infection. We describe canonical pathways enriched based on the expression profiles of a dual RNA sequencing in the host and bacterium, and functions of bacterial factors that are modulated during infection. This study thus provides fresh insight into the early C. difficile infection process.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , Clostridioides difficile/genetics , RNA-Seq , Clostridium Infections/genetics , Virulence Factors/genetics , Diarrhea
6.
J Hazard Mater ; 442: 130010, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36182891

ABSTRACT

Microplastics (MPs) are ubiquitous in the environment and humans are inevitably exposed to them. However, the effects of MPs in the human digestive environment are largely unknown. The aim of our study was to investigate the impact of repeated exposure to polyethylene (PE) MPs on the human gut microbiota and intestinal barrier using, under adult conditions, the Mucosal Artificial Colon (M-ARCOL) model, coupled with a co-culture of intestinal epithelial and mucus-secreting cells. The composition of the luminal and mucosal gut microbiota was determined by 16S metabarcoding and microbial activities were characterized by gas, short chain fatty acid, volatolomic and AhR activity analyses. Gut barrier integrity was assessed via intestinal permeability, inflammation and mucin synthesis. First, exposure to PE MPs induced donor-dependent effects. Second, an increase in abundances of potentially harmful pathobionts, Desulfovibrionaceae and Enterobacteriaceae, and a decrease in beneficial bacteria such as Christensenellaceae and Akkermansiaceae were observed. These bacterial shifts were associated with changes in volatile organic compounds profiles, notably characterized by increased indole 3-methyl- production. Finally, no significant impact of PE MPs mediated by changes in gut microbial metabolites was reported on the intestinal barrier. Given these adverse effects of repeated ingestion of PE MPs on the human gut microbiota, studying at-risk populations like infants would be a valuable advance.


Subject(s)
Microplastics , Volatile Organic Compounds , Humans , Microplastics/toxicity , Plastics/toxicity , Polyethylene/toxicity , Bacteria , Fatty Acids, Volatile , Intestinal Mucosa , Mucins , Indoles
7.
Front Cell Infect Microbiol ; 12: 991150, 2022.
Article in English | MEDLINE | ID: mdl-36389156

ABSTRACT

Background: Clostridioides difficile is a Gram-positive anaerobic bacterium that can produce the toxins TcdA and/or TcdB and is considered an opportunistic pathogen. C. difficile is mainly transmitted as endospores, which germinate to produce the pathogenic vegetative cells under suitable conditions in the gut. To efficiently screen novel therapeutic- interventions against the proliferation of C. difficile within a complex microbial community, platforms are needed that facilitate parallel experimentation. In order to allow for screening of novel interventions a medium-to-high throughput in vitro system is desirable. To this end, we have developed the 96-well CDi-screen platform that employs an adapted simulated ileal effluent medium (CDi-SIEM) and allows for culturing of pathogenic C. difficile. Methods: C. difficile strain ATCC 43599 was inoculated in the form of vegetative cells and spores into the CDi-screen in the presence and absence of a cultured fecal microbiota and incubated for 48h. To demonstrate its utility, we investigated the effect of the human milk oligosaccharide 2'-Fucosyllactose (2'-FL) at 4 and 8 mg/mL on C. difficile outgrowth and toxin production in the CDi-screen. The test conditions were sampled after 24 and 48 hours. C. difficile -specific primers were used to monitor C. difficile growth via qPCR and barcoded 16S rRNA gene amplicon sequencing facilitated the in-depth analysis of gut microbial community dynamics. Results: C. difficile ATCC 43599 proliferated in CDi-SIEM, both when inoculated as spores and as vegetative cells. The strain reached cell numbers expressed as C. difficile genome equivalents of up to 10 8 cells per mL after 24h of incubation. 2'-FL significantly inhibited the outgrowth of the ATTC 43599 strain within a complex human gut microbial community in the CDi-screen. In addition, a dose-dependent modulation of the gut microbial community composition by 2'-FL supplementation was detected, with a significant increase in the relative abundance of the genus Blautia in the presence of 2'-FL. Conclusion: The CDi-screen is suitable for studying C. difficile proliferation in a complex gut ecosystem and for screening for anti-pathogenic interventions that target C. difficile directly and/or indirectly through interactions with the gut microbiota. Different doses of compounds such as in this study the dose of the human milk oligosaccharide 2'-FL can be screened for efficacy in the inhibition of C. difficile proliferation.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Microbiota , Humans , Clostridioides , RNA, Ribosomal, 16S/genetics , Base Composition , Sequence Analysis, DNA , Phylogeny , Clostridium Infections/microbiology , Cell Proliferation
8.
Appl Microbiol Biotechnol ; 106(22): 7595-7614, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36239764

ABSTRACT

The first weeks of life represent a crucial stage for microbial colonization of the piglets' gastrointestinal tract. Newborns' microbiota is unstable and easily subject to changes under stimuli or insults. Nonetheless, the administration of antibiotics to the sow is still considered as common practice in intensive farming for pathological conditions in the postpartum. Therefore, transfer of antibiotic residues through milk may occurs, affecting the piglets' colon microbiota. In this study, we aimed to extend the knowledge on antibiotic transfer through milk, employing an in vitro dedicated piglet colon model (MICODE-Multi Unit In vitro Colon Model). The authors' focus was set on the shifts of the piglets' microbiota composition microbiomics (16S r-DNA MiSeq and qPCR-quantitative polymerase chain reaction) and on the production of microbial metabolites (SPME GC/MS-solid phase micro-extraction gas chromatography/mass spectrometry) in response to milk with different concentrations of amoxicillin. The results showed an effective influence of amoxicillin in piglets' microbiota and metabolites production; however, without altering the overall biodiversity. The scenario is that of a limitation of pathogens and opportunistic taxa, e.g., Staphylococcaceae and Enterobacteriaceae, but also a limitation of commensal dominant Lactobacillaceae, a reduction in commensal Ruminococcaceae and a depletion in beneficial Bifidobactericeae. Lastly, an incremental growth of resistant species, such as Enterococcaceae or Clostridiaceae, was observed. To the authors' knowledge, this study is the first evaluating the impact of antibiotic residues towards the piglets' colon microbiota in an in vitro model, opening the way to include such approach in a pipeline of experiments where a reduced number of animals for testing is employed. KEY POINTS: • Piglet colon model to study antibiotic transfer through milk. • MICODE resulted a robust and versatile in vitro gut model. • Towards the "3Rs" Principles to replace, reduce and refine the use of animals used for scientific purposes (Directive 2010/63/UE).


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Swine , Female , Amoxicillin/pharmacology , Colon , Metabolomics , Anti-Bacterial Agents/pharmacology
9.
Nutrients ; 14(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35631304

ABSTRACT

Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiata, Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35−81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.


Subject(s)
Gastrointestinal Microbiome , Seaweed , Australia , Bacteria , Clostridiales/genetics , Dietary Carbohydrates/metabolism , Fatty Acids, Volatile/metabolism , Humans , Inulin/pharmacology , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Prebiotics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
10.
Microbiome ; 9(1): 179, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465363

ABSTRACT

BACKGROUND: The aquaculture sector now accounts for almost 50% of all fish for human consumption and is anticipated to provide 62% by 2030. Innovative strategies are being sought to improve fish feeds and feed additives to enhance fish performance, welfare, and the environmental sustainability of the aquaculture industry. There is still a lack of knowledge surrounding the importance and functionality of the teleost gut microbiome in fish nutrition. In vitro gut model systems might prove a valuable tool to study the effect of feed, and additives, on the host's microbial communities. Several in vitro gut models targeted at monogastric vertebrates are now in operation. Here, we report the development of an Atlantic salmon gut model, SalmoSim, to simulate three gut compartments (stomach, pyloric caecum, and midgut) and associated microbial communities. RESULTS: The gut model was established in a series of linked bioreactors seeded with biological material derived from farmed adult marine-phase salmon. We first aimed to achieve a stable microbiome composition representative of founding microbial communities derived from Atlantic salmon. Then, in biological triplicate, the response of the in vitro system to two distinct dietary formulations (fishmeal and fishmeal free) was compared to a parallel in vivo trial over 40 days. Metabarcoding based on 16S rDNA sequencing qPCR, ammoniacal nitrogen, and volatile fatty acid measurements were undertaken to survey the microbial community dynamics and function. SalmoSim microbiomes were indistinguishable (p = 0.230) from their founding inocula at 20 days and the most abundant genera (e.g., Psycrobacter, Staphylococcus, Pseudomonas) proliferated within SalmoSim (OTUs accounting for 98% of all reads shared with founding communities). Real salmon and SalmoSim responded similarly to the introduction of novel feed, with majority of the taxa (96% Salmon, 97% SalmoSim) unaffected, while a subset of taxa (e.g., a small fraction of Psychrobacter) was differentially affected across both systems. Consistent with a low impact of the novel feed on microbial fermentative activity, volatile fatty acid profiles were not significantly different in SalmoSim pre- and post-feed switch. CONCLUSION: By establishing stable and representative salmon gut communities, this study represents an important step in the development of an in vitro gut system as a tool for the improvement of fish nutrition and welfare. The steps of the system development described in this paper can be used as guidelines to develop various other systems representing other fish species. These systems, including SalmoSim, aim to be utilised as a prescreening tool for new feed ingredients and additives, as well as being used to study antimicrobial resistance and transfer and fundamental ecological processes that underpin microbiome dynamics and assembly. Video abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Salmo salar , Animal Feed/analysis , Animals , Gastrointestinal Tract , Humans
11.
Front Cell Infect Microbiol ; 11: 670935, 2021.
Article in English | MEDLINE | ID: mdl-34277467

ABSTRACT

Within the human intestinal tract, dietary, microbial- and host-derived compounds are used as signals by many pathogenic organisms, including Clostridioides difficile. Trehalose has been reported to enhance virulence of certain C. difficile ribotypes; however, such variants are widespread and not correlated with clinical outcomes for patients suffering from C. difficile infection (CDI). Here, we make preliminary observations on how trehalose supplementation affects the microbiota in an in vitro model and show that trehalose-induced changes can reduce the outgrowth of C. difficile, preventing simulated CDI. Three clinically reflective human gut models simulated the effects of sugar (trehalose or glucose) or saline ingestion on the microbiota. Models were instilled with sugar or saline and further exposed to C. difficile spores. The recovery of the microbiota following antibiotic treatment and CDI induction was monitored in each model. The human microbiota remodelled to utilise the bioavailable trehalose. Clindamycin induction caused simulated CDI in models supplemented with either glucose or saline; however, trehalose supplementation did not result in CDI, although limited spore germination did occur. The absence of CDI in trehalose model was associated with enhanced abundances of Finegoldia, Faecalibacterium and Oscillospira, and reduced abundances of Klebsiella and Clostridium spp., compared with the other models. Functional analysis of the microbiota in the trehalose model revealed differences in the metabolic pathways, such as amino acid metabolism, which could be attributed to prevention of CDI. Our data show that trehalose supplementation remodelled the microbiota, which prevented simulated CDI, potentially due to enhanced recovery of nutritionally competitive microbiota against C. difficile.


Subject(s)
Clostridioides difficile , Clostridium Infections , Microbiota , Anti-Bacterial Agents/therapeutic use , Clostridioides , Clostridium Infections/drug therapy , Humans , Pilot Projects , Trehalose
12.
Biotechnol Bioeng ; 118(11): 4338-4346, 2021 11.
Article in English | MEDLINE | ID: mdl-34297349

ABSTRACT

In vitro gut model systems permit the growth of gut microbes outside their natural habitat and are essential to the study of gut microbiota. Systems available today are limited by a lack of scalability and flexibility in the mode of operation. Here, we describe the development of a versatile bioreactor module that can be easily adjusted for culture size and capable of sensing and controlling of environmental parameters such as pH control of culture medium, rate of influx and efflux of the culture medium, and aerobic/anaerobic atmosphere. Bioreactor modules can be operated as single units or linked in series to construct a model of a digestive tract with multiple compartments to allow the growth of microbiota in vitro. We tested the growth of synthetic and natural bacterial communities in a multicompartment continuous dynamic culture model simulation of the mammalian gut. The distal compartments of a sterile system inoculated with the synthetic bacterial community at the proximal module attained a stable bacterial density by 24 h, and all the genera present in the inoculum were firmly established in the distal modules simulating the large intestine at 5 days of continuous culture. A natural bacterial community simultaneously inoculated into the distal modules attained a stable bacterial composition at the phylum level by Day 7 of continuous culture. The findings illustrate the utility of the system to culture mixed bacterial communities which can be used to study the collective biological activities of the cultured microbiota in the absence of host influence.


Subject(s)
Bacteria , Bioreactors , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Models, Biological , Bacteria/classification , Bacteria/growth & development
13.
Benef Microbes ; 12(4): 75-90, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34109893

ABSTRACT

Health benefits of probiotics in humans essentially depend on their ability to survive during gastrointestinal (GI) transit and to modulate gut microbiota. To date, there is few data on the impact of galenic formulations of probiotics on these parameters. Even if clinical studies remain the gold standard to evaluate the efficacy of galenic forms, they stay hampered by technical, ethical and cost reasons. As an alternative approach, we used two complementary in vitro models of the human gut, the TNO gastrointestinal (TIM-1) model and the Artificial Colon (ARCOL), to study the effect of three oral formulations of a Lactobacillus salivarius strain (powder, capsule and sustained-release tablet) on its viability and interactions with gut microbiota. In the TIM-1 stomach, no or low numbers of bacteria were respectively released from the capsule and tablet, confirming their gastro-resistance. The capsule was disintegrated in the jejunum on average 76 min after administration while the core of sustained-release tablet was still intact at the end of digestion. Viability in TIM-1 was significantly influenced by the galenic form with survival percentages of 0.003±0.004%, 2.8±0.6% and 17.0±1.8% (n=3) for powder, capsule and tablet, respectively. In the ARCOL, the survival of the strain tended to be higher in the post-treatment phase with the tablet compared to capsule, but gut microbiota composition and activity were not differently modulated by the two formulations. In conclusion, the sustained-release tablet emerged as the formulation that most effectively preserved viability of the tested strain during GI passage. This study highlights the usefulness of in vitro gut models for the pre-screening of probiotic pharmaceutical forms. Their use could also easily be extended to the evaluation of the effects of food matrices and age on probiotic survival and activity during GI transit.


Subject(s)
Gastrointestinal Microbiome , Ligilactobacillus salivarius , Probiotics , Delayed-Action Preparations , Humans , Powders , Tablets
14.
J Anim Sci Biotechnol ; 12(1): 75, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078434

ABSTRACT

BACKGROUND: Risk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated. In concordance with the ethical concerns raised by animal experiments, we developed a new in vitro model of the weaning piglet colon (MPigut-IVM) including a mucin bead compartment to reproduce the mucus surface from the gut to which gut microbes can adhere. RESULTS: Our results indicated that the MPigut-IVM is able to establish a representative piglet archaeal and bacterial colon microbiota in terms of taxonomic composition and function. The MPigut-IVM was consequently used to investigate the potential effects of feed deprivation, a common consequence of weaning in piglets, on the microbiota. The lack of nutrients in the MPigut-IVM led to an increased abundance of Prevotellaceae and Escherichia-Shigella and a decrease in Bacteroidiaceae and confirms previous in vivo findings. On top of a strong increase in redox potential, the feed deprivation stress induced modifications of microbial metabolite production such as a decrease in acetate and an increase in proportional valerate, isovalerate and isobutyrate production. CONCLUSIONS: The MPigut-IVM is able to simulate luminal and mucosal piglet microbiota and represent an innovative tool for comparative studies to investigate the impact of weaning stressors on piglet microbiota. Besides, weaning-associated feed deprivation in piglets provokes disruptions of MPigut-IVM microbiota composition and functionality and could be implicated in the onset of post-weaning dysbiosis in piglets.

15.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923841

ABSTRACT

The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.


Subject(s)
Chlorella , Gastrointestinal Microbiome/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Fermentation/physiology , RNA, Ribosomal, 16S
16.
Microorganisms ; 9(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670255

ABSTRACT

Fecal microbiota transplantation (FMT) is an innovative therapy already used in humans to treat Clostridioides difficile infections associated with massive use of antibiotics. Clinical studies are obviously the gold standard to evaluate FMT efficiency but remain limited by regulatory, ethics, and cost constraints. In the present study, an in vitro model of the human colon reproducing medically relevant perturbation of the colonic ecosystem by antibiotherapy was used to compare the efficiency of traditional FMT enema formulations and a new oral capsule in restoring gut microbiota composition and activity. Loss of microbial diversity, shift in bacterial populations, and sharp decrease in fermentation activities induced in vivo by antibiotherapy were efficiently reproduced in the in vitro model, while capturing inter-individual variability of gut microbiome. Oral capsule was as efficient as enema to decrease the number of disturbed days and bacterial load had no effect on enema performance. This study shows the relevance of human colon models as an alternative approach to in vivo assays during preclinical studies for evaluating FMT efficiency. The potential of this in vitro approach could be extended to FMT testing in the management of many digestive or extra-intestinal pathologies where gut microbial dysbiosis has been evidenced such as inflammatory bowel diseases, obesity or cancers.

17.
FEMS Microbiol Lett ; 367(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32510557

ABSTRACT

In vitro gut fermentation models were firstly introduced in nutrition and applied microbiology research back in the 1990s. These models have improved greatly during time, mainly over the resemblance to the complexity of digestion stages, the replication of experimental conditions, the multitude of ecological parameters to assay. The state of the science is that the most competitive models shall include a complex gut microbiota, small working volumes, distinct interconnected compartments and rigorous bio-chemical and ecological settings, controlled by a computer, as well as a free-hands accessibility, not to contaminate the mock microbiota. These models are a useful tool to study the impact of a given diet compound, e.g. prebiotics, on the human gut microbiota. The principal application is to focus on the shift of the core microbial groups and selected species together with their metabolites, assaying their diversity, richness and abundance in the community over time. Besides, it is possible to study how a compound is digested, which metabolic pathways are triggered, and the type and quantity of microbial metabolites produced. Further prospective should focus on challenges with pathogens as well as on ecology of gut syndromes. In this minireview an updated presentation of the most used intestinal models is presented, basing on their concept, technical features, as well as on research applications.


Subject(s)
Biodiversity , Fermentation/physiology , Gastrointestinal Microbiome/physiology , Prebiotics , Diet , Humans , Models, Biological
18.
Proc Natl Acad Sci U S A ; 113(41): 11414-11419, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27681630

ABSTRACT

The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the "minigut." This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction-diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon.


Subject(s)
Bacteria/growth & development , Gastrointestinal Tract/microbiology , Peristalsis , Rheology , Colony Count, Microbial , Diffusion , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL