Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.092
Filter
1.
J Environ Manage ; 367: 121936, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096723

ABSTRACT

Sustainability and life-cycle concerns about the conventional activated sludge (CAS) process for wastewater treatment have been driving the development of energy-efficient, greener alternatives. Feasibility of an algal-based wastewater treatment (A-WWT) system has been demonstrated recently as a possible alternative, capable of simultaneous nutrient and energy recovery. This study compared capabilities of the A-WWT and CAS systems in removing organic micropollutants (OMP). Initial assessments based on surrogate organic measures and fluorescence excitation-emission matrix (FEEM) scans revealed that the A-WWT system achieved higher removals of organics than the CAS system. However, effluents of both systems contained residual organic matter, necessitating further OMP assessment for a rigorous comparison. A novel ultrahigh-performance liquid chromatography- Fourier transform mass spectrometry (UPLC-FTMS)-based non-targeted screening approach was adopted here for residual OMP analysis. This approach confirmed that the A-WWT system resulted in better OMP removal, eliminating 329 compounds and partially reducing 472 compounds, compared to 206 eliminations and 410 partial reductions by the CAS system. Mass spectra signal corresponding to some OMPs increased with treatment while some transformation products were observed following treatment. Higher OMP reduction in the A-WWT system with concurrent reductions of biodegradable carbon, nutrients, and pathogens in a single-step while producing energy and nutrient rich algal biomass underscore its potential as a greener alternative for wastewater treatment.

2.
Environ Geochem Health ; 46(9): 360, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093452

ABSTRACT

An important concern is the availability of clean drinking water, which is an essential need for human survival. This issue arises due to the existence of hazardous micropollutants originating from various emission sources. Nanotechnology aids in the mitigation of micropollutants by assimilating and counteracting their effects, hence diminishing their influence on water and other ecosystems. The study investigates the relationship between nanotechnological progress, the adoption of renewable energy, environmental consequences, and economic growth in China, using the Environmental Kuznets Curve theory as a conceptual framework. The study employs panel cointegration tests to analyze structural breaks from 2000 to 2020. Nanotechnology is expected to reduce environmental degradation and the presence of micro-pollutants by increasing the use of renewable energy and promoting energy conservation. Nanotechnology is crucial for mitigating micro-pollutants and advancing sustainable development in this specific context. However, the literature also highlights the harmful consequences of nanoparticle emissions caused by nanotechnology on human and environmental health for a long duration, requiring more examination. This research is the first empirical inquiry into the relationship between improvements in nanotechnology, the use of renewable energy, economic growth, and ecological effect, all within the context of the Environmental Kuznets Curve theory. The results confirm the successful incorporation of all components with a focus on long-term outcomes. The findings suggest that the EKC hypothesis is relevant in China. In China, advancements in nanotechnology have a moderating effect on environmental degradation. The use of renewable energy sources in China enhances environmental circumstances. Given the offered empirical evidence, it is advisable for the government to have a leading role in the development of innovative nanotechnologies that have low emissions of nanoparticles. By using this approach, it will be possible to encourage the conservation of energy and the use of renewable sources in a more secure way, hence improving the effectiveness of sustainable development initiatives.


Subject(s)
Economic Development , Nanotechnology , Renewable Energy , China , Humans , Environmental Pollutants , Ecosystem , Environmental Monitoring/methods
3.
Sci Rep ; 14(1): 18101, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103455

ABSTRACT

In this study, PROP adsorption was investigated using activated carbon derived from Bactris Guineensis residues and physical statistical modeling. The characterization results indicate high specific surface areas (624.72 and 1125.43 m2 g-1) and pore diameters (2.703 and 2.321 nm) for the peel and stone-activated carbon, respectively. Adsorption equilibrium was investigated at different temperatures (298 to 328 K), and it was found that the adsorption capacity increased with temperature, reaching maximum values of 168.7 and 112.94 mg g-1 for the peel and stone-activated carbon, respectively. The application of physical statistical modeling indicates that a monolayer model with one energy site is adequate for describing both systems, with an R2 above 0.986 and a low BIC of 20.021. According to the steric parameters, the density of molecules per site tends to increase by 116.9% for the stone and 61.6% for the peel. In addition, the model indicates that the number of molecules decreases with increasing temperature from 1.36 to 0.81 and from 1.03 to 0.82. These results indicate that temperature controls the number of receptor sites and the orientation in which propranolol is adsorbed at the surface. The adsorption energies were similar for both systems (approximately 10 kJ mol-1), which indicates that the adsorption occurred due to physical interactions. Finally, the application of thermodynamic potential functions indicates that the maximum entropy is reached at concentrations of half-saturation (Ce 3.85 and 4.6 mg L-1), which corresponds to 1.60 × 10-18 and 1.86 × 10-18 kJ mol-1 K-1 for the stone and peel, respectively. After this point, the number of available sites tends to decrease, which indicates the stabilization of the system. The Gibbs energy tended to decrease with increasing concentration at equilibrium, reaching minimum values of - 1.73 × 10-19 and - 1.99 × 10-19 kJ mol-1, respectively. Overall, the results obtained here further elucidate how the adsorption of propranolol occurs for different activated carbons from the same source.

4.
Water Res X ; 24: 100233, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39100570

ABSTRACT

Determining the reliability of nanofiltration (NF) membranes for the removal of contaminants of emerging concern, including polyfluoroalkyl substances (PFASs), pharmaceuticals, and personal care products (PPCPs), is important for ensuring drinking water safety. This study aimed to clarify the factors that influence the removal of nine major PFASs during submerged NF treatment via extrapolation based on the factors that influence PPCP removal. The rejection of nine PFASs in ultra-filtered dam water by a polypiperazine-amide (NF270) membrane increased from 71 % to 94 % at a low permeate flux of 5 L/m2 h as the PFAS molecular dimensions increased. PFASs with a carboxylic acid (-CO2H) were rejected to a greater extent than PFASs with a sulfo group (-SO3H). Further, negatively charged PFASs or PPCPs were rejected to a greater extent than uncharged and positively charged PPCPs. Our findings suggest that the rejection of PFASs can vary because of the (i) clearance distance between the PFASs' molecular dimensions and NF membrane pore diameter and (ii) intensity of electrostatic repulsion between the PFASs' functional groups and NF membrane surface. Our study indicates that submerged NF can achieve high PFAS rejection; however, variations in rejection among PFASs can become more prominent owing to a low permeate flux.

5.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954124

ABSTRACT

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Subject(s)
Anti-Bacterial Agents , Oxidation-Reduction , Tetracycline , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry , Catalysis , Wastewater/chemistry , Bismuth/chemistry , Graphite/chemistry , Nitrogen Compounds/chemistry , Tungsten Compounds/chemistry , Photolysis , Water Purification/methods , Sewage/chemistry
6.
J Environ Manage ; 367: 121950, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068780

ABSTRACT

This study aimed to investigate the recovery of agricultural biostimulants and biogas from microalgae treating wastewater, in the framework of a circular bioeconomy. To this end, municipal wastewater was treated in demonstrative raceway ponds, and microalgal biomass (Scenedesmus sp.) was then harvested and downstream processed to recover biostimulants and biogas in a biorefinery approach. The effect of microalgal biostimulants on plants was evaluated by means of bioassays, while the biogas produced was quantified in biochemical methane potential (BMP) tests. Furthermore, the fate of contaminants of emerging concern (CECs) over the process was also assessed. Bioassays confirmed the biostimulant effect of microalgae, which showed gibberellin-, auxin- and cytokinin-like activity in watercress seed germination, mung bean rooting, and wheat leaf chlorophyll retention. In addition, the downstream process applied to raw biomass acted as a pre-treatment to enhance anaerobic digestion performance. After biostimulant extraction, the residual biomass represented 91% of the methane yield from the raw biomass (276 mLCH4·g-1VS). The kinetic profile of the residual biomass was 43% higher than that of the unprocessed biomass. Co-digestion with primary sludge further increased biogas production by 24%. Finally, the concentration of CECs in wastewater was reduced by more than 80%, and only 6 out of 22 CECs analyzed were present in the biostimulant obtained. Most importantly, the concentration of those contaminants was lower than in biosolids that are commonly used in agriculture, ensuring environmental safety.

7.
Chemosphere ; 363: 142803, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986789

ABSTRACT

Urban rivers are exposed to an increasing load of organic micropollutants from wastewater effluent posing an ecological as well as public health hazard. One-off surveys can capture a snapshot of the pollution profile but fail to reveal the full scale of spatial and temporal heterogeneity. In the present study, 41 micropollutants (non-steroid anti-inflammatory drugs (NSAID), antihypertensives, antiepileptic, antidiabetic, antibiotics, iodinated contrast media (ICM), corrosion inhibitors, pesticides) were monitored every two weeks for one-year upstream and downstream of the Budapest metropolitan area in Danube River (336 samples total). ICMs, benzotriazoles and metamizole degradation products were detected in highest concentration regularly exceeding 100 ng/L. Median concentration of other pharmaceuticals ranged from <1 to 26 ng/L, while pesticides were typically below 10 ng/L. Variability of micropollutant concentration was primarily temporal, exhibiting two different patterns: (1) inverse correlation to river discharge, observed for corrosion inhibitors and carbamazepine (r = -0.505 to -0.665) or (2) inverse correlation to water temperature, observed primarily for ICMs, antihypertensives and antibiotics, r = -0.654 to -0.904). Temperature dependence was also significant after correcting for river discharge. Relative increase of pharmaceuticals was 2-134% after the metropolitan area, partially explained by emission estimates calculated from retail data and metabolization rates. The concentration of five ICMs (iopamidol in 100, iodixanol in 96, diatrizoate in 22, iomeprol in 21 and iohexol 13% of the samples) and two NSAIDs (ibuprofen and diclofenac (in 31.5 and 23% of the samples) exceeded the predicted no environmental effect concentration, posing a risk to algae (HQ = 1.2-6) and fish (HQ = 1.4-1.9), respectively. Results suggest that risk-based monitoring and risk management efforts should focus on ICMs, NSAIDs and industrial chemicals, taking into account that sampling in cold periods and during low flow provides the worst-case estimates.

8.
Water Res ; 262: 122105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39032336

ABSTRACT

Synergistic actions of peroxides and high-valent metals have garnered increasing attentions in wastewater treatment. However, how peroxides interact with the reactive metal species to enhance the reactivity remains unclear. Herein, we report the synergistic oxidation of peracetic acid (PAA) and permanganate(Ⅶ) towards micropollutants, and revisit the underlying mechanism. The PAA-Mn(VII) system showed remarkable efficiency with a 28-fold enhancement on sulfamethoxazole (SMX) degradation compared to Mn(Ⅶ) alone. Extensive quenching experiments and electron spin resonance (ESR) analysis revealed the generation of unexpected Mn(V) and Mn(VI) beyond Mn(III) in the PAA-Mn(VII) system. The utilization efficiency of Mn intermediates was quantified using 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), and the results indicated that PAA could enhance the electron transfer efficiency of reactive manganese (Mn) species, thus accelerating the micropollutant degradation. Density functional theory (DFT) calculations showed that Mn intermediates could coordinate to the O1 of PAA with a low energy gap, enhancing the oxidation capacity and stability of Mn intermediates. A kinetic model based on first principles was established to simulate the time-dependent concentration profiles of the PAA-Mn complexes and quantify the contributions of the PAA-Mn(III) complex (50.8 to 59.3 %) and the PAA-Mn(Ⅴ/Ⅵ) complex (40.7 to 49.2 %). The PAA-Mn(VII) system was resistant to the interference from complex matrix components (e.g., chloride and humic acid), leading to the high efficiency in real wastewater. This work provides new insights into the interaction of PAA with reactive manganese species for accelerated oxidation of micropollutants, facilitating its application in wastewater treatment.

9.
Article in English | MEDLINE | ID: mdl-39080172

ABSTRACT

Microplastics are a growing environmental threat and wastewater treatment plants have been identified as significant conduits for these pollutants. This study addresses microplastic loading in the influent of a large urban wastewater treatment plant, presenting a detailed analysis of their prevalence and characteristics. Our findings reveal a concentration of 4.09 microplastic particles per litre in the tributary. We performed a detailed statistical comparison of the microplastic particles, categorising them by shape, size, colour, and polymer type. Using Fourier transform total reflectance infrared spectroscopy, we identified 13 different polymer types, with polyethylene terephthalate, rubber, and polyethylene predominating. The analysis showed that textile fibres, mainly from clothing, are the most prevalent form of microplastic in wastewater, followed by fragments from the breakdown of larger plastic objects and films. This research highlights the critical need for strategic interventions to mitigate microplastic pollution at municipal sources.

10.
Sci Total Environ ; 947: 174486, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38969135

ABSTRACT

Efforts to regulate and monitor emerging contaminants are insufficient because new chemicals are continually brought to market, and many are unregulated and potentially harmful. Domestic wastewater treatment plants are not designed to remove micropollutants and are important sources of emerging contaminants in the aquatic environment. In this study, non-target screening, an unbiased method for analyzing compounds without prior information, was used to identify compounds that may be emitted in wastewater treatment plant effluent and should be monitored. Nine wastewater treatment plants using different treatment methods were studied, and a non-target screening data-processing method was used. The frequencies at which the contaminants were detected and contaminant persistence through the treatment processes were considered, and then the contaminants were prioritized. The predicted no-effect concentration of each prioritized contaminant was used to determine whether further analysis and monitoring of the contaminant was necessary. Quantitative analyses of five compounds (amantadine, atenolol, benzotriazole, diphenhydramine, and sulpiride) were performed using reference standards. Probable molecular formulae and structures were proposed for 17 contaminants, and the risks posed by the contaminants were estimated using predicted no-effect concentrations. The results provide valuable insights into how unregulated micropollutants can be identified and prioritized for monitoring in future studies.


Subject(s)
Environmental Monitoring , Mass Spectrometry , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Wastewater/analysis , Environmental Monitoring/methods , Chromatography, Liquid , Atenolol/analysis , Triazoles/analysis
11.
Chemosphere ; 363: 142740, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971442

ABSTRACT

Removal of organic micropollutants (OMPs) from water, especially hydrophilic and ionized ones, is challenging for water remediation. Herein, porous ß-cyclodextrin polymers (PCPs) with tailored functionalization were prepared based on molecular expansion strategy and sulfonation. Partially benzylated ß-cyclodextrin was knotted by external crosslinker to form PCP1, and knotting PCP1 by expansion molecule generated PCP2. PCP1 and PCP2 were sulfonated to achieve PCP1-SO3H and PCP2-SO3H. Based on systematical adsorption evaluation toward multiple categories of OMPs, it was found that the introduced strong polar -SO3H group could bring strong hydrogen bonding and electrostatic interactions. PCP2 showed the highest surface (998.97 m2/g) displayed more excellent adsorption performance toward neutral and anionic OMPs, and the adsorption mechanism for this property of PCP2 was dominated by hydrophobic interactions. In addition, the PCP1-SO3H with the lowest surface area (39.75 m2/g) rather than PCP2-SO3H with higher surface (519.28 m2/g) exhibited more superior adsorption towards hydrophilic and cationic OMPs, benefiting by hydrogen bonding and electrostatic interactions as well as appropriate porosity. These results not only confirmed the performance enhancement of PCPs through the integration of novel preparation strategy, but also provided fundamental guidance for PCPs design for water remediation.

12.
Carbohydr Polym ; 342: 122382, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048224

ABSTRACT

A diallyl amine salt monomer bearing a ß-CD substituent was cyclopolymerized for the first time. The reaction of 6-O-toluenesulfonyl-ß-cyclodextrin [(C6H10O5)6-(C5H7)]-CH2OTs with diallylamine followed by protonation afforded the diallylamine salt monomer [(C6H10O5)6-(C5H7)]-CH2NH+(CH2CH=CH2)2 Cl-] (I). The cyclopolymerization of monomer I and its copolymerization with monomer [Me2N+(CH2CH=CH2)2 Cl-] (II), [-O2CCH2NH+(CH2CH=CH2)2] (III), [H2O3PCH2NH+(CH2CH=CH2)2 Cl-] (IV) or [HO2CCH2CH(CO2H)NH+(CH2CH=CH2)2 Cl-] (V) yielded a series of copolymers having residues of ß-CD and glycine or methyl phosphonate or aspartic acid. Terpolymerization in the presence of SO2 afforded polymers with alternating placements of the SO2 units. The solution properties of the pH-responsive polyzwitterions, including their viscosity, were examined. The water-insoluble terpolymer I/V/SO2 with 20 mol% ß-CD residues removed the organic micropollutant 2-naphthol from an aqueous system via host/guest complexation. This work paves the way for the possible synthesis of cross-linked polymers that can simultaneously remove organic micropollutants and toxic metal ions (by complexation with the chelating glycine, aspartic acid, and aminomethyl phosphonate ligands) from contaminated aqueous systems.

13.
Front Microbiol ; 15: 1396116, 2024.
Article in English | MEDLINE | ID: mdl-39040911

ABSTRACT

Veterinary medications are constantly being used for the diagnosis, treatment, and prevention of diseases in livestock. However, untreated veterinary drug active compounds are interminably discharged into numerous water bodies and terrestrial ecosystems, during production procedures, improper disposal of empty containers, unused medication or animal feed, and treatment procedures. This exhaustive review describes the different pathways through which veterinary medications enter the environment, discussing the role of agricultural practices and improper disposal methods. The detrimental effects of veterinary drug compounds on aquatic and terrestrial ecosystems are elaborated with examples of specific veterinary drugs and their known impacts. This review also aims to detail the mechanisms by which microbes degrade veterinary drug compounds as well as highlighting successful case studies and recent advancements in microbe-based bioremediation. It also elaborates on microbial electrochemical technologies as an eco-friendly solution for removing pharmaceutical pollutants from wastewater. Lastly, we have summarized potential innovations and challenges in implementing bioremediation on a large scale under the section prospects and advancements in this field.

14.
J Colloid Interface Sci ; 676: 657-669, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39053413

ABSTRACT

The presence of emerging organic micropollutants (OMPs) in drinking and potable waters is a matter of great concern due to the health hazards associated with these. In this work, we present the preparation and application of a thin-film nanocomposite (TFN) membrane containing functionalized graphene oxide to effectively remove low-molecular-weight OMPs from water. Graphene oxide was functionalized with amino silane to enhance its cross-linking capability during the formation of the polyamide active layer via interfacial polymerization of diethylene triamine and trimesoyl chloride. The TEM analysis showed that amino silane functionalized GO had 2-3 layered sheets, while non-functionalized graphene oxide appeared multilayered or stacked. XPS analysis confirmed the successful functionalization of GO. Characterization of the membranes with advanced techniques confirmed the successful incorporation of the GO and its functionalization: spectra from Fourier Transform Infra Red spectroscopy had the characteristic peaks of GO and NH groups; scanning Electron Microscopy (SEM) images showed a continuous presence of GO nanosheets. Contact angle measurements showed the TFN membranes to be more hydrophilic than their thin film composite (TFC) counterparts. Incorporating functionalized oxide nanosheets in the active polyamide layer produced additional water permeation channels, resulting in an improvement of ∼25 % in permeate flux compared to the pristine TFC and the TFN membrane with non-functionalized GO. The removal efficiencies of four OMPs commonly found in natural waters: Amitriptylene HCl (ATT HCl) and Bisphenol-A (BPA), Acetaminophen (ACT), and Caffeine (CFN) were determined for the synthesized membranes. The TFN membrane with functionalized GO outperformed its TFC counterpart with ∼100 % removal for BPA, ∼ 90 % for CFN and ATT HCl, and ∼80 % removal for the low molecular weight ACT. The high-efficiency rejection of OMPs was attributed to the synergistic effects of size exclusion as well as the reduced specific interactions between the functional groups.

15.
J Environ Manage ; 366: 121857, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39029166

ABSTRACT

Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.


Subject(s)
Agaricales , Ciprofloxacin , Laccase , Norfloxacin , Wastewater , Water Pollutants, Chemical , Laccase/metabolism , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Agaricales/enzymology , Ciprofloxacin/chemistry , Biodegradation, Environmental , Anti-Bacterial Agents/chemistry
16.
Environ Sci Technol ; 58(31): 14022-14033, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39052879

ABSTRACT

Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets. It was revealed that the interlayer introduction could narrow but not fully eliminate the difference in the properties among the polyamide layers formed on different substrates, and the membrane performance variation was prominent in distinct aspects. For substrates with small pore sizes exerting severe water transport hindrance, the introduced interlayer mainly enhanced membrane water permeance by affording the gutter effect, while it could be more effective in reducing membrane pore size by improving the interfacial polymerization platform and avoiding PA defects when using a large-pore-size substrate. By matching the selected substrates and interlayers well, superior TFN membranes were obtained with simultaneously higher water permeance and OMP rejections compared to three commercial membranes. This study helps us to objectively understand interlayer efficacies and attain performance breakthroughs of TFN membranes for more efficient water treatment.


Subject(s)
Filtration , Membranes, Artificial , Nylons , Water Pollutants, Chemical , Water Purification , Nylons/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Nanocomposites/chemistry
17.
Sci Rep ; 14(1): 16840, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039186

ABSTRACT

Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the dissipation and effects on procaryotic communities of metformin (antidiabetic drug), metolachlor (agricultural herbicide), and terbutryn (herbicide in building materials). These contaminants were introduced individually or as a mixture (17.6 µM per micropollutant) into laboratory microcosms mimicking the sediment-water interface. Metformin and metolachlor completely dissipated within 70 days, whereas terbutryn persisted. Dissipation did not differ whether the micropollutants were introduced individually or as part of a mixture. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in both sediment and water. Prokaryotic community variations were mainly driven by matrix composition and incubation time. Micropollutant exposure played a secondary but influential role, with pronounced effects of recalcitrant metolachlor and terbutryn within the micropollutant mixture. Antagonistic and synergistic non-additive effects were identified for specific taxa across taxonomic levels in response to the micropollutant mixture. This study underscores the importance of considering the diversity of interactions between micropollutants, prokaryotic communities, and their respective environments when examining sediment-water interfaces affected by multiple contaminants.


Subject(s)
Geologic Sediments , RNA, Ribosomal, 16S , Water Pollutants, Chemical , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , RNA, Ribosomal, 16S/genetics , Herbicides , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Acetamides , Metformin/pharmacology , Biodegradation, Environmental
18.
Environ Geochem Health ; 46(9): 335, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060805

ABSTRACT

Plastic pollution is becoming increasingly severe and is attracting global attention. One of its consequences is the recent discovery of micropollutant discharge into water, with Bisphenol A (BA-MP) being a typical example. This study utilizes an advanced oxidation process based on Pt-doped ZnO photocatalyst to remove BA-MP. Health concerns related to the release of BA-MP from plastic waste are discussed. Besides, the results of the photodegradation experiment show that the Pt-ZnO photocatalyst can remove 94.1% of BA-MP within 60 min when exposed to solar light. Moreover, after five reuse cycles, Pt-ZnO retains a high BA-MP removal efficiency of 71.2%, and its structure remains largely unchanged compared to the original material. The removal efficiency of BA-MP leaching from plastic waste was measured at 98.8%, confirming the suitability of Pt-ZnO for the treatment of micropollutants. Furthermore, this study also highlights the prospects and challenges of using Pt-ZnO for the treatment of micropollutants discharged from plastic waste.


Subject(s)
Benzhydryl Compounds , Phenols , Photolysis , Plastics , Platinum , Water Pollutants, Chemical , Zinc Oxide , Benzhydryl Compounds/chemistry , Zinc Oxide/chemistry , Phenols/chemistry , Catalysis , Plastics/chemistry , Water Pollutants, Chemical/chemistry , Platinum/chemistry
19.
Membranes (Basel) ; 14(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057654

ABSTRACT

Organic micropollutants (OMPs) present in water and wastewater are in the spotlight because of their potentially harmful effects even at low concentrations and the difficulties of their elimination in urban wastewater treatment plants (UWWTPs). This study explores the impact of some membrane filtration processes on the removal of a group of 11 OMPs with an eye on the effects of two pretreatments (i.e., coagulation and adsorption onto powdered activated carbon (PAC)) and the adsorption of OMPs onto the membranes on the overall removal. For this purpose, ultrafiltration (UF) and nanofiltration (NF) experiments were conducted with selected OMPs spiked in ultrapure water and secondary effluents from UWWTPs. It was observed that the adsorption of OMPs onto the membranes was influenced by the characteristics of the membranes, as well as the presence of effluent organic matter (EfOM). Since adsorption was the dominant mechanism for the rejection of OMPs by UF membranes, a study of the adsorption equilibrium of the micropollutants using UF membrane pieces as the adsorbent was conducted. The adsorption isotherms for the most hydrophobic OMPs fitted the Langmuir model. The efficiency of coagulation and powdered activated carbon (PAC) adsorption coupled with UF were also investigated. Both pretreatments alleviated membrane fouling and improved the rejection of organic and inorganic matter. The PAC pretreatment significantly improved the removal of OMPs in the combined PAC/UF process. The best options for achieving reclaimed water with satisfactory physicochemical quality, nearly devoid of OMPs and microorganisms, and suitable for diverse reuse purposes are either the NF treatment or the combination of PAC/UF.

20.
Environ Pollut ; 356: 124330, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848961

ABSTRACT

Chemical pollution is one of the most important threats to freshwater ecosystems. The plethora of potentially occurring chemicals and their effects in complex mixtures challenge standard monitoring methods. Effect-based methods (EBMs) are proposed as complementary tools for the assessment of chemical pollution and toxic effects. To investigate the effects of chemical pollution, the ecological relevance of EBMs and the potential of macroinvertebrates as toxicity-specific bioindicators, ecological and ecotoxicological data were linked. Baseline toxicity, mutagenicity, dioxin-like and estrogenic activity of water and sediment samples from 30 river sites in central Germany were quantified with four in vitro bioassays. The responses of macroinvertebrate communities at these sites were assessed by calculating 16 taxonomic and functional metrics and by investigating changes in the taxonomic and trait composition. Principal component analysis revealed an increase in toxicity along a joint gradient of chemicals with different modes of action. This toxicity gradient was associated with a decrease in biodiversity and ecological quality, as well as significant changes in taxonomic and functional composition. The strength of the effects suggested a strong impact of chemical pollution and underlined the suitability of EBMs in detecting ecological relevant effects. However, the metrics, taxa, and traits associated with vulnerability or tolerance to toxicity were found to also respond to other stressors in previous studies and thus may have only a low potential as toxicity-specific bioindicators. Because macroinvertebrates respond integratively to all present stressors, linking both ecological and environmental monitoring is necessary to investigate the overall effects but also isolate individual stressors. EBMs have a high potential to separate the toxicity of chemical mixtures from other stressors in a multiple stressor scenario, as well as identifying the presence of chemical groups with specific modes of action.

SELECTION OF CITATIONS
SEARCH DETAIL