Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(16): 15254-15276, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37534824

ABSTRACT

Stimuli-responsive functional micro-/nanorobots (srFM/Ns) are a class of intelligent, efficient, and promising microrobots that can react to external stimuli (such as temperature, light, ultrasound, pH, ion, and magnetic field) and perform designated tasks. Through adaptive transformation into the corresponding functional forms, they can perfectly match the demands depending on different applications, which manifest extremely important roles in targeted therapy, biological detection, tissue engineering, and other fields. Promising as srFM/Ns can be, few reviews have focused on them. It is therefore necessary to provide an overview of the current development of these intelligent srFM/Ns to provide clear inspiration for further development of this field. Hence, this review summarizes the current advances of stimuli-responsive functional microrobots regarding their response mechanism, the achieved functions, and their applications to highlight the pros and cons of different stimuli. Finally, we emphasize the existing challenges of srFM/Ns and propose possible strategies to help accelerate the study of this field and promote srFM/Ns toward actual applications.


Subject(s)
Tissue Engineering , Temperature
2.
J Control Release ; 342: 372-387, 2022 02.
Article in English | MEDLINE | ID: mdl-35038495

ABSTRACT

As a fat-soluble carotenoid, astaxanthin has excellent antioxidant and anti-inflammation biological activities, but its poor biocompatibility and low stability limit application of astaxanthin in the food industry. In this study, cauliflower-like carriers (CCs) were constructed based on caseinate, chitosan-triphenylphosphonium (TPP) and sodium alginate through an electrostatic self-assembly method to improve the biocompatibility, stability and targeting transport properties of astaxanthin. The smart CCs showed pH-response release and mitochondrial targeted characteristics. In vitro studies demonstrated that the CCs could improve the internalization of astaxanthin, and significantly inhibited the excessive production of reactive oxygen species and the depolarization of mitochondrial membrane potential caused by oxidative stress. In vivo studies revealed that the astaxanthin-loaded CCs could effectively relieve the colitis induced by dextran sodium sulfate and protect the integrity of the colon tissue structure. The astaxanthin-loaded CCs could significantly inhibit the expression of inflammation factors such as interleukin-1ß, interleukin-6, tumor necrosis factor alpha, cyclooxygenase-2, myeloperoxidase, inducible nitric oxide synthase, and nitric oxide. Moreover, the astaxanthin-loaded CCs could maintain the expression of zonula occludens-1, increase the abundance of Firmicutes and Lactobacillaceae in the intestine. In a word, the constructed astaxanthin delivery system provided a potential application for the oral uptake hydrophobic bio-activator in intervention of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/pathology , Colon , Dextran Sulfate/pharmacology , Humans , Inflammation/drug therapy , Xanthophylls/chemistry , Xanthophylls/therapeutic use
3.
Chemosphere ; 288(Pt 3): 132628, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34687682

ABSTRACT

The released oil can affect the vulnerable shoreline environment if the oil spills happen in coastal waters. The stranded oil on shorelines is persistent, posing a long-term influence on the intertidal ecosystem after weathering. Therefore, shoreline cleanup techniques are required to remove the oil from the shoreline environment. In this study, a new shoreline cleanup initiative using chitosan/rhamnolipid (CS/RL) complex dispersion with pH-stimulus response was developed for oiled sand cleanup. The results of factorial and single-factor design revealed that the CS/RL complex dispersion maintained high removal efficiency for oiled sand with different levels of oil content in comparison to using rhamnolipid alone. However, the increase of salinity negatively affected the removal efficiency. The electrostatic screening effect of high ionic strength can hinder the formation of the CS/RL complex, and thus reduce removal efficiency. The pH-responsive characteristic of chitosan allows the easy separation of water and oil in washing effluent. The chitosan polyelectrolytes aggregated and precipitated due to the deprotonation of amino groups by adjusting the pH of the washing effluent to above 8. The microscope image demonstrated that the chitosan aggregates wrapped around the oil droplets and settled to the bottom together, thus achieving oil-water separation. Such pH-stimulus response may help achieve an easy oil-water separation after washing. These findings have important implications for developing the new strategies of oil spill response.


Subject(s)
Chitosan , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Ecosystem , Glycolipids , Hydrogen-Ion Concentration , Petroleum Pollution/analysis , Sand , Water Pollutants, Chemical/analysis
4.
Carbohydr Polym ; 230: 115641, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31887884

ABSTRACT

The present contribution deals with the synthesis and characterization of N-isopropyl chitosan in which the introduction of hydrophobic groups leads to an increased flexibility of the polysaccharide backbone. The isopropyl groups extend the solubility of the modified-chitosan samples and render the modified chitosan a pH- and thermo-sensitive system for hydrogel formation. Indeed, upon varying the pH of the system and/or its temperature within a range compatible with biological applications, a non-reversible sol-gel transition occurs, as determined through extended rheological analyses. The modified chitosan samples show a very good biocompatibility as determined through preliminary viability and cell growth experiments.

SELECTION OF CITATIONS
SEARCH DETAIL