Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Foods ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998569

ABSTRACT

Cinnamomum camphora seed kernels (CCSKs) are rich in phytochemicals, especially plant extracts. Phytochemicals play a vital role in therapy due to their strong antioxidant and anti-inflammatory activities. Extracts from CCSK can be obtained through multiple steps, including pretreatment, extraction and purification, and the purpose of pretreatment is to separate the oil from other substances in CCSKs. However, C. camphora seed kernel extracts (CKEs) were usually considered as by-products and discarded, and their potential bioactive values were underestimated. Additionally, little has been known about the effect of pretreatment on CKE. This study aimed to investigate the effects of pretreatment methods (including the solvent extraction method, cold pressing method, aqueous extraction method and sub-critical fluid extraction method) on the extraction yields, phytochemical profiles, volatile compounds and antioxidant capacities of different CKE samples. The results showed that the CKE samples were rich in phenolic compounds (15.28-20.29%) and alkaloids (24.44-27.41%). The extraction yield, bioactive substances content and in vitro antioxidant capacity of CKE pretreated by the sub-critical fluid extraction method (CKE-SCFE) were better than CKEs obtained by other methods. CKE pretreated by the solvent extraction method (CKE-SE) showed the best lipid emulsion protective capacity. Moreover, the volatile substances composition of the CKE samples was greatly influenced by the pretreatment method. The results provided a fundamental basis for evaluating the quality and nutritional value of CKE and increasing the economic value of by-products derived from CCSK.

2.
Food Sci Nutr ; 12(6): 4038-4048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873464

ABSTRACT

Gallic acid is a widely recognized bioactive compound that falls under the category of secondary polyphenolic metabolites and is fairly found in mango fruit waste, specifically in mango seed kernel (MSK). This study aimed to adopt a green extraction approach to extract this valuable compound via ultrasound-assisted extraction (UAE) without using organic solvents but only water to obtain hazard-free extracts, and the cost of extraction can be minimal. pH (2-8), solvent ratio (20-60 mL/g), temperature (30-60°C) and time (30-60 min) of extraction were the independent variables used for extraction optimization. Single-factor experiments to obtain working ranges for selected extraction variables were carried out. A central composite design using response surface methodology was used to determine the optimum condition to obtain the maximum yield of gallic acid from MSK. The optimized extraction conditions were 3.9 pH, 36.25 mL/g solvent ratio, and 39.4°C of extraction temperature for 21.3 min. As a result, the optimized yield was 5.76 ± 0.41 mg/g, which was comparably equal to and/or better than the other solvent extraction systems. The results showed that gallic acid could efficiently be extracted via UAE under these optimal conditions. It is safer than extraction systems involving hazardous solvents that can be feasibly used for its nutraceutical and therapeutic applications.

3.
BMC Vet Res ; 20(1): 177, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711036

ABSTRACT

BACKGROUND: Rubber seed kernel is a by-product derived from rubber tree plantations. It is rich in C18 unsaturated fatty acids (UFA) and has the potential to be used as a protein source for ruminant diets. This investigation has been conducted to determine the influence of rubber seed kernel pellet (RUSKEP) supplementation on in vitro rumen fermentation characteristics and fatty acid profiles in swamp buffalo. Using a completely randomized design (CRD) and supplementation of RUSKEP at 0, 2, 4, 6, 8, and 10% dry matter (DM) of substrate. RESULTS: The supplementation with RUSKEP had no effect on gas kinetics, cumulative gas production, or degradability. Ruminal pH decreased linearly (P < 0.01) and ammonia-nitrogen (NH3-N) concentration decreased quadratically (P < 0.01) by RUSKEP supplementation. The proportion of acetate (C2) decreased linearly (P < 0.01), but propionate (C3) and butyrate (C4) increased linearly (P < 0.01), resulting in a decrease in the acetate to propionate ratio (C2:C3) (P < 0.01) by RUSKEP supplementation. With an increasing level of dietary RUSKEP, there was a slight increase in UFA in the rumen by increasing the oleic acid (OA; C18:1 cis-9 + trans-9), linoleic acid (LA; C18:2 cis-9,12 + trans-9,12), and α-linolenic acid (ALA; C18:3 cis-9,12,15) concentrations (P < 0.01). CONCLUSIONS: Adding up to 10% of RUSKEP could improve in vitro rumen fermentation and C18 unsaturated fatty acids, especially ALA, in swamp buffalo.


Subject(s)
Animal Feed , Buffaloes , Fatty Acids , Fermentation , Rumen , Seeds , Animals , Rumen/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Animal Feed/analysis , Seeds/chemistry , Dietary Supplements , Diet/veterinary , Hevea/chemistry
4.
J Pharm Pharm Sci ; 27: 12674, 2024.
Article in English | MEDLINE | ID: mdl-38606395

ABSTRACT

Introduction: The extract from the Mango Seed Kernel (MSK) has been documented to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa. This suggests that biomaterials containing MSK extract could be a viable alternative to conventional wound treatments, such as nanocrystalline silver dressings. Despite this potential, there is a notable gap in the literature regarding comparing the antibacterial effectiveness of MSK film dressings with nanocrystalline silver dressings. This study aimed to develop film dressings containing MSK extract and evaluate their antibacterial properties compared to nanocrystalline silver dressings. Additionally, the study aimed to assess other vital physical properties of these dressings critical for effective wound care. Materials and methods: We prepared MSK film dressings from two cultivars of mango from Thailand, 'Chokanan' and 'Namdokmai'. The inhibition-zone method was employed to determine the antibacterial property. The morphology and chemical characterization of the prepared MSK film dressings were examined with scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR), respectively. The absorption of pseudo-wound exudate and water vapor transmission rate (WVTR) of film dressings were evaluated. Results: The results showed that 40% of MSKC film dressing had the highest inhibition zone (20.00 ± 0.00 mm against S. aureus and 17.00 ± 1.00 mm against P. aeruginosa) and 20%, 30%, and 40% of MSKC and MSKN film dressings had inhibition zones similar to nanocrystalline silver dressing for both S. aureus and P. aeruginosa (p > 0.05). In addition, all concentrations of the MSK film dressings had low absorption capacity, and Chokanan MSK (MSKC) film dressings had a higher WVTR than Namdokmai MSK (MSKN) film dressings. Conclusion: 20%, 30%, and 40% of MSK film dressing is nearly as effective as nanocrystalline silver dressing. Therefore, it has the potential to be an alternative antibacterial dressing and is suitable for wounds with low exudate levels.


Subject(s)
Burns , Mangifera , Anti-Bacterial Agents/therapeutic use , Silver/pharmacology , Silver/chemistry , Thailand , Staphylococcus aureus , Gram-Negative Bacteria , Gram-Positive Bacteria , Bandages
5.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503700

ABSTRACT

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Flavones , Saponins , Triterpenes , Ziziphus , Drugs, Chinese Herbal/chemistry , Betulinic Acid , Saponins/chemistry , Oleic Acids , Chromatography, High Pressure Liquid , Ziziphus/chemistry , Seeds
6.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540958

ABSTRACT

Cinnamomum camphora seed kernel protein isolate (CPI) has attracted increasing attention due to its sustainability and potential applications. This study aimed to investigate the effects of freeze-drying (FD), vacuum-drying (VD), and spray-drying (SD) on the physicochemical and functional properties of CPI. The morphology observation results showed that the SD-CPI, SD-CPI, and VD-CPI were spherical, lamellar, and massive, respectively. Compared to FD and SD, VD had more impact on the color, surface hydrophobicity, intermolecular disulfide bonds, intrinsic fluorescence, and thermal stability of CPI. Fourier transform infrared spectroscopy (FTIR) analyses showed that among three CPI samples, VD-CPI had the highest content of ß-sheet but the lowest contents of α-helix and ß-turn. At different pH values, the solubility, emulsification, and foaming properties of VD-CPI were inferior to those of FD-CPI and SD-CPI. These results provide useful information on the changes in the physicochemical and functional properties of CPI subjected to different drying methods, and offer theoretical guidance for the production and use of CPI in the food industry.

7.
J Food Sci ; 88(12): 5002-5011, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37889081

ABSTRACT

Mango seed kernels (MSKs) have been reported to show antioxidant, antibacterial, and anti-inflammatory properties. This study explores the influence of different optimized extraction systems on the extraction of MSK. The effects on gallic acid (GA) content, total phenolic content (TPC), total flavonoid content (TFC), antioxidant, antimicrobial, and hemolytic activity of MSK extracts from different extraction systems (65.45% ethanol-ultrasound assisted extraction [UAE], 62% ethanol-incubator shaker, 19.4% ethanol-UAE, and 100% water-UAE) were assessed. Based on the results, a nonsignificant difference in phenolic (p = 0.222), flavonoids (p = 0.058), antioxidant (p = 0.165), and antimicrobial activity (p = 0.193) against Staphylococcus aureus whereas a significant difference (p < 0.0001) in hemolytic, GA content, and antimicrobial activity against Clostridium perfringens was observed. Among different extraction systems, aqueous extraction showed significantly lower hemolytic (1.09%) and higher GA content (4.72 mg/g) and comparable results in all other experiments; yield (32.40%), TPC (58.79 mg/g), TFC (2.16 mg/g), and antioxidant (73.19%). Hence, it has been concluded that aqueous extraction system could be considered a sustainable extraction system for practical applications. PRACTICAL APPLICATION: Aqueous extraction system could be a sustainable option for extraction of mango seed kernel for practical applications as it is readily available, cheap, nonflammable, and nontoxic.


Subject(s)
Antioxidants , Mangifera , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/pharmacology , Phenols/analysis , Flavonoids , Ethanol , Gallic Acid , Water , Anti-Bacterial Agents/pharmacology , Seeds/chemistry
8.
Foods ; 12(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37444368

ABSTRACT

Cinnamomum camphora (camphor tree) is an important non-conventional edible plant species found in East Asia. Here, a detailed characterization for the chemical composition and nutritional value of C. camphora seed kernels (CCSKs) collected from different regions in China is provided. The results showed that there were significant differences among the CCSK samples in weights (1000 fruits, 1000 seeds and 1000 kernels), proximate composition, minerals, phenolics, flavonoids and amino acid contents. The highest contents of oil (62.08%) and protein (22.17%) were found in the CCSK samples collected from Chongqing and Shanghai, respectively. The highest content of mineral in the CCSK samples was K (4345.05-7186.89 mg/kg), followed by P (2735.86-5385.36 mg/kg), Ca (1412.27-3327.37 mg/kg) and Mg (2028.65-3147.32 mg/kg). The CCSK sample collected from Guizhou had the highest levels of total phenolic and flavonoid contents (TPC and TFC), while that from Chongqing had the lowest levels. In addition, the most abundant fatty acid in the CCSK samples was capric acid (57.37-60.18%), followed by lauric acid (35.23-38.29%). Similarities in the fatty acid composition among the CCSK samples were found. The CCSK sample collected from Guizhou had the highest percentage (36.20%) of essential amino acids to total amino acids, and Chongqing had the lowest value (28.84%). These results indicated that CCSK may be developed as an excellent source of plant-based medium-chain oil, protein, dietary fiber, minerals, phytochemicals and essential amino acids.

9.
Foods ; 12(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36673385

ABSTRACT

Cinnamomum camphora seed kernel oil (CCSKO) is one of the important natural medium chain triglycerides (MCT) resources, with more than 95.00% of medium chain fatty acids found in the world, and has various physiological effects. However, CCSKO has not been generally recognized as a safe oil or new food resource yet. The acute oral toxicity test and a standard battery of genotoxicity tests (mammalian erythrocyte micronucleus test, Ames test, and in vitro mammalian cell TK gene mutation test) of CCSKO as a new edible plant oil were used in the study. The results of the acute oral toxicity test showed that CCSKO was preliminary non-toxic, with an LD50 value higher than 21.5 g/kg body weight. In the mammalian erythrocyte micronucleus test, there was no concentration-response relationship between the dose of CCSKO and micronucleus value in polychromatic erythrocytes compared to the negative control group. No genotoxicity was observed in the Ames test in the presence or absence of S9 at 5000 µg/mL. In vitro mammalian cell TK gene mutation test showed that CCSKO did not induce in vitro mammalian cell TK gene mutation in the presence or absence of S9 at 5000 µg/mL. These results indicated that CCSKO is a non-toxic natural medium-chain oil.

10.
Nat Prod Res ; 37(17): 2878-2887, 2023.
Article in English | MEDLINE | ID: mdl-36318869

ABSTRACT

Seventeen compounds of diverse classes including four flavonoid glycosides, five ellagic acid derivatives, and eight other metabolites were isolated from the methanolic extract of the defatted seed kernel of Irvingia gabonensis. Among the isolates, quercetin 3-O-methyl-4'-[α-L-rhamnopyranosyl-(1→3)]-O-α-L-rhamnopyranoside (1) and 3,3'-di-O-methyl-4'-O-α-L-rhamnopyranosylellagic acid 4-sulfate ester (5) were found to be previously undescribed. Structure elucidation was mainly achieved by the interpretation of 1D and 2D NMR and HRESIMS spectral data. Though compound 6 was previously reported, its 13C NMR data is being reported herein for the first time. To the best of our literature search knowledge, this is the first phytochemical report on I. gabonensis seed kernels.

11.
Anal Sci ; 39(2): 179-190, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36402886

ABSTRACT

Using eco-friendly, cheap, and available adsorbents is promising for the determination of metal ions. So, this study focuses on the modification of graphite reinforcement carbon paste electrode (GRCPE) with mango seed kernel (MSK) for voltammetric determination of Cd(II). Moreover, to increase the surface area of this adsorbent, it was prepared in nanosized that formed nanoparticles of mango seed kernel (MSK-NPs). The developed nanocomposite electrode of carbon paste electrode modified with nanoparticles of mango seed kernel (MSK-NPs@GRCPE) was characterized using Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM). The effect of pH, buffer solution, and supporting electrolyte as experimental conditions were optimized through differential pulse adsorptive anodic stripping voltammetric method (DPAdASV). Britton-Robinson buffer pH = 3.9 at Eacc = - 1400 mV, tacc = 30 s, pulse width = 10 ms and sampling time = 8 ms were the optimum conditions for determination of Cd(II). The LOD and LOQ of MSK-NPs@GRCPE were calculated at 5.44 × 10-9 and 1.65 × 10-8 M, respectively. Compared with bare graphite reinforcement carbon paste electrode (BGRCPE), the nanocomposite MSK-NPs@GRCPE has a lower detection limit, indicating that the presence of MSK-NPs could greatly improve the response to Cd(II). The practical applicability of the electrode was verified by the determination of Cd(II) in chocolate and white rice samples. The results show high selectivity and sensitivity for Cd(II) in real samples.

12.
Plants (Basel) ; 11(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501246

ABSTRACT

Walnut (Juglans regia) is an important woody oil-bearing plant with high nutritional value. For better understanding of the underlying molecular mechanisms of its oil accumulation in the Qinghai Plateau, in this study we monitored walnut fruit development, and 15 cDNA libraries were constructed from walnut seed kernels collected at 72, 79, 93, 118 and 135 days after flowering (DAF). The candidate genes were identified using sequencing and expression analysis. The results showed that the oil content in the kernels increased dramatically in late July and reached the maximum value of 69% in mature seed. More than 90% of the oils were unsaturated fatty acids (UFAs) and linoleic acid (18:2) was the predominant UFA accumulated in mature seed. Differentially expressed genes (DEGs) in 15 KEGG pathways of lipid metabolism were detected. We identified 119 DEGs related to FA de novo biosynthesis (38 DEGs), FA elongation and desaturation (39 DEGs), triacylglycerol (TAG) assembly (24 DEGs), oil bodies (12 DEGs), and transcription factors (TFs, 6 DEGs). The abundantly expressed oleosins, caleosins and steroleosins may be important for timely energy reserve in oil bodies. Weighted gene coexpression network analysis (WGCNA) showed that AP2/ERF and bHLH were the key TFs, and were co-expressed with ACC1, α-CT, BCCP, MAT, KASII, LACS, FATA, and PDCT. Our transcriptome data will enrich public databases and provide new insights into functional genes related to the seed kernel lipid metabolism and oil accumulation in J. regia.

13.
PeerJ ; 10: e14125, 2022.
Article in English | MEDLINE | ID: mdl-36213508

ABSTRACT

Background: Armeniaca sibirica seed kernel oil is rich in oleic acid and linoleic acid, thus holding potential value as a source of high-quality edible oils. However, some regulatory factors involved in fatty acids accumulation in A. sibirica seed kernels remain largely elusive. Thus, the aim of this study was to elucidate the regulatory mechanisms underlying fatty acids biosynthesis in A. sibirica developing seed kernels. Methods: Seed kernels from six plants from a single A. sibirica clone were taken at five different developmental stages (days 30, 41, 52, 63, and 73 after anthesis). Fatty acid composition in seed kernel oil was determined by gas chromatography-mass spectrometry (GC-MS). In addition, transcriptome analysis was conducted using second-generation sequencing (SGS) and single-molecule real-time sequencing (SMRT). Results: Rapid accumulation of fatty acids occurred throughout the different stages of seed kernels development, with oleic acid and linoleic acid as the main fatty acids. A total of 10,024, 9,803, 6,004, 6,719 and 9,688 unigenes were matched in the Nt, Nr, KOG, GO and KEGG databases, respectively. In the category lipid metabolism, 228 differentially expressed genes (DEGs) were annotated into 13 KEGG pathways. Specific unigenes encoding 12 key enzymes related to fatty acids biosynthesis were determined. Co-expression network analysis identified 11 transcription factors (TFs) and 13 long non-coding RNAs (lncRNAs) which putatively participate in the regulation of fatty acid biosynthesis. This study provides insights into the molecular regulatory mechanisms of fatty acids biosynthesis in A. sibirica developing seed kernels, and enabled the identification of novel candidate factors for future improvement of the production and quality of seed kernel oil by breeding.


Subject(s)
Plant Breeding , Transcriptome , Transcriptome/genetics , Seeds/genetics , Fatty Acids/analysis , Linoleic Acid/analysis , Plant Oils/analysis , Oleic Acids/analysis
14.
Front Biosci (Landmark Ed) ; 27(7): 199, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35866389

ABSTRACT

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) has become one of the most common liver diseases globally and its negative impact has grad- ually attracted attention. METHOD: In order to explore whether camphor seed oil has a certain link effect on NAFLD, we identified its remodeling of intestinal flora and liver function index through the use of camphor seed kernel oil as food treatment (CCSKO). RESULTS: Our results showed that camphor seed oil significantly improved the liver index, TG content and histopathology of the NAFLD mice compared with other groups. Meanwhile, we found significant differences in the intestinal microbiota of mice in different treatment groups. DISCUSSION: The CCSKO treatment might significantly increase the abundance of Bacteroidetes, which were involved in many important metabolic activities in the human colon, including carbohydrate fermentation, utilization of nitrogenous substances, and biotransformation of bile acids and other steroids. CONCLUSIONS: These findings indicate a strong contribution in shaping the gut microbiota by treatment groups, shedding light on the impact of camphor tree seed kernel oil on gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Camphor/metabolism , Diet, High-Fat , Humans , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Plant Oils/metabolism , Plant Oils/pharmacology , Seeds/metabolism
15.
Vet Sci ; 9(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35878377

ABSTRACT

The objective of the present study was to analyze the effects of yeast-fermented rubber seed kernels (YERSEK) on the feed intake, hematology, microbial protein synthesis, milk yield, and milk composition in dairy cows. Six crossbred Holstein Friesian (HF) × Thai lactating dairy cows with 110 ± 10 days in milk were randomly assigned to three different amounts of YERSEK at 0%, 10%, and 20% in a concentrate mixture using a 3 × 3 repeated Latin square design. Cows were fed with concentrate diets at a concentrate-to-milk yield ratio of 1:1.5, with rice straw fed ad libitum. The inclusion of YERSEK did not adversely affect feed intake, nutrient intake, or digestibility (p > 0.05), whereas ether extract intake and digestibility linearly increased in dairy cows receiving YERSEK (p < 0.01). Increasing YERSEK levels did not adversely affect blood urea nitrogen (BUN) levels, hematological parameters, or microbial protein synthesis (p > 0.05). Supplementation of YERSEK did not influence milk production, lactose, or protein levels (p > 0.05). However, milk fat and total solids decreased linearly (p < 0.05) with the addition of YERSEK. In conclusion, in a concentrate diet, YERSEK could be used as a protein source without negative effects on feed intake, digestibility, hematology, microbial protein synthesis, or milk yield. However, it reduced the milk fat and total solids of tropical lactating dairy cows.

16.
Heliyon ; 8(6): e09707, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35789867

ABSTRACT

The potential of mango seed kernel starch (MKS) as a feedstock for bioethanol production was evaluated in this study. Starch extraction and hydrolysis from mango kernel were studied. Fermentation methods included separate hydrolysis and fermentation (SH&F), simultaneous saccharification and co-fermentation (SS&CF), simultaneous saccharification and fermentation (SS&F), and modified simultaneous saccharification and fermentation (SS&F) techniques. Drying and wet-milling generated 41.2 g of white starch/100 g flour, and processing with alum gave 58.6/100 g MKS. Hydrolysis of 5 g MKS by sulfuric acid, sodium hydroxide, malted "acha", and Aspergillus niger amylase for 2 h produced (g/100 mL) 3.97 g, 4.0 g, 4.43 g and 4.24 g of sugar, respectively. Fermentation with 7 g of MKS yielded maximum sugar and ethanol concentrations. Ethanol obtained using SS&CF, SH&F, SS&F and modified SS&F were (v/v); 0.26%, 2.0%, 1.13% and 3.985%, respectively. These results confirmed MKS as a potential feedstock for bioethanol production.

17.
Environ Monit Assess ; 194(3): 214, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35199293

ABSTRACT

Though Cinnamomum zeylanicum is a very important commercial aromatic bark yielding and oldest known tree spice of India, there are hardly any studies to understand the nature of wound healing and bark recovery. Further, optimal number of sprouts to be retained under coppice system to maximize the bark yield per tree in C. zeylanicum is not yet standardized. The present investigation was carried out to understand the influence of patch geometry and application of post-bark-extraction-protection treatments on bark regeneration in mature trees as well as to standardize an optimal number of sprouts to be retained under coppice system to maximize the bark yield per tree. In general, wound healing in C. zeylanicum occurred from the edge of the blaze and was quicker in the narrower patch than the broader patch; application of Bordeaux paste or neem seed kernel extract on the blazed area immediately after the bark extraction, resulted in significantly higher mean percent bark recovery and higher bark oil content than control. Allowing seven coppice sprouts per stem resulted in higher dry mass of bark per plant and higher bark oil than other treatments under coppice system. The results of the study would enable formulation of management strategies specifically for sustainable bark harvesting in Cinnamomum species.


Subject(s)
Cinnamomum zeylanicum , Plant Bark , Cinnamomum zeylanicum/growth & development , Environmental Monitoring , India , Plant Bark/growth & development
18.
Food Chem ; 377: 132044, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35008022

ABSTRACT

In this study, protein isolate (PI) and purified polyphenol extract (PPE) were prepared from Cinnamomum camphora seed kernel (CCSK). The effects of preheat treatment (50-90 °C) combined with polyphenol grafting (5 % PPE, w/w) on the structural, emulsifying and rheological properties of PI were investigated. Results demonstrated the preheat treatments at 80 and 90 °C significantly increased the extent of protein aggregation of PI. Fluorescence spectra and thermal behavior analysis revealed that preheat-treated PI exhibited more compact structure and higher thermal stability. Moreover, the emulsifying stability and apparent viscosity of PI were enhanced after preheat treatments at 50, 60 and 70 °C. After modification by PPE, the secondary structural changes of preheat-treated PI were confirmed by FTIR. PPE modification improved the thermal stability and antioxidant activities of preheat-treated PI. These results provide a novel way to combine the advantages of preheat treatment and polyphenol grafting in developing a novel protein ingredient.


Subject(s)
Cinnamomum camphora , Antioxidants , Polyphenols , Rheology
19.
Prep Biochem Biotechnol ; 52(1): 56-61, 2022.
Article in English | MEDLINE | ID: mdl-33881946

ABSTRACT

This work deals with the evaluation of nutritional and medicinal potential of a defatted kernel of Sapindus mukorossis seed. Defatted sapindus seed kernel is a rich source of proteins (33.4 ± 2.12%), which show balanced amino acid composition for the requirement of adults as per the World Health Organization. Protein isolate possesses 29 kDa molecular weight peptide, which shows trypsin inhibitor activity. It also showed around 31.2% reduction in amylase activity while aqueous Ethanol and ethanol extracts showed 55% and 72.83%, respectively. Aqueous ethanol and ethanol extracts were found to contain polyphenols and saponins. Polyphenol content in aqueous ethanol and ethanol extract was 4.50 ± 0.15 mg/g and 5.7 ± 0.34 mg/g ferulic acid equivalent, respectively, while 0.72 ± 0.68% and 1.2 ± 0.23% Oleonolic acid equivalent saponins, respectively. Both these extracts showed potent antioxidant activity, and the rate of DPPH scavenging activity was higher than the ferulic acid standard. The deffated seed also contains dietary fibers in which 3.8 ± 0.01% are soluble, and 2.2 ± 0.03% are insoluble fibers.


Subject(s)
Fats/isolation & purification , Polyphenols/analysis , Sapindus/chemistry , Saponins/analysis , Seeds/chemistry , Antioxidants/analysis , Nutritive Value , Plant Extracts/chemistry
20.
Int J Biol Macromol ; 196: 63-71, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-34896473

ABSTRACT

This study aimed to investigate the effect of atmospheric pressure non-thermal pin-to-plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. As cold plasma contains highly reactive species and free radicals, it is expected to cause noticeable modifications in the attributes of starch treated. The isolated mango seed kernel starch was subjected to the plasma treatment of input voltages 170 and 230 V for 15 and 30 min of exposure. Water adsorption, swelling, and solubility at lower temperatures. There has been a significant reduction (p < 0.05) in pH values of starch from 7.09 to 6.16 and also the desirable reduction in turbidity values by 42.60%. However, there has been no significant change in the oil and water binding behavior of the starch. The FTIR spectra of MSKS demonstrate the formation of amines which contributes to the better hydrophilic nature of the starch. The structural modification has been adequately confirmed by SEM images. The maximum voltage and time combination, lead to depolymerization of starch which is supported by NMR spectra thus affecting thermal and rheological properties. The application of cold plasma-modified MSKS in food would facilitate stable and smooth textural development.


Subject(s)
Chemical Phenomena/drug effects , Mangifera/chemistry , Plasma Gases/chemistry , Plasma Gases/pharmacology , Rheology/drug effects , Seeds/chemistry , Starch/chemistry , Spectrum Analysis , Starch/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL