Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Front Aging Neurosci ; 16: 1301854, 2024.
Article in English | MEDLINE | ID: mdl-38903903

ABSTRACT

Depression and Alzheimer's disease (AD) are prevalent neuropsychiatric disorders with intriguing epidemiological overlaps. Their interrelation has recently garnered widespread attention. Empirical evidence indicates that depressive disorders significantly contribute to AD risk, and approximately a quarter of AD patients have comorbid major depressive disorder, which underscores the bidirectional link between AD and depression. A growing body of evidence substantiates pervasive sex differences in both AD and depression: both conditions exhibit a higher incidence among women than among men. However, the available literature on this topic is somewhat fragmented, with no comprehensive review that delineates sex disparities in the depression-AD correlation. In this review, we bridge these gaps by summarizing recent progress in understanding sex-based differences in mechanisms, genetics, and therapeutic prospects for depression and AD. Additionally, we outline key challenges in the field, holding potential for improving treatment precision and efficacy tailored to male and female patients' distinct needs.

2.
Antioxid Redox Signal ; 41(7-9): 522-541, 2024 09.
Article in English | MEDLINE | ID: mdl-38760935

ABSTRACT

Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. Antioxid. Redox Signal. 41, 522-541.


Subject(s)
NADPH Oxidases , Neurodegenerative Diseases , Reactive Oxygen Species , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy , NADPH Oxidases/metabolism , NADPH Oxidases/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Animals , Oxidative Stress
3.
AAPS PharmSciTech ; 25(5): 96, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710855

ABSTRACT

Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.


Subject(s)
Administration, Intranasal , Brain , Drug Delivery Systems , Animals , Humans , Administration, Intranasal/methods , Blood-Brain Barrier/metabolism , Brain/metabolism , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nasal Mucosa/metabolism , Pharmaceutical Preparations/administration & dosage
4.
Aging (Albany NY) ; 16(5): 4862-4888, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38460947

ABSTRACT

Lysosomal-dependent cell death (LDCD) has an excellent therapeutic effect on apoptosis-resistant and drug-resistant tumors; however, the important role of LDCD-related genes (LDCD-RGs) in kidney renal clear cell carcinoma (KIRC) has not been reported. Initially, single-cell atlas of LDCD signal in KIRC was comprehensively depicted. We also emphasized the molecular characteristics of LDCD-RGs in various human neoplasms. Predicated upon the expressive quotients of LDCD-RGs, we stratified KIRC patients into tripartite cohorts denoted as C1, C2, and C3. Those allocated to the ambit of C1 evinced the most sanguine prognosis within the KIRC cohort, underscored by the acme of LDCD-RGs scores. This further confirms the significant role that LDCD-RGs play in both the pathophysiological foundation and clinical implications of KIRC. In culmination, by virtue of employing the LASSO-Cox analytical modality, we have ushered in an innovative and avant-garde prognostic framework tailored for KIRC, predicated on the bedrock of LDCD-RGs. The assemblage of KIRC instances was arbitrarily apportioned into constituents inclusive of a didactic cohort, an internally wielded validation cadre, and an externally administered validation cohort. Concurrently, patients were dichotomized into strata connoting elevated jeopardy synonymous with adverse prognostic trajectories, and conversely, diminished risk tantamount to favorable prognoses, contingent on the calibrated expressions of LDCD-RGs. Succinctly, our investigative findings serve to underscore the cardinal capacity harbored by LDCD-RGs within the KIRC milieu, concurrently birthing a pioneering prognostic schema intrinsically linked to the trajectory of KIRC and its attendant prognoses.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Prognosis , Carcinoma, Renal Cell/genetics , Cell Death , Kidney Neoplasms/genetics , Kidney
5.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894854

ABSTRACT

Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.


Subject(s)
Bone Neoplasms , Sarcoma, Ewing , Adolescent , Adult , Humans , Bone Neoplasms/therapy , Bone Neoplasms/drug therapy , Cell Line, Tumor , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proteins/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/therapy , Sarcoma, Ewing/drug therapy , Tumor Microenvironment
7.
Viruses ; 15(8)2023 07 31.
Article in English | MEDLINE | ID: mdl-37632019

ABSTRACT

Antiretroviral therapy (ART) has dramatically improved the prognosis for people living with HIV-1, but a cure remains elusive. The largest barrier to a cure is the presence of a long-lived latent reservoir that persists within a heterogenous mix of cell types and anatomical compartments. Efforts to eradicate the latent reservoir have primarily focused on latency reversal strategies. However, new work has demonstrated that the majority of the long-lived latent reservoir is established near the time of ART initiation, suggesting that it may be possible to pair an intervention with ART initiation to prevent the formation of a sizable fraction of the latent reservoir. Subsequent treatment with latency reversal agents, in combination with immune clearance agents, may then be a more tractable strategy for fully clearing the latent reservoir in people newly initiating ART. Here, we summarize molecular mechanisms of latency establishment and maintenance, ongoing efforts to develop effective latency reversal agents, and newer efforts to design latency prevention agents. An improved understanding of the molecular mechanisms involved in both the establishment and maintenance of latency will aid in the development of new latency prevention and reversal approaches to ultimately eradicate the latent reservoir.


Subject(s)
HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Cognition
8.
Cells ; 11(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36552827

ABSTRACT

Glioblastoma multiforme (GBM) is a brain tumor notorious for its propensity to recur after the standard treatments of surgical resection, ionizing radiation (IR), and temozolomide (TMZ). Combined with the acquired resistance to standard treatments and recurrence, GBM is an especially deadly malignancy with hardly any worthwhile treatment options. The treatment resistance of GBM is influenced, in large part, by the contributions from two main degradative pathways in eukaryotic cells: ubiquitin-proteasome system (UPS) and autophagy. These two systems influence GBM cell survival by removing and recycling cellular components that have been damaged by treatments, as well as by modulating metabolism and selective degradation of components of cell survival or cell death pathways. There has recently been a large amount of interest in potential cancer therapies involving modulation of UPS or autophagy pathways. There is significant crosstalk between the two systems that pose therapeutic challenges, including utilization of ubiquitin signaling, the degradation of components of one system by the other, and compensatory activation of autophagy in the case of proteasome inhibition for GBM cell survival and proliferation. There are several important regulatory nodes which have functions affecting both systems. There are various molecular components at the intersections of UPS and autophagy pathways that pose challenges but also show some new therapeutic opportunities for GBM. This review article aims to provide an overview of the recent advancements in research regarding the intersections of UPS and autophagy with relevance to finding novel GBM treatment opportunities, especially for combating GBM treatment resistance.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Ubiquitin/metabolism , Proteasome Endopeptidase Complex , Temozolomide/pharmacology , Temozolomide/therapeutic use , Autophagy
9.
Biomedicines ; 10(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36359340

ABSTRACT

Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.

10.
Transl Oncol ; 26: 101510, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36122506

ABSTRACT

Several different signaling pathways and molecular mechanisms have been identified as responsible for controlling critical functions in human cancer cells, such as selective growth and proliferative advantage, altered stress response favoring overall survival, vascularization, invasion and metastasis, metabolic rewiring, an abetting microenvironment, and immune modulation. This concise summary will provide a selective review of recent studies of key signal transduction pathways, including mitogen-activated protein kinase (MAPK) pathway, Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling, and Wnt/ß-catenin signaling pathway, which are altered in cancer cells, as the novel and promising therapeutic targets.

11.
Acta Pharm Sin B ; 12(5): 2129-2149, 2022 May.
Article in English | MEDLINE | ID: mdl-35646540

ABSTRACT

Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.

13.
Int J Biol Sci ; 18(7): 2714-2728, 2022.
Article in English | MEDLINE | ID: mdl-35541920

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a kind of malignant tumor with ethnic and geographical distribution characteristics. However, the molecular mechanisms of NPC are still unclear. Long non encoding RNAs (lncRNAs) are becoming important regulators in gene expression networks, including post transcriptional and post translational regulation of protein, protein complex organization, signal transduction and recombination among cells, which are involved in cancer recognition. Recent evidence shows that lncRNAs play important roles in the occurrence and development of NPC. Therefore, in-depth understanding of abnormal lncRNAs will provide new understanding of the pathogenesis in NPC, and provide new tools for the early diagnosis and treatment of NPC. This article reviews the abnormal lncRNAs in NPC cells and the roles of lncRNAs in the tumorigenesis of NPC. In addition, we also discuss the diagnostic and therapeutic potential of lncRNAs in NPC.


Subject(s)
Carcinoma , MicroRNAs , Nasopharyngeal Neoplasms , RNA, Long Noncoding , Carcinoma/genetics , Carcinoma/pathology , Carcinoma/therapy , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/therapy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
14.
Front Pharmacol ; 13: 821344, 2022.
Article in English | MEDLINE | ID: mdl-35401182

ABSTRACT

JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.

15.
Int J Mol Sci ; 22(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072535

ABSTRACT

In complex environments, cells have developed molecular responses to confront threats against the genome and achieve the maintenance of genomic stability assuring the transfer of undamaged DNA to their progeny. DNA damage response (DDR) mechanisms may be activated upon genotoxic or environmental agents, such as cytotoxic drugs or ultraviolet (UV) light, and during physiological processes requiring DNA transactions, to restore DNA alterations that may cause cellular malfunction and affect viability. In addition to the DDR, multicellular organisms have evolved specialized immune cells to respond and defend against infections. Both adaptive and innate immune cells are subjected to DDR processes, either as a prerequisite to the immune response, or as a result of random endogenous and exogenous insults. Aberrant DDR activities have been extensively studied in the immune cells of the innate arm, but not in adaptive immune cells. Here, we discuss how the aberrant DDR may lead to autoimmunity, with emphasis on the adaptive immune cells and the potential of therapeutic targeting.


Subject(s)
Adaptive Immunity , DNA Damage , Immune System/immunology , Immune System/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Autoimmunity , Biomarkers , Cytokines/metabolism , DNA Repair , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Management , Disease Susceptibility , Genomic Instability , Humans , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Signal Transduction
16.
Biomed Pharmacother ; 127: 110209, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32559848

ABSTRACT

Genome regions that do not for code for proteins are generally transcribed into long non-coding RNAs. Growing evidence reveals that lncRNAs, defined as transcripts longer than 200 nucleotides, are commonly deregulated in cervical malignancies. New sequencing technologies have revealed a complete picture of the composition of the human transcriptome. LncRNAs perform diverse functions at transcriptional, translation, and post-translational levels through interactions with proteins, RNA and DNA. In the past decade, studies have shown that lncRNAs participate in the pathogenesis of many diseases, including cervical cancer. Hence, illuminating the roles of lncRNA will improve our understanding of cervical cancer. In this work, we summarize the current knowledge on lncRNAs in cervical cancer. We describe the emerging roles of lncRNAs in cervical cancer, particularly in cancer progression, metastasis, treatment resistance, HPV regulation, and metabolic reprogramming. The great promises of lncRNAs as potential biomarkers for cervical cancer diagnosis and prognosis are also discussed. We discuss current technologies used to target lncRNAs and thus control cancers, such as antisense oligonucleotides, CRISPR-Cas9, and exosomes. Overall, we show that lncRNAs hold great potentials as therapeutic agents and innovative biomarkers. Finally, further clinical research is necessary to advance our understanding of the therapeutic value of lncRNAs in cervical cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Molecular Targeted Therapy/methods , RNA, Long Noncoding/physiology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/physiopathology , Female , Humans , Uterine Cervical Neoplasms/diagnosis
17.
Cancers (Basel) ; 12(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213878

ABSTRACT

Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.

18.
Clin Res Hepatol Gastroenterol ; 43(6): 630-637, 2019 11.
Article in English | MEDLINE | ID: mdl-31401041

ABSTRACT

Despite the intensive efforts to identify the molecular events responsible for the emergence of liver cancer, hepatocellular carcinoma (HCC) remains a major health problem in the world. Thus, the identification of new therapeutic opportunities is a short-term necessity. These last few decades, non-coding RNAs appeared as interesting therapeutic strategies with their pleiotropic inhibitory action in the cell itself but also in recipient cells via their secretion into extracellular vesicles. This short review recapitulates recent advancements concerning non-coding RNAs and their deregulations in liver cancer.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Liver Neoplasms/therapy , RNA, Long Noncoding , Humans
19.
Front Immunol ; 10: 346, 2019.
Article in English | MEDLINE | ID: mdl-30886615

ABSTRACT

Neutrophils are versatile innate effector cells essential for immune defense but also responsible for pathologic inflammation. This dual role complicates therapeutic targeting. However, neither neutrophils themselves nor the mechanisms they employ in different forms of immune responses are homogeneous, offering possibilities for selective intervention. Here we review heterogeneity within the neutrophil population as well as in the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining opportunities for therapeutic manipulation in inflammatory disease.


Subject(s)
Immune System Diseases , Immunity, Innate , Neutrophil Infiltration , Neutrophils , Humans , Immune System Diseases/immunology , Immune System Diseases/pathology , Immune System Diseases/therapy , Neutrophils/immunology , Neutrophils/pathology
20.
Oncotarget ; 8(12): 20394-20409, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28099912

ABSTRACT

Despite the advent of many therapeutic agents, such as bortezomib and lenalidomide that have significantly improved the overall survival, multiple myeloma remains an incurable disease. Failure to cure is multifactorial and can be attributed to the underlying genetic heterogeneity of the cancer and to the surrounding micro-environment. Understanding the mutual interaction between myeloma cells and micro-environment may lead to the development of novel treatment strategies able to eradicate this disease. In this review we discuss the principal molecules involved in the micro-environment network in multiple myeloma and the currently available therapies targeting them.


Subject(s)
Bone Marrow/physiopathology , Multiple Myeloma/physiopathology , Tumor Microenvironment/physiology , Animals , Disease Progression , Humans
SELECTION OF CITATIONS
SEARCH DETAIL