Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Adv Mater ; : e2408456, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39139019

ABSTRACT

Since wearable technologies for telemedicine have emerged to tackle global health concerns, the demand for well-attested wearable healthcare devices with high user comfort also arises. Skin-wearables for health monitoring require mechanical flexibility and stretchability for not only high compatibility with the skin's dynamic nature but also a robust collection of fine health signals from within. Stretchable electrical interconnects, which determine the device's overall integrity, are one of the fundamental units being understated in wearable bioelectronics. In this review, a broad class of materials and engineering methodologies recently researched and developed are presented, and their respective attributes, limitations, and opportunities in designing stretchable interconnects for wearable bioelectronics are offered. Specifically, the electrical and mechanical characteristics of various materials (metals, polymers, carbons, and their composites) are highlighted, along with their compatibility with diverse geometric configurations. Detailed insights into fabrication techniques that are compatible with soft substrates are also provided. Importantly, successful examples of establishing reliable interfacial connections between soft and rigid elements using novel interconnects are reviewed. Lastly, some perspectives and prospects of remaining research challenges and potential pathways for practical utilization of interconnects in wearables are laid out.

2.
ACS Appl Mater Interfaces ; 16(21): 27952-27960, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808703

ABSTRACT

Capable of directly capturing various physiological signals from human skin, skin-interfaced bioelectronics has emerged as a promising option for human health monitoring. However, the accuracy and reliability of the measured signals can be greatly affected by body movements or skin deformations (e.g., stretching, wrinkling, and compression). This study presents an ultraconformal, motion artifact-free, and multifunctional skin bioelectronic sensing platform fabricated by a simple and user-friendly laser patterning approach for sensing high-quality human physiological data. The highly conductive membrane based on the room-temperature coalesced Ag/Cu@Cu core-shell nanoparticles in a mixed solution of polymers can partially dissolve and locally deform in the presence of water to form conformal contact with the skin. The resulting sensors to capture improved electrophysiological signals upon various skin deformations and other biophysical signals provide an effective means to monitor health conditions and create human-machine interfaces. The highly conductive and stretchable membrane can also be used as interconnects to connect commercial off-the-shelf chips to allow extended functionalities, and the proof-of-concept demonstration is highlighted in an integrated pulse oximeter. The easy-to-remove feature of the resulting device with water further allows the device to be applied on delicate skin, such as the infant and elderly.


Subject(s)
Wearable Electronic Devices , Humans , Skin/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Silver/chemistry , Copper/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Artifacts , Metal Nanoparticles/chemistry , Motion , Electric Conductivity
3.
Adv Mater ; 36(13): e2310973, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185875

ABSTRACT

The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) offers superior advantages in electronics due to its remarkable combination of high electrical conductivity, excellent biocompatibility, and mechanical flexibility, making it an ideal material among electronic skin, health monitoring, and energy harvesting and storage. Nevertheless, pristine PEDOT:PSS films exhibit limitations in terms of both low conductivity and stretchability; while, conventional processing techniques cannot enhance these properties simultaneously, facing the dilemma that highly conductive interconnected PEDOT:PSS domains are susceptible to tensile strain. Via modifying PEDOT:PSS with ionic liquids (ILs), not only a synergistic enhancement of the electrical and mechanical properties can be achieved but also the requirements for the printable bioelectronic are satisfied. In this comprehensive review, the task of providing a thorough examination of the mechanisms and applications of ILs as modifiers for PEDOT:PSS is undertaken. First, the theoretical mechanisms governing the interactions between ILs and PEDOT:PSS are discussed in detail. Then, the enhanced properties and the elucidation of the underlying mechanisms achieved through the incorporation of ILs are reviewed. Next, specific applications of ILs-modified PEDOT:PSS relevant to bioelectronic devices are presented. Last, there is a concise summary and a discussion regarding the opportunities and challenges in this exciting field.

4.
Adv Healthc Mater ; 13(6): e2303479, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010831

ABSTRACT

Sleep is critical to maintaining physical and mental health. Measuring physiological parameters to quantify sleep quality without uncomfortable user experience remains highly desired but a challenge. Here, this work develops a soft bioelectronic patch to perform simultaneous respiration and cardiovascular monitoring during sleep in a wearable and non-invasive manner. The soft bioelectronic patch system is mainly composed of a pressure sensor, a flexible printed circuit for signal processing, and a soft thermoplastic urethane mold for assembling different functional modules. The soft bioelectronic patch holds a sensitivity of >0.12 V kPa-1 and a remarkable low-frequency response from 0.5 to 15 Hz. It is demonstrated to continuously monitor respiration and heartbeat during the whole night, which could be harnessed for sleep monitoring and obstructive sleep apnea-hypopnea syndrome diagnosis. The reported soft bioelectronic patch represents a simple and convenient platform technology for sleep study.


Subject(s)
Amides , Signal Processing, Computer-Assisted , Monitoring, Physiologic , Carbamates , Esters
5.
ACS Nano ; 17(19): 19232-19241, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37751200

ABSTRACT

Electricity generation from body heat has garnered significant interest as a sustainable power source for wearable bioelectronics. In this work, we report stretchable n-type thermoelectric fibers based on the hybrid of Ti3C2Tx MXene nanoflakes and polyurethane (MP) through a wet-spinning process. The proposed fibers are designed with a 3D interconnected porous network to achieve satisfactory electrical conductivity (σ), thermal conductivity (κ), and stretchability simultaneously. We systematically optimize the thermoelectric and mechanical traits of the MP fibers and the MP-60 (with 60 wt % MXene content) exhibits a high σ of 1.25 × 103 S m-1, an n-type Seebeck coefficient of -8.3 µV K-1, and a notably low κ of 0.19 W m-1 K-1. Additionally, the MP-60 fibers possess great stretchability and mechanical strength with a tensile strain of 434% and a breaking stress of 11.8 MPa. Toward practical application, a textile thermoelectric generator is constructed based on the MP-60 fibers and achieves a voltage of 3.6 mV with a temperature gradient between the body skin and ambient environment, highlighting the enormous potential of low-grade body heat energy harvesting.

6.
Biosens Bioelectron ; 237: 115509, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37423066

ABSTRACT

With extensive and widespread uses of miniaturized and intelligent wearable devices, continuously monitoring subtle spatial and temporal changes in human physiological states becomes crucial for daily healthcare and professional medical diagnosis. Wearable acoustical sensors and related monitoring systems can be comfortably applied onto human body with a distinctive function of non-invasive detection. This paper reviews recent advances in wearable acoustical sensors for medical applications. Structural designs and characteristics of the structural components of wearable electronics, including piezoelectric and capacitive micromachined ultrasonic transducer (i.e., pMUT and cMUT), surface acoustic wave sensors (SAW) and triboelectric nanogenerators (TENGs) are discussed, along with their fabrication techniques and manufacturing processes. Diagnostic applications of these wearable sensors for detection of biomarkers or bioreceptors and diagnostic imaging have further been discussed. Finally, main challenges and future research directions in these fields are highlighted.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Humans , Biosensing Techniques/methods , Electronics , Ultrasonics , Monitoring, Physiologic/methods
7.
Adv Sci (Weinh) ; 10(20): e2206982, 2023 07.
Article in English | MEDLINE | ID: mdl-37150855

ABSTRACT

Hand dysfunctions in Parkinson's disease include rigidity, muscle weakness, and tremor, which can severely affect the patient's daily life. Herein, a multimodal sensor glove is developed for quantifying the severity of Parkinson's disease symptoms in patients' hands while assessing the hands' multifunctionality. Toward signal processing, various algorithms are used to quantify and analyze each signal: Exponentially Weighted Average algorithm and Kalman filter are used to filter out noise, normalization to process bending signals, K-Means Cluster Analysis to classify muscle strength grades, and Back Propagation Neural Network to identify and classify tremor signals with an accuracy of 95.83%. Given the compelling features, the flexibility, muscle strength, and stability assessed by the glove and the clinical observations are proved to be highly consistent with Kappa values of 0.833, 0.867, and 0.937, respectively. The intraclass correlation coefficients obtained by reliability evaluation experiments for the three assessments are greater than 0.9, indicating that the system is reliable. The glove can be applied to assist in formulating targeted rehabilitation treatments and improve hand recovery efficiency.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Tremor/diagnosis , Tremor/therapy , Reproducibility of Results , Biomechanical Phenomena , Hand
8.
Biosens Bioelectron ; 222: 114999, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36521206

ABSTRACT

Electronic textiles are fundamentally changing the way we live. However, the inability to effectively recycle them is a considerable burden to the environment. In this study, we developed a cotton fiber-based piezoresistive textile (CF p-textile) for biomonitoring which is biocompatible, biodegradable, and environmentally friendly. These CF p-textiles were fabricated using a scalable dip-coating method to adhere MXene flakes to porous cotton cellulose fibers. The adhesion is made stronger by strong hydrogen bonding between MXene flakes and hierarchically porous cotton cellulose fibers. This cotton-fiber system provides a high sensitivity of 17.73 kPa-1 in a wide pressure range (100 Pa-30 kPa), a 2 Pa subtle pressure detection limit, fast response/recovery time (80/40 ms), and good cycle stability (over 5, 000 cycles). With its compelling sensing performance, the CF p-textile can detect various human biomechanical activities, including pulsation, muscle movement, and swallowing, while still being comfortable to wear. Moreover, the cotton cellulose is decomposed into low-molecular weight cellulose or glucose as a result of the 1,4-glycosidic bond breakage when exposed to acid or during natural degradation, which allows the electronic textile to be biodegradable. This work offers an ecologically-benign, cost-effective and facile approach to fabricating high-performance wearable bioelectronics.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Humans , Cotton Fiber , Biological Monitoring , Textiles , Cellulose
9.
Bioact Mater ; 22: 343-364, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36311045

ABSTRACT

Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.

10.
Small Methods ; 6(10): e2200830, 2022 10.
Article in English | MEDLINE | ID: mdl-36068171

ABSTRACT

The hands are used in all facets of daily life, from simple tasks such as grasping and holding to complex tasks such as communication and using technology. Finding a way to not only monitor hand movements and gestures but also to integrate that data with technology is thus a worthwhile task. Gesture recognition is particularly important for those who rely on sign language to communicate, but the limitations of current vision-based and sensor-based methods, including lack of portability, bulkiness, low sensitivity, highly expensive, and need for external power sources, among many others, make them impractical for daily use. To resolve these issues, smart gloves can be created using a triboelectric nanogenerator (TENG), a self-powered technology that functions based on the triboelectric effect and electrostatic induction and is also cheap to manufacture, small in size, lightweight, and highly flexible in terms of materials and design. In this review, an overview of the existing self-powered smart gloves will be provided based on TENGs, both for gesture recognition and human-machine interface, concluding with a discussion on the future outlook of these devices.


Subject(s)
Electric Power Supplies , Nanotechnology , Humans , Monitoring, Physiologic
11.
Small ; 18(36): e2107099, 2022 09.
Article in English | MEDLINE | ID: mdl-36073141

ABSTRACT

The need to develop wearable devices for personal health monitoring, diagnostics, and therapy has inspired the production of innovative on-demand, customizable technologies. Several of these technologies enable printing of raw electronic materials directly onto biological organs and tissues. However, few of them have been thoroughly investigated for biocompatibility of the raw materials on the cellular, tissue, and organ levels or with different cell types. In addition, highly accurate multiday in vivo monitoring using such on-demand, in situ fabricated devices has yet to be done. Presented herein is the first fully biocompatible, on-skin fabricated electronics for multiple cell types and tissues that can capture electrophysiological signals with high fidelity. While also demonstrating improved mechanical and electrical properties, the drawn-on-skin ink retains its properties under various writing conditions, which minimizes the variation in electrical performance. Furthermore, the drawn-on-skin ink shows excellent biocompatibility with cardiomyocytes, neurons, mice skin tissue, and human skin. The high signal-to-noise ratios of the electrophysiological signals recorded with the DoS sensor over multiple days demonstrate its potential for personalized, long-term, and accurate electrophysiological health monitoring.


Subject(s)
Ink , Wearable Electronic Devices , Animals , Electronics , Electrophysiology , Humans , Mice , Skin
12.
Adv Sci (Weinh) ; 9(30): e2202980, 2022 10.
Article in English | MEDLINE | ID: mdl-36031395

ABSTRACT

Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables  more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.


Subject(s)
Wearable Electronic Devices , Humans , Electronics , Biocompatible Materials , Prostheses and Implants
13.
ACS Nano ; 16(9): 13301-13313, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35969207

ABSTRACT

At the forefront of the smart textile community, healthcare and sustainability are the two crucial objectives targeted by researchers. The development of such powerful devices has been driven by innovative fabrications of breathable, skin-conformable technologies through the use of functional and programmable materials and device structures. This Perspective focuses on the current smart textiles available in the research field, categorized into personalized healthcare, including diagnostics and therapeutics, and sustainability, including energy harvesting and conservation─personalized thermoregulation. These categories are further broken down into their platform structural technologies and performances. Furthermore, we give a comprehensive overview and highlight a few examples of current studies. Finally, we provide an outlook on these technologies for future researchers to participate. We envision that the next generation of smart textiles will revolutionize wearable technology for healthcare and sustainability.


Subject(s)
Textiles , Wearable Electronic Devices , Delivery of Health Care
14.
Adv Mater ; 34(36): e2202478, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35767870

ABSTRACT

Continuously and accurately monitoring pulse-wave signals is critical to prevent and diagnose cardiovascular diseases. However, existing wearable pulse sensors are vulnerable to motion artifacts due to the lack of proper adhesion and conformal interface with human skin during body movement. Here, a highly sensitive and conformal pressure sensor inspired by the kirigami structure is developed to measure the human pulse wave on different body artery sites under various prestressing pressure conditions and even with body movement. COMSOL multiphysical field coupling simulation and experimental testing are used to verify the unique advantages of the kirigami structure. The device shows a superior sensitivity (35.2 mV Pa-1 ) and remarkable stability (>84 000 cycles). Toward practical applications, a wireless cardiovascular monitoring system is developed for wirelessly transmitting the pulse signals to a mobile phone in real-time, which successfully distinguished the pulse waveforms from different participants. The pulse waveforms measured by the kirigami inspired pressure sensor are as accurate as those provided by the commercial medical device. Given the compelling features, the sensor provides an ascendant way for wearable electronics to overcome motion artifacts when monitoring pulse signals, thus representing a solid advancement toward personalized healthcare in the era of the Internet of Things.


Subject(s)
Wearable Electronic Devices , Heart Rate , Humans , Monitoring, Physiologic , Motion , Pulse
15.
Appl Mater Today ; 27: 101473, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35434263

ABSTRACT

The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 µm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.

16.
Biosens Bioelectron ; 205: 114092, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35217254

ABSTRACT

Flexible supercapacitors (FSCs) have received a lot of interest as portable power sources for wearable electronics. The biocompatibility of electrodes and electrolytes in wearable FSCs is important to consider although research into these topics is still in its early stages. In this work, we developed a wearable FSC that uses MXene Ti3C2 nanosheets and polypyrrole-carboxymethylcellulose nanospheres composite (Ti3C2@PPy-CMC) as the active electrode material and sweat as the electrolyte. The electrochemical performances of Ti3C2@PPy-CMC FSC were analyzed using an artificial sweat solution and exhibited excellent specific capacitance, power density, cycling stability, and bending stability. To demonstrate a real application of Ti3C2@PPy-CMC FSC, a sweat-chargeable FSC patch has been developed that can be applied directly to human clothing and skin to power a portable electronic gadget when the wearer is exercising. A comprehensive electrochemical study of the FSC patch was also conducted in various sweat secretion body regions such as the finger, foot sole, and wrist. Ti3C2@PPy-CMC composite's outstanding electrochemical performance indicates its potential capabilities and biocompatibility in wearable energy storage devices.


Subject(s)
Biosensing Techniques , Running , Wearable Electronic Devices , Humans , Polymers , Pyrroles , Sweat , Titanium
17.
Small Methods ; 6(2): e2101051, 2022 02.
Article in English | MEDLINE | ID: mdl-35174985

ABSTRACT

Electrode microfabrication technologies such as lithography and deposition have been widely applied in wearable electronics to boost interfacial coupling efficiency and device performance. However, a majority of these approaches are restricted by expensive and complicated processing techniques, as well as waste discharge. Here, helium plasma irradiation is employed to yield a molybdenum microstructured electrode, which is constructed into a flexible piezoresistive pressure sensor based on a Ti3 C2 Tx nanosheet-immersed polyurethane sponge. This electrode engineering strategy enables the smooth transition between sponge deformation and MXene interlamellar displacement, giving rise to high sensitivity (1.52 kPa-1 ) and good linearity (r2  = 0.9985) in a wide sensing range (0-100 kPa) with a response time of 226 ms for pressure detection. In addition, both the experimental characterization and finite element simulation confirm that the hierarchical structures modulated by pore size, plasma bias, and MXene concentration play a crucial role in improving the sensing performance. Furthermore, the as-developed flexible pressure sensor is demonstrated to measure human radial pulse, detect finger tapping, foot stomping, and perform object identification, revealing great feasibility in wearable biomonitoring and health assessment.


Subject(s)
Equipment Design/methods , Heart Rate Determination/instrumentation , Wearable Electronic Devices , Finite Element Analysis , Humans , Microtechnology , Polyurethanes/chemistry , Titanium/chemistry , Touch
18.
Small ; 18(19): e2107413, 2022 05.
Article in English | MEDLINE | ID: mdl-35182018

ABSTRACT

The charged species inside biofluids (blood, interstitial fluid, sweat, saliva, urine, etc.) can reflect the human body's physiological conditions and thus be adopted to diagnose various diseases early. Among all personalized health management applications, ion-selective organic electrochemical transistors (IS-OECTs) have shown tremendous potential in point-of-care testing of biofluids due to low cost, ease of fabrication, high signal amplification, and low detection limit. Moreover, IS-OECTs exhibit excellent flexibility and biocompatibility that enable their application in wearable bioelectronics for continuous health monitoring. In this review, the working principle of IS-OECTs and the recent studies of IS-OECTs for performance improvement are reviewed. Specifically, contemporary studies on material design and device optimization to enhance the sensitivity of IS-OECTs are discussed. In addition, the progress toward the commercialization of IS-OECTs is highlighted, and the recently proposed solutions or alternatives are summarized. The main challenges and perspectives for fully exploiting IS-OECTs toward future preventive and personal medical devices are addressed.


Subject(s)
Biosensing Techniques , Body Fluids , Humans , Ions , Sweat , Transistors, Electronic
19.
Adv Sci (Weinh) ; 9(8): e2105420, 2022 03.
Article in English | MEDLINE | ID: mdl-35001517

ABSTRACT

The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.


Subject(s)
Fibroins , Athletes , Electrodes , Fibroins/chemistry , Humans , Polymers , Silk
20.
Matter ; 4(9): 2886-2901, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34746749

ABSTRACT

Mechanical deformation of human skin provides essential information about human motions, muscle stretching, vocal fold vibration, and heart rates. Monitoring these activities requires the measurement of strains at different levels. Herein, we report a wearable wide-range strain sensor based on conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). A bioinspired bilayer structure was constructed to enable a wide-range strain sensing (1%~100%). Besides, hydrogel was chosen as the biological- and mechanical-compatible interface layer with the human skin. Finally, we demonstrated that the strain sensor is capable of monitoring various strain-related activities, including subtle skin deformation (pulse and phonation), mid-level body stretch (swallowing and facial expressions), and substantial joint movement (elbow bending).

SELECTION OF CITATIONS
SEARCH DETAIL