Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 18139, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103398

ABSTRACT

In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.


Subject(s)
Genome, Fungal , Manihot , Plant Diseases , Manihot/microbiology , Plant Diseases/microbiology , Asia, Southeastern , Phylogeny , Basidiomycota/genetics , Basidiomycota/isolation & purification
2.
Plant Cell Environ ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169844

ABSTRACT

Wood serves crucial functions in plants, yet our understanding of the mechanisms governing the composition, arrangement, and dimensions of its cells remains limited. The abrupt transition from nonlianescent to lianescent xylem in lianas represents an excellent model to address the underlying mechanisms, although consistent triggering factors for this process remain uncertain. In this study we examined how physical support attachment impacts the development of lianescent xylem in Bignonia magnifica (Bignoniaceae), employing a comprehensive approach integrating detailed anatomical analysis with gene expression profiling of cambium and differentiating xylem. Our findings demonstrate that attachment to physical supports triggers the formation of lianescent xylem, leading to increased vessel size, broader vessel distribution, reduced fibre content, and higher potential specific water conductivity than nonlianescent xylem. These shifts in wood anatomy coincide with the downregulation of genes associated with cell division and cell wall biosynthesis, and the upregulation of transcription factors, defense/cell death, and hormone-responsive genes in the lianescent xylem. Our findings provide insights into the regulation of xylem differentiation, driven by response to environmental stimuli. Additionally, they shed light on the mechanisms underlying the adaptation of lianas to climbing.

3.
J Exp Bot ; 75(18): 5641-5654, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-38829345

ABSTRACT

Sodium (Na+) is a beneficial element for most plants and may replace potassium (K+) in osmoregulatory process to a certain extent, increasing plant water use efficiency. Thus, understanding coordinated mechanisms underlying the combined use of K+ and Na+ in tree drought tolerance is a key challenge for forestry in dealing with productivity and water limitations. A pot experiment with three ratios of K/Na (K-supplied, partial K replacement by Na, and K-deficient plants) and two water regimes, well-watered (W+) and water-stressed (W-), was conducted on saplings of two Eucalyptus species with contrasting drought sensitivities. We evaluated the point of stomatal closure (Pgs90), xylem water potential at 12, 50, and 88% embolized xylem area (P12, P50, P88), hydraulic safety margin, leaf gas exchange (A, E, gs, and dark respiration), pre-dawn and midday leaf water potential (ΨPD and ΨMD), long-term water use efficiency (WUEL) and total dry mass. Partial K replacement by Na increased leaf gas exchange, WUEL, and total dry mass, while Pgs90, P12, P50, P88, and ΨMD decreased (were more negative), compared with plants exclusively supplied with K and K-deficient plants of both species. Fertilized plants had narrower hydraulic safety margins than K-deficient plants, indicating that these Eucalyptus species adopt the functional adaptive strategy of operating close to their hydraulic limits to maximize carbon uptake while increasing the risk of hydraulic failure under drought stress.


Subject(s)
Droughts , Eucalyptus , Potassium , Sodium , Xylem , Eucalyptus/physiology , Potassium/metabolism , Xylem/physiology , Xylem/metabolism , Sodium/metabolism , Fertilizers/analysis , Water/metabolism
4.
Plant Cell Environ ; 47(8): 3063-3075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38660960

ABSTRACT

Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.


Subject(s)
Citrus , Plant Roots , Xylem , Citrus/physiology , Xylem/physiology , Plant Roots/physiology , Water/metabolism , Droughts , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Plant Stomata/physiology
6.
Plants (Basel) ; 12(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005789

ABSTRACT

Tomato fruit is an excellent model for evaluating calcium regulation in plants since it expresses symptoms of either calcium deficiency or calcium excess. Aiming to evaluate the structure of the vascular system and its interactions with calcium and calcium oxalate crystals (CaOx), fruits of Lycopersicon pimpinellifolium were studied. Calcium levels were evaluated in basal, median, and distal pericarp portions, which were also analyzed under a light microscope to describe the structure. The L. pimpinellifolium pericarp shows idioblasts with calcium oxalate crystals. Vascular bundles of the basal pericarp show large transverse sections and abundant xylem vessels. The vascular bundles were smaller in the distal pericarp, and the xylem showed fewer and narrower vessels. The terminal bundles often consisted exclusively of phloem. Despite the differences observed in vascular bundle composition, the density of the vascular system was uniform in the pericarp as a consequence of bundle ramifications that occur at distal portions. The calcium concentration and crystal idioblasts decrease towards the apex of the fruit. The reduction in the xylem:phloem ratio seems to determine the low calcium concentration in the distal fruit portion.

7.
Plants (Basel) ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37653839

ABSTRACT

Calcium (Ca) and carbohydrate (CHO) supply in sweet cherry have been associated with fruit quality at harvest and during storage. There is little published information integrating CHO and Ca availability and distribution in sweet cherry and their effects on fruit quality. Accordingly, in the 2019-20 season, vascular restrictions were imposed on the phloem (girdling, G, stopping phloem flow) and xylem (transverse incision, S, cutting 50% of xylem cross-section area) of individual vertical branches of the sweet cherry combination 'Lapins'/Colt trained as Kym Green Bush system to modify mineral and CHO composition in fruit and associate such changes with quality at harvest and storage. The girdling to the phloem was used to induce changes in CHO distribution. The transverse incision to the xylem was a tool to modify Ca distribution. Five treatments (TR) were implemented: TR1-CTL = Control (without vascular restriction), TR2-G, at its base, TR3-G + G: at its base, and G further up at the change of year between the second and the third years of growth TR4--S and TR5-S + G. The vegetative (i.e., shoot and leaf growth), reproductive (i.e., fruit set and yield) development and stomatal conductance were monitored. Each branch was divided into the upper (1-and 2-year-old wood) and the lower (3-and 4-year-old wood) segments of the restriction applied. The quality and mineral composition (Ca, Mg, K, and N) of fruit borne on each segment were measured at harvest. The upper segment of TR3-G + G branches were harvested 10 d before the lower segment. The fruit from the upper segment of TR3-G + G was the largest, the sweetest, and had the higher titratable acidity concentration. However, fruits of this segment were the softest, had the lowest Ca concentrations, and had the highest ratios of N:Ca and K:Ca, compared with the other TRs. TR3-G + G branches developed the highest number of lateral current season shoots including shoots below the second girdling in the lower segment of the branch. This vegetative flow of growth would explain the mineral unbalance produced in the fruit from the upper segment of the branch. TR2-G did not register changes in fruit quality and mineral concentration compared with TR1-CTL. Surprisingly, the fruit from the branches with xylem restriction did not show changes in Ca concentration, suggesting that the xylem stream was enough to supply the fruit in branches without lateral shoot development. Fruit firmness was positively related to fruit Ca concentration and negatively related to the ratios of K:Ca and N:Ca.

8.
Plants (Basel) ; 12(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514202

ABSTRACT

The deficiency of calcium (Ca) reduces the quality and shelf life of fruits. In this scenario, although foliar spraying of Ca2+ has been used, altogether with soil fertilization, as an alternative to prevent deficiencies, little is known regarding its absorption dynamics by plant leaves. Herein, in vivo microprobe X-ray fluorescence was employed aiming to monitor the foliar absorption of CaCl2, Ca-citrate complex, and Ca3(PO4)2 nanoparticles with and without using adjuvant. We also investigated whether Sr2+ can be employed as Ca2+ proxy in foliar absorption studies. Moreover, the impact of treatments on the cuticle structure was evaluated by scanning electron microscopy. For this study, 45-day-old tomato (Solanum lycopersicum L., cv. Micro-Tom) plants were used as a model species. After 100 h, the leaves absorbed 90, 18, and 4% of aqueous CaCl2, Ca-citrate, and Ca3(PO4)2 nanoparticles, respectively. The addition of adjuvant increased the absorption of Ca-citrate to 28%, decreased that of CaCl2 to 77%, and did not affect Ca3(PO4)2. CaCl2 displayed an exponential decay absorption profile with half-lives of 15 h and 5 h without and with adjuvant, respectively. Ca-citrate and Ca3(PO4)2 exhibited absorption profiles that were closer to a linear behavior. Sr2+ was a suitable Ca2+ tracer because of its similar absorption profiles. Furthermore, the use of adjuvant affected the epicuticular crystal structure. Our findings reveal that CaCl2 was the most efficient Ca2+ source. The effects caused by adjuvant suggest that CaCl2 and Ca-citrate were absorbed mostly through hydrophilic and lipophilic pathways.

9.
AoB Plants ; 15(3): plad018, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37214224

ABSTRACT

Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.

10.
Plant Biol (Stuttg) ; 25(1): 198-207, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36394440

ABSTRACT

Intralaminar galls of Meunieriella result from ground tissue proliferation in leaves of Avicennia schaueriana, a typical halophytic mangrove. We tested if the preferred sites of gall induction were the midribs and secondary veins (SV) at the basal leaf portion, where the galls were expected to be largest; and if the vascular system in galls and adjacent regions was altered to favour water supply in galls, thus increasing their growth. Gall induction sites and gall sizes were quantified according to leaf portions and regions. Anatomical and histometric analyses in vascular and ground tissues of galls and adjacent regions were compared to equivalent regions of non-galled leaves. The galls were largest at basal sites on leaves, the midrib and SV. More galls occurred on the apical portion of the leaf, and on the leaf blade and secondary vein regions. Changes in shape and vascular system area, number and diameter of vessel elements were detected in both galls and adjacent regions. Fewer and smaller-sized vessel elements were observed in regions proximal to the galls and inside them. Gall size is not related with preferred induction sites, which could be explained by factors such as thermal balance. Alterations in the vascular system indicate reduced hydraulic conductivity in the xylem in the proximal region and inside galls, leading to water leakage to gall parenchyma cells. This compensatory mechanism explains the expansion and proliferation of water storage and spongy parenchyma cells in the galls, explaining the higher growth in more vascularized regions.


Subject(s)
Acanthaceae , Avicennia , Plant Leaves , Water , Plant Tumors
11.
Tree Physiol ; 43(1): 75-87, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36070431

ABSTRACT

The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.


Subject(s)
Embolism , Magnoliopsida , Plant Leaves , Xylem , Drought Resistance , Water , Droughts
12.
Front Plant Sci ; 13: 1039041, 2022.
Article in English | MEDLINE | ID: mdl-36466275

ABSTRACT

AMMONIUM TRANSPORTER/METHYLAMMONIUM PERMEASE/RHESUS (AMT) family members transport ammonium across membranes in all life domains. Plant AMTs can be categorized into AMT1 and AMT2 subfamilies. Functional studies of AMTs, particularly AMT1-type, have been conducted using model plants but little is known about the function of AMTs from crops. Sugarcane (Saccharum spp.) is a major bioenergy crop that requires heavy nitrogen fertilization but depends on a low carbon-footprint for competitive sustainability. Here, we identified and functionally characterized sugarcane ScAMT2;1 by complementing ammonium uptake-defective mutants of Saccharomyces cerevisiae and Arabidopsis thaliana. Reporter gene driven by the ScAMT2;1 promoter in A. thaliana revealed preferential expression in the shoot vasculature and root endodermis/pericycle according to nitrogen availability and source. Arabidopsis quadruple mutant plants expressing ScAMT2;1 driven by the CaMV35S promoter or by a sugarcane endogenous promoter produced significantly more biomass than mutant plants when grown in NH4 + and showed more 15N-ammonium uptake by roots and nitrogen translocation to shoots. In A. thaliana, ScAMT2;1 displayed a Km of 90.17 µM and Vmax of 338.99 µmoles h-1 g-1 root DW. Altogether, our results suggest that ScAMT2;1 is a functional high-affinity ammonium transporter that might contribute to ammonium uptake and presumably to root-to-shoot translocation under high NH4 + conditions.

13.
Rev. Ciênc. Agrovet. (Online) ; 21(4): 428-434, dez. 2022. tab, graf
Article in English | VETINDEX | ID: biblio-1413472

ABSTRACT

We assessed the effect of 28-homocatasterone on xylem functionality and its relationship with blossom end rot (BER) occurrenceand the quality of 'BRS Montese' tomatoes. Tomato plants were cultivated in a protected environment, with a semi-hydroponic system. During full flowering, open flowers were selected, marked, and pollinated. After two days, the flowers received the application of 28-homocatasterone at a concentration of 10-6M or deionized water (control). Treatments were reapplied weekly up to 24 days after the first application (DAFA). At 24 DAFA, fruits were harvested and evaluated for fresh mass, texture (skin rupture and pulp penetration forces), skin color, xylem functionality, membrane permeability, apoplastic calcium concentration, and BER incidence. The application of 28-homocatasterone at 10-6M did not increase the fresh mass nor change the fruits' texture attributes. However, 28-homocatasterone increased or kept xylem functionality, which was assicated with increased apoplastic calcium concentration and reduced BERoccurrence in 'BRS Montese' tomatoes. Thus, the application of 10-6M catasterone could be an alternative for BER control in tomatoes.(AU)


Avaliamos o efeito da 28-homocatasterona na funcionalidade do xilema e sua relação com a ocorrência de podridão estilar (PE) e aqualidade de tomates 'BRS Montese'. Os tomateiros foram cultivados em ambiente protegido, com sistema semi-hidropônico. Durante a plena floração, as flores abertas foram selecionadas, marcadas e polinizadas. Após dois dias, as flores receberam a aplicaçãode 28-homocatasterona na concentração de 10-6M ou água deionizada (controle). Os tratamentos foram reaplicados semanalmente até 24 dias após a primeira aplicação (DAPF). Aos 24 DAPF, os frutos foram colhidos e avaliados quanto à massa fresca, textura (força de ruptura da epiderme e resistência a penetração da polpa), cor da casca, funcionalidade do xilema, permeabilidade da membrana, concentração de cálcio apoplástico e incidência de PE. A aplicação de 28-homocatasterona a 10-6M não aumentou a massa fresca nem alterou os atributos de textura dos frutos. No entanto, a 28-homocatasterona aumentou ou manteve a funcionalidade do xilema, o que foi associado ao aumento da concentração de cálcio apoplástico e redução da ocorrência de PEem tomates 'BRS Montese'.Assim, a aplicação de catasterona 10-6M pode ser uma alternativa para o controle de PEem tomates.(AU)


Subject(s)
Solanum lycopersicum/drug effects , Brassinosteroids/adverse effects , Xylem/physiology
14.
Front Plant Sci ; 13: 974050, 2022.
Article in English | MEDLINE | ID: mdl-36092408

ABSTRACT

The search for drought tolerant species or cultivars is important to address water scarcity caused by climate change in Mediterranean regions. The anisohydric-isohydric behavior concept has been widely used to describe stomatal regulation during drought, simply in terms of variation of minimal water potential (Ψmin) in relation to pre-dawn water potential (Ψpd). However, its simplicity has sometimes failed to deliver consistent results in describing a complex behavior that results from the coordination of several plant functional traits. While Prunus dulcis (almond) is known as a drought tolerant species, little information is available regarding consistent metrics to discriminate among cultivars or the mechanisms underlying drought tolerance in almond. Here we show a sequence of plant stomatal, hydraulic, and wilting responses to drought in almonds, and the main differences between anisohydric and isohydric cultivars. In a pot desiccation experiment we observed that stomatal closure in P. dulcis is not driven by loss in turgor or onset of xylem cavitation, but instead, occurs early in response to decreasing Ψmin that could be related to the protection of the integrity of the hydraulic system, independently of cultivar. Also, we report that anisohydric cultivars of P. dulcis are characterized by maximum stomatal conductance, lower water potentials for stomatal closure and turgor loss, and lower vulnerability to xylem cavitation, which are traits that correlated with metrics to discriminate anisohydric and isohydric behavior. Our results demonstrate that P. dulcis presents a strategy to avoid cavitation by closing stomata during the early stages of drought. Future research should also focus on below-ground hydraulic traits, which could trigger stomatal closure in almond.

15.
Ann Bot ; 130(3): 445-456, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35863898

ABSTRACT

BACKGROUND AND AIMS: Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS: We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS: The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS: Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.


Subject(s)
Grassland , Xylem , Brazil , Carbohydrates , Water/metabolism , Wood/physiology , Xylem/physiology
16.
New Phytol ; 235(3): 815-820, 2022 08.
Article in English | MEDLINE | ID: mdl-35770485

Subject(s)
Trees , Xylem , Plant Leaves
17.
Phytopathology ; 112(10): 2062-2071, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35509210

ABSTRACT

Colonization of the xylem of sugarcane by Leifsonia xyli subsp. xyli results in the occlusion of the vessels by a gum-like compound and compromises the elongation of the stalk leading to stunted plants. However, no study has been performed in the apical tissue where the elongation of the stalks initiates at the intercalary meristem (IM). Microscopic and histochemical analyses were performed in plants with lower and higher bacterial titers and revealed that in both cases L. xyli subsp. xyli is present in this tissue and colonizes the forming xylem vessels in a similar way as observed in developed internodes. In both cases, it was observed adhering to the secondary walls, but only in plants with higher titers were a mild degradation of the walls and a granular material filling the vessels observed. The mixed composition of lipids, proteins, and pectin indicates that the filling is not a bacterial extracellular polymeric substance. Plants with higher bacterial populations also presented lower starch content in the ground parenchyma at the node elements, possibly resulting from the reported downregulation of photosynthesis and increased accumulation of phenolics. Their second and third IMs presented fewer cells and reduced expression of genes related to the cell cycle and to the synthesis of ABA in the apical tissue. These results indicate that increased L. xyli subsp. xyli colonization affects the development of the IM, which ultimately would reduce the length of the internodes, resulting in the main symptom of the disease.


Subject(s)
Actinomycetales , Saccharum , Actinobacteria , Actinomycetales/physiology , Extracellular Polymeric Substance Matrix , Lipids , Pectins , Plant Diseases/microbiology , Saccharum/microbiology , Starch , Tooth Apex
18.
Tree Physiol ; 42(9): 1750-1761, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35388901

ABSTRACT

Ongoing changes in climate, and the consequent mortality of natural and cultivated forests across the globe, highlight the urgent need to understand the plant traits associated with greater tolerance to drought. Here, we aimed at assessing key foliar traits, with a focus on the hydraulic component, that could confer a differential ability to tolerate drought in three commercial hybrids of the most important Eucalyptus species utilized in tropical silviculture: E. urophyla, E. grandis and E. camaldulensis. All genotypes exhibited similar water potential when the 90% stomatal closure (Ψgs90) occurs with Ψgs90 always preceding the start of embolism events. The drought-tolerant hybrid showed a higher leaf resistance to embolism, but the leaf hydraulic efficiency was similar among all genotypes. Other traits presented by the drought-tolerant hybrid were a higher cell wall reinforcement, lower value of osmotic potential at full turgor and greater bulk modulus of elasticity. We also identified that the leaf capacitance after the turgor loss, the ratio between cell wall thickness (t) and lumen breadth (b) ratio (t/b)3, and the minimal conductance might be good proxies for screening drought-tolerant Eucalyptus genotypes. Our findings suggest that xylem resistance to embolism can be an important component of drought tolerance in Eucalyptus in addition to other traits aimed at delaying the development of high tensions in the xylem. Highlight Drought tolerance in tropical Eucalyptus hybrids encompasses a high leaf resistance to embolism and a suite of traits aimed at delaying the development of high tensions in the xylem.


Subject(s)
Eucalyptus , Clone Cells , Droughts , Eucalyptus/genetics , Plant Leaves , Water , Xylem
19.
Evodevo ; 13(1): 11, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484568

ABSTRACT

BACKGROUND: Phloem wedges furrowing the wood are one of the most notorious, widespread types of cambial variants in Angiosperms. Many lianas in Malpighiaceae show these variations in the arrangement of the secondary tissues. Here we explore their ontogeny, structure, and evolution in Malpighiaceae, where phloem wedges appeared multiple times, showing how they have contributed to the anatomical diversification of the family. Using a broad sampling with 143 species from 50 genera, covering all major lineages in Malpighiaceae, we crossed data from ontogeny, stem anatomy, and phylogenetic comparative methods to determine ontogenetic trajectories, final anatomical architectures, and evolution within the most recent phylogeny for the family. RESULTS: Phloem wedges appeared exclusively in lianas and disappeared in shrub lineages nested within liana lineages. At the onset of development, the vascular cambium is regular, producing secondary tissues homogeneously across its girth, but soon, portions of the cambium in between the leaf insertions switch their activity producing less wood and more phloem, initially generating phloem arcs, which progress into phloem wedges. In the formation of these wedges, two ontogenetic trajectories were found, one that maintains the continuity of the cambium, and another where the cambium gets dissected. Phloem wedges frequently remain as the main cambial variant in several lineages, while in others there are additional steps toward more complex cambial variants, such as fissured stems, or included phloem wedges, the latter a novel type of interxylary phloem first described for the family. CONCLUSIONS: Phloem wedges evolved exclusively in lianas, with two different ontogenies explaining the 10 independent origins of phloem wedges in Malpighiaceae. The presence of phloem wedges has favored the evolution of even more complex cambial variants such as fissured stems and interxylary phloem.

20.
J Exp Bot ; 73(12): 4147-4156, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35312771

ABSTRACT

Auxins are known to regulate xylem development in plants, but their effects on water transport efficiency are poorly known. Here we used tomato plants with the diageotropica mutation (dgt), which has impaired function of a cyclophilin 1 cis-trans isomerase involved in auxin signaling, and the corresponding wild type (WT) to explore the mutation's effects on plant hydraulics and leaf gas exchange. The xylem of the dgt mutant showed a reduced hydraulically weighted vessel diameter (Dh) (24-43%) and conduit number (25-58%) in petioles and stems, resulting in lower theoretical hydraulic conductivities (Kt); on the other hand, no changes in root Dh and Kt were observed. The measured stem and leaf hydraulic conductances of the dgt mutant were lower (up to 81%), in agreement with the Kt values; however, despite dgt and WT plants showing similar root Dh and Kt, the measured root hydraulic conductance of the dgt mutant was 75% lower. The dgt mutation increased the vein and stomatal density, which could potentially increase photosynthesis. Nevertheless, even though it had the same photosynthetic capacity as WT plants, the dgt mutant showed a photosynthetic rate c. 25% lower, coupled with a stomatal conductance reduction of 52%. These results clearly demonstrate that increases in minor vein and stomatal density only result in higher leaf gas exchange when accompanied by higher hydraulic efficiency.


Subject(s)
Photosynthesis , Water , Indoleacetic Acids , Plant Leaves/physiology , Water/physiology , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL