Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 291(3): 1123-36, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26555265

ABSTRACT

Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1ß and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1ß/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1ß in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo.


Subject(s)
Adjuvants, Immunologic/pharmacology , Carrier Proteins/metabolism , Dendritic Cells/drug effects , Immunity, Innate/drug effects , Inflammasomes/drug effects , Macrophages/drug effects , Saponins/pharmacology , AIDS Vaccines/agonists , AIDS Vaccines/immunology , Adjuvants, Immunologic/analysis , Adjuvants, Immunologic/chemistry , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Carrier Proteins/genetics , Cell Survival/drug effects , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/immunology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , HIV Envelope Protein gp120/agonists , HIV Envelope Protein gp120/immunology , Immunoglobulin G/analysis , Immunoglobulin G/biosynthesis , Inflammasomes/immunology , Inflammasomes/metabolism , Lipid A/agonists , Lipid A/analogs & derivatives , Lipid A/pharmacology , Macrophages/cytology , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Saponins/analysis , Saponins/chemistry , Solubility , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism
2.
Mol Immunol ; 45(3): 661-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17869341

ABSTRACT

Immunogenic properties of the combined vaccine CombiHIVvac, comprising polyepitope HIV-1 immunogens, one being the artificial polyepitope protein TBI, containing the T- and B-cell epitopes from Env and Gag proteins, and the DNA vaccine construct pcDNA-TCI coding for the artificial protein TCI, carrying over 80 T-cell epitopes (both CD4+ CTL and CD8+ Th) from Env, Gag, Pol, and Nef proteins, are studied in this work. The data reported demonstrate clearly that a combination of two B- and T-cell immunogens (TBI and TCI) in one construct results in a synergistic increase in the antibody response to both TBI protein and the proteins from HIV-1 lysate. The level of antibodies induced by immunization with the constructs containing either immunogen alone (TBI protein or the plasmid pcDNA-TCI) was significantly lower as compared to that induced by the combined vaccine. The analysis performed suggests that the presence of CD4+ T-helper epitopes, which can be presented by MHC class II, in the protein TCI may be the main reason underlying the increased synthesis of antibodies to TBI protein due to a CD4-mediated stimulation of B-cell proliferation and differentiation.


Subject(s)
AIDS Vaccines/agonists , Antibodies, Viral/immunology , Antibody Formation/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , HIV-1/immunology , Viral Proteins/immunology , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Animals , Antigen Presentation/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Proliferation , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class II/immunology , Mice , Mice, Inbred BALB C , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL