Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cells ; 12(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-37048143

ABSTRACT

Defects in the development of the ocular lens can cause congenital cataracts. To understand the various etiologies of congenital cataracts, it is important to characterize the genes linked to this developmental defect and to define their downstream pathways that are relevant to lens biology and pathology. Deficiency or alteration of several RNA-binding proteins, including the conserved RBP Celf1 (CUGBP Elav-like family member 1), has been described to cause lens defects and early onset cataracts in animal models and/or humans. Celf1 is involved in various aspects of post-transcriptional gene expression control, including regulation of mRNA stability/decay, alternative splicing and translation. Celf1 germline knockout mice and lens conditional knockout (Celf1cKO) mice develop fully penetrant cataracts in early postnatal stages. To define the genome-level changes in RNA transcripts that result from Celf1 deficiency, we performed high-throughput RNA-sequencing of Celf1cKO mouse lenses at postnatal day (P) 0. Celf1cKO lenses exhibit 987 differentially expressed genes (DEGs) at cut-offs of >1.0 log2 counts per million (CPM), ≥±0.58 log2 fold-change and <0.05 false discovery rate (FDR). Of these, 327 RNAs were reduced while 660 were elevated in Celf1cKO lenses. The DEGs were subjected to various downstream analyses including iSyTE lens enriched-expression, presence in Cat-map, and gene ontology (GO) and representation of regulatory pathways. Further, a comparative analysis was done with previously generated microarray datasets on Celf1cKO lenses P0 and P6. Together, these analyses validated and prioritized several key genes mis-expressed in Celf1cKO lenses that are relevant to lens biology, including known cataract-linked genes (e.g., Cryab, Cryba2, Cryba4, Crybb1, Crybb2, Cryga, Crygb, Crygc, Crygd, Cryge, Crygf, Dnase2b, Bfsp1, Gja3, Pxdn, Sparc, Tdrd7, etc.) as well as novel candidates (e.g., Ell2 and Prdm16). Together, these data have defined the alterations in lens transcriptome caused by Celf1 deficiency, in turn uncovering downstream genes and pathways (e.g., structural constituents of eye lenses, lens fiber cell differentiation, etc.) associated with lens development and early-onset cataracts.


Subject(s)
CELF1 Protein , Cataract , Lens, Crystalline , Animals , Humans , Mice , Cataract/metabolism , CELF1 Protein/genetics , CELF1 Protein/metabolism , Lens, Crystalline/metabolism , Mice, Knockout , RNA/metabolism , Transcriptome/genetics
2.
Phytomedicine ; 112: 154587, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805480

ABSTRACT

BACKGROUND: Hepatic fibrosis, a common pathological feature of chronic liver injuries, is a serious public health problem and lacks effective therapy. Glycyrrhizic acid (GA) is a bioactive ingredient in the root of traditional Chinese medicine licorice, and exhibits remarkable anti-viral, anti-inflammatory and hepatoprotective actions. PURPOSE: Here we aimed to investigated whether GA provided a therapeutic efficacy in hepatic fibrosis and uncover its molecular mechanisms. STUDY DESIGN AND METHODS: We investigated the anti-fibrosis effects of GA using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated human LX-2 cells and primary hepatic stellate cells (HSCs). CUGBP1-mediated IFN-γ/STAT1/Smad7 signaling was examined with immunofluorescence staining and western blot analysis. We designed and studied the binding of GA to CUGBP1 using in silico docking, and validated by microscale thermophoresis (MST) assay. RESULTS: GA obviously attenuated CCl4-induced liver histological damage, and reduced serum ALT and AST levels. Meanwhile, GA decreased liver fibrogenesis markers such as α-SMA, collagen α1, HA, COL-III, and LN in the hepatic tissues. Mechanistically, GA remarkably elevated the levels of IFN-γ, p-STAT1, Smad7, and decreased CUGBP1 in vivo and in vitro. Over-expression of CUGBP1 completely abolished the anti-fibrotic effect of GA and regulation on IFN-γ/STAT1/Smad7 pathway in LX-2 cells and primary HSCs, confirming CUGBP1 played a pivotal role in the protection by GA from liver fibrosis. Further molecular docking and MST assay indicated that GA had a good binding affinity with the CUGBP1 protein. The dissociation constant (Kd) of GA and CUGBP1 was 0.293 µM. CONCLUSION: Our study demonstrated for the first time that GA attenuated liver fibrosis and hepatic stellate cell activation by promoting CUGBP1-mediated IFN-γ/STAT1/Smad7 signalling pathways. GA may be a potential candidate compound for preventing or reliving liver fibrosis.


Subject(s)
Glycyrrhizic Acid , Signal Transduction , Animals , Humans , Mice , Glycyrrhizic Acid/pharmacology , Hepatic Stellate Cells , Interferon-gamma/metabolism , Liver , Liver Cirrhosis/metabolism , Molecular Docking Simulation , Smad7 Protein/metabolism , STAT1 Transcription Factor/metabolism , Transforming Growth Factor beta1/metabolism , CELF1 Protein/metabolism
3.
Biochem Genet ; 61(4): 1319-1333, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36585568

ABSTRACT

Cataract is a global eye disease caused by the opacification of lens, while its underlying molecular pathogenesis is not clear, making it difficult for prevention. CELF1, an RNA binding protein, mediates Alternative Splicing (AS) of genes involved in diverse diseases and regulates development or defects of lens. Utilizing transcriptome-wide approaches, we analyzed and compared AS patterns between human lens epithelial cells (SRA01/04) with CELF1 overexpression (CELF1-OE) and control cells. Extensive changes in AS patterns upon CELF1-OE were identified in SRA01/04 cells. We finally identified 840 CELF1-regulated AS events (RASEs) and found that CELF1-OE preferred to repress exon skipping events in SRA01/04 cells. CELF1-regulated AS genes were enriched in the regulation of DNA repair, cellular response to DNA damage stimulus, and apoptosis pathways (including HMGA2, CSNK1E, and YAP1). These biological functions and pathways have been reported to be associated with lens development or other eye diseases. To further explore the mechanisms of CELF1 in regulating AS genes, we downloaded and re-analyzed a set of CELF1-RNA interactome data. We found that 194 genes were bound and regulated by CELF1 at the AS level. 10 genes involved in DNA repair-related pathways were also bound by CELF1. Motif analysis for CELF1-bound peaks and splicing sites of RASEs showed that CELF1 regulates AS by binding to the AGGU[AG]AG motif in SRA01/04 cells. CELF1 could mediate AS of DNA repair-related genes through directly binding to their transcripts with distinct motif bias. The functional mechanism of CELF1 may ultimately participate in cataract formation and lens development.


Subject(s)
Alternative Splicing , Cataract , Humans , CELF1 Protein/genetics , CELF1 Protein/metabolism , Cell Line , Cataract/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
BMC Ophthalmol ; 22(1): 122, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35287612

ABSTRACT

BACKGROUND: RNA binding proteins (RBPs)-mediated regulation plays important roles in many eye diseases, including the canonical RBP CELF1 in cataract. While the definite molecular regulatory mechanisms of CELF1 on cataract still remain elusive. METHODS: In this study, we overexpressed CELF1 in human cultured lens epithelial SRA01/04 cells and applied whole transcriptome sequencing (RNA-seq) method to analyze the global differences mediated by CELF1. We then analyzed public RNA-seq and CELF1-RNA interactome data to decipher the underlying mechanisms. RESULTS: The results showed that transcriptome profile was globally changed by CELF1 overexpression (CELF1-OE). Functional analysis revealed CELF1 specifically increased the expression of genes in extracellular matrix disassembly, extracellular matrix organization, and proteolysis, which could be classified into matrix metalloproteinases (MMPs) family. This finding was also validated by RT-qPCR and public mouse early embryonic lens data. Integrating analysis with public CELF1-RNA interactome data revealed that no obvious CELF1-binding peak was found on the transcripts of these genes, indicating an indirectly regulatory role of CELF1 in lens epithelial cells. CONCLUSIONS: Our study demonstrated that CELF1-OE promotes transcriptional level of MMP genes; and this regulation may be completed by other ways except for binding to RNA targets. These results suggest that CELF1-OE is implicated in the development of lens, which is associated with cataract and expands our understanding of CELF1 regulatory roles as an RNA binding protein.


Subject(s)
Epithelial Cells , RNA-Binding Proteins , Animals , CELF1 Protein/genetics , CELF1 Protein/metabolism , Epithelial Cells/metabolism , Matrix Metalloproteinases/genetics , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptome
5.
Nucleic Acids Res ; 50(5): 2440-2451, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35234905

ABSTRACT

CUGBP Elav-like family member 1 (CELF1), an RNA-binding protein (RBP), plays important roles in the pathogenesis of diseases such as myotonic dystrophy, liver fibrosis and cancers. However, targeting CELF1 is still a challenge, as RBPs are considered largely undruggable. Here, we discovered that compound 27 disrupted CELF1-RNA binding via structure-based virtual screening and biochemical assays. Compound 27 binds directly to CELF1 and competes with RNA for binding to CELF1. Compound 27 promotes IFN-γ secretion and suppresses TGF-ß1-induced hepatic stellate cell (HSC) activation by inhibiting CELF1-mediated IFN-γ mRNA decay. In vivo, compound 27 attenuates CCl4-induced murine liver fibrosis. Furthermore, the structure-activity relationship analysis was performed and compound 841, a derivative of compound 27, was identified as a selective CELF1 inhibitor. In conclusion, targeting CELF1 RNA-binding activity with small molecules was achieved, which provides a novel strategy for treating liver fibrosis and other CELF1-mediated diseases.


Subject(s)
RNA-Binding Proteins , RNA , Animals , CELF1 Protein/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Mice , RNA Stability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Exp Eye Res ; 214: 108889, 2022 01.
Article in English | MEDLINE | ID: mdl-34906599

ABSTRACT

Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.


Subject(s)
Cataract/metabolism , Cell Cycle/physiology , Cytoskeleton/metabolism , Lens, Crystalline/metabolism , Protein Processing, Post-Translational/physiology , RNA-Binding Proteins/physiology , Transcription Factors/genetics , Aging/physiology , CELF1 Protein/metabolism , Cataract/pathology , Humans , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism
7.
Cell Tissue Res ; 387(1): 111-121, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34669021

ABSTRACT

Cardiac hypertrophy is considered as a common pathophysiological process in various cardiovascular diseases. CUG triplet repeat-binding protein 1 (CELF1) is an RNA-binding protein that has been shown to be an important post-transcription regulator and involved in several types of cancer, whereas its role in cardiac remodeling remains unclear. Herein, we found that the expression of CELF1 was significantly increased in pressure overload-induced hypertrophic hearts and angiotensin II (Ang II)-induced neonatal cardiomyocytes. Based on transverse aortic constriction-induced cardiac hypertrophy model, CELF1 deficiency markedly ameliorated cardiac hypertrophy, cardiac fibrosis, oxidative stress, and apoptosis. Accordingly, CELF1 deficiency alleviated the production of reactive oxygen species (ROS) and apoptosis of neonatal cardiomyocytes via inhibition of Raf1, TAK1, ERK1/2, and p38 phosphorylation. Mechanistically, depletion or overexpression of CELF1 negatively regulated the protein expression of phosphatidylethanolamine-binding protein 1 (PEBP1), while the mRNA expression of PEBP1 remained unchanged. RNA immunoprecipitation revealed that CELF1 directly interacted with PEBP1 mRNA. Biotin pull-down analysis and dual-luciferase assay showed that CELF1 directly bound to the fragment 1 within 3'UTR of PEBP1. Moreover, knockdown of PEBP1 partially enhanced the production of ROS and apoptosis of neonatal cardiomyocytes inhibited by CELF1 deficiency. In conclusion, CELF1 binds to the 3'UTR of PEBP1 and acts as an endogenous activator of MAPK signaling pathway. Inhibition of CELF1 attenuates pathological cardiac hypertrophy, oxidative stress, and apoptosis, thus could be a potential therapeutic strategy of pathological cardiac hypertrophy.


Subject(s)
CELF1 Protein/metabolism , Cardiomegaly/genetics , Echocardiography/methods , Myocytes, Cardiac/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , RNA-Binding Proteins/metabolism , Animals , Cardiomegaly/physiopathology , Humans , Mice , Signal Transduction
8.
Toxicol Appl Pharmacol ; 420: 115530, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33845055

ABSTRACT

Chronic Kidney Disease (CKD) is a serious threat to human health. In addition, kidney fibrosis is a key pathogenic intermediate for the progression of CDK. Moreover, excessive activation of fibroblasts is key to the development of kidney fibrosis and this process is difficult to control. Notably, fraxinellone is a natural compound isolated from Dictamnus dasycarpus and has a variety of pharmacological activities, including hepatoprotective, anti-inflammatory and anti-cancer effects. However, the effect of fraxinellone on kidney fibrosis is largely unknown. The present study showed that fraxinellone could alleviate folic acid-induced kidney fibrosis in mice in a dose dependent manner. Additionally, the results revealed that fraxinellone could effectively down-regulate the expression of CUGBP1, which was highly up-regulated in human and murine fibrotic renal tissues. Furthermore, expression of CUGBP1 was selectively induced by the Transforming Growth Factor-beta (TGF-ß) through p38 and JNK signaling in kidney fibroblasts. On the other hand, downregulating the expression of CUGBP1 significantly inhibited the activation of kidney fibroblasts. In conclusion, these findings demonstrated that fraxinellone might be a new drug candidate and CUGBP1 could be a promising target for the treatment of kidney fibrosis.


Subject(s)
Benzofurans/pharmacology , CELF1 Protein/metabolism , Fibroblasts/drug effects , Kidney Diseases/prevention & control , Kidney/drug effects , Animals , CELF1 Protein/genetics , Cell Line , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Folic Acid , JNK Mitogen-Activated Protein Kinases/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , Rats , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
9.
FASEB J ; 35(5): e21512, 2021 05.
Article in English | MEDLINE | ID: mdl-33811692

ABSTRACT

Vascular rarefaction due to impaired angiogenesis is associated with contractile dysfunction and the transition from compensation to decompensation and heart failure. The regulatory mechanism controlling vascular rarefaction during the transition remains elusive. Increased expression of a nuclear RNA-binding protein CUGBP Elav-like family member 1 (CELF1) in the adult heart is associated with the transition from compensated hypertrophy to decompensated heart failure. Elevated CELF1 level resulted in degradation of the major cardiac gap junction protein, connexin 43, in dilated cardiomyopathy (DCM), the most common cause of heart failure. In the present study, we investigated the role of increased CELF1 expression in causing vascular rarefaction in DCM. CELF1 overexpression (CELF1-OE) in cardiomyocytes resulted in reduced capillary density. CELF1-OE mice administered hypoxyprobe showed immunoreactivity and increased mRNA levels of HIF1α, Glut-1, and Pdk-1, which suggested the association of a reduced capillary density-induced hypoxic condition with CELF1 overexpression. Vegfa mRNA level was downregulated in mouse hearts exhibiting DCM, including CELF1-OE and infarcted hearts. Vegfa mRNA level was also downregulated to a similar extent in cardiomyocytes isolated from infarcted hearts by Langendorff preparation, which suggested cardiomyocyte-derived Vegfa expression mediated by CELF1. Cardiomyocyte-specific depletion of CELF1 preserved the capillary density and Vegfa mRNA level in infarcted mouse hearts. Also, CELF1 bound to Vegfa mRNA and regulated Vegfa mRNA stability via the 3' untranslated region. These results suggest that elevated CELF1 level has dual effects on impairing the functions of cardiomyocytes and microvasculature in DCM.


Subject(s)
CELF1 Protein/metabolism , Heart Failure/pathology , Microvessels/pathology , Proteolysis , RNA Stability , Vascular Endothelial Growth Factor A/metabolism , Animals , CELF1 Protein/genetics , Heart Failure/etiology , Heart Failure/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microvessels/metabolism , Vascular Endothelial Growth Factor A/genetics
10.
Life Sci ; 275: 119288, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33667514

ABSTRACT

AIMS: Hepatocellular carcinoma (HCC) is a malignant cancer that threatened human life seriously. Long non-coding RNA (lncRNA) BACE1-AS has been reported as a key regulator in tumorigenesis. Yet the specific correlation between BACE1-AS and HCC still needs further investigation. The primary purpose of our study is to reveal the exact correlation between BACE1-AS and HCC. MAIN METHODS: Bioinformatics via TCGA database revealed BACE1-AS closely related with HCC. qRT-PCR confirmed the abnormal BACE1-AS level in HCC tissues and cells. Databases prediction suggested that miR-377-3p might be a modulatory target of BACE1-AS and luciferase assay confirmed this hypothesis. Further study discovered that CELF1 also partook in the regulatory axis of BACE1-AS/miR-377-3p. Wound healing assays and transwell assays were utilized to investigate the impact of BACE1-AS, miR-377-3p and CELF1 in vitro. In vivo metastasis was examined by pulmonary metastasis model. KEY FINDINGS: This study found that BACE1-AS was overexpressed in HCC tissues and cell lines. Knockdown of BACE1-AS could restrain HCC progression in vitro, and inhibit pulmonary metastasis in vivo. MiR-377-3p was negatively modulated by BACE1-AS in HCC tumor tissues and cells. MiR-377-3p up-regulation inhibited HCC cells migration and invasion via inactivating EMT process. Moreover, CELF1 was identified as a downstream regulator of miR-377-3p and served as an oncogene in HCC cells. SIGNIFICANCE: Our findings supported that lncRNA BACE1-AS was up-regulated in HCC, promoting invasion and metastasis of hepatocellular carcinoma cells by modulating miR-377-3p/CELF1 axis via contributing to EMT pathway. BACE1-AS could be a potential biomarker in HCC for future treatment.


Subject(s)
CELF1 Protein/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Animals , Blotting, Western , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Humans , Liver Neoplasms/pathology , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , RNA, Long Noncoding/physiology , Real-Time Polymerase Chain Reaction
11.
Hum Cell ; 34(2): 491-501, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33400247

ABSTRACT

Nasopharyngeal carcinoma is a type of otolaryngological malignancy with high incidence. Long non-coding RNAs (lncRNAs) are closely related to nasopharyngeal carcinoma. LncRNA AFAP1-AS1 (AFAP1-AS1) has been found to play important roles in nasopharyngeal carcinoma progression and poor prognosis. However, the mechanism underlying AFAP1-AS1 in regulating nasopharyngeal carcinoma is still unclear. In current study, AFAP1-AS1 was found to be up-regulated in nasopharyngeal carcinoma tissues and cells. AFAP1-AS1 overexpression and knockdown were conducted in nasopharyngeal carcinoma cells. The results proved that AFAP1-AS1 promoted the survival and migration of nasopharyngeal carcinoma cells. Additionally, specificity protein 1 (SP1) was enhanced in nasopharyngeal carcinoma tissues and cells, and induced AFAP1-AS1 expression. The interaction between AFAP1-AS1 and miR-497-5p was confirmed. AFAP1-AS1 was demonstrated to regulate CELF1, a target gene of miR-497-5p. Further functional analysis revealed that AFAP1-AS1 knockdown attenuated SP1-induced nasopharyngeal carcinoma progression. These results indicate that SP1-induced AFAP1-AS1 facilitates nasopharyngeal carcinoma progression by regulating miR-497-5p/CELF1 pathway, which provides a new target for nasopharyngeal carcinoma treatment.


Subject(s)
CELF1 Protein/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Microfilament Proteins/physiology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness/genetics , RNA, Long Noncoding/physiology , Signal Transduction/genetics , Sp1 Transcription Factor/physiology , Cell Line, Tumor , Humans , Molecular Targeted Therapy , Signal Transduction/physiology
12.
Gene Ther ; 28(12): 718-728, 2021 12.
Article in English | MEDLINE | ID: mdl-32632266

ABSTRACT

Cardiac hypertrophy is imposed much pressure on heart and threatening our live. Previous study suggested that dysregulation of Celf1 is largely connecting to neonatal cardiac dysfunction. Hence, we aimed to explore the precise function and probable regulatory mechanism upstream of Celf1in cardiac hypertrophy. Here, Ang-II treatment was implemented to stimulate hypertrophic phenotypes inH9C2 and MCM cells. Immunofluorescence assay was conducted to measure the surface area of cardiomyocytes. And qRT-PCR assay was conducted to investigate gene expression. Moreover, western blot assay was conducted to probe the protein levels. Results uncovered that Celf1 expression was increased dependent on elevated Ang-II concentration, and that inhibited Celf1 could relieve the Ang-II-caused cardiac hypertrophy. Significantly, Celf1was found to be targeted by miR-129-5p but then released via the sponging role of circ-Jarid2. Furthermore, circ-Jarid2 was found to promote cardiac hypertrophy, whereas miR-129-5p played suppressing parts in hypertrophic cardiomyocytes. Moreover, we verified circ-Jarid2 contributed to cardiac hypertrophy via miR-129-5p/Celf1 axis both in vitro and in vivo. In conclusion, circ-Jarid2/miR-129-5p/Celf1 axis aggravates cardiac hypertrophy, which provides new ideas for developing treatment strategies for patients with cardiac hypertrophy.


Subject(s)
CELF1 Protein/metabolism , MicroRNAs , Polycomb Repressive Complex 2 , Cardiomegaly/genetics , Cardiomegaly/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Polycomb Repressive Complex 2/metabolism
13.
Gastroenterology ; 160(4): 1240-1255.e3, 2021 03.
Article in English | MEDLINE | ID: mdl-33189700

ABSTRACT

BACKGROUND & AIMS: The down-regulated in adenoma (DRA) protein, encoded by SLC26A3, a key intestinal chloride anion exchanger, has recently been identified as a novel susceptibility gene for inflammatory bowel disease (IBD). However, the mechanisms underlying the increased susceptibility to inflammation induced by the loss of DRA remain elusive. Compromised barrier is a key event in IBD pathogenesis. The current studies were undertaken to elucidate the impact of DRA deficiency on epithelial barrier integrity and to define underlying mechanisms. METHODS: Wild-type and DRA-knockout (KO) mice and crypt-derived colonoids were used as models for intestinal epithelial response. Paracellular permeability was measured by using fluorescein isothiocyanate-dextran flux. Immunoblotting, immunofluorescence, immunohistochemistry, and ribonucleoprotein immunoprecipitation assays were performed. Gut microbiome analysis was conducted to investigate the impact of DRA deficiency on gut microbial communities. RESULTS: DRA-KO mice exhibited an increased colonic paracellular permeability with significantly decreased levels of tight junction/adherens junction proteins, including ZO-1, occludin, and E-cadherin. A similar expression pattern of occludin and E-cadherin was observed in colonoids derived from DRA-KO mice and short hairpin RNA-mediated DRA knockdown in Caco-2 cells. Microbial analysis showed gut dysbiosis in DRA-KO mice. However, cohousing studies showed that dysbiosis played only a partial role in maintaining tight junction protein expression. Furthermore, our results showed increased binding of RNA-binding protein CUGBP1 with occludin and E-cadherin genes in DRA-KO mouse colon, suggesting that posttranscriptional mechanisms play a key role in gut barrier dysfunction. CONCLUSIONS: To our knowledge, our studies demonstrate a novel role of DRA in maintaining the intestinal epithelial barrier function and potential implications of its dysregulation in IBD pathogenesis.


Subject(s)
Antiporters/deficiency , Chloride-Bicarbonate Antiporters/deficiency , Dysbiosis/immunology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Sulfate Transporters/deficiency , Animals , Antiporters/genetics , CELF1 Protein/metabolism , Caco-2 Cells , Cadherins/metabolism , Chloride-Bicarbonate Antiporters/genetics , Disease Models, Animal , Dysbiosis/microbiology , Dysbiosis/pathology , Gene Knockdown Techniques , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Knockout , Occludin/metabolism , Permeability , Sulfate Transporters/genetics , Tight Junctions/pathology
14.
Int J Mol Sci ; 21(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297405

ABSTRACT

Transcripts of alpha-fetoprotein (Afp), H19, and insulin-like growth factor 2 (Igf2) genes are highly expressed in mouse fetal liver, but decrease drastically during maturation. While transcriptional regulation of these genes has been well studied, the post-transcriptional regulation of their developmental decrease is poorly understood. Here, we show that shortening of poly(A) tails and subsequent RNA decay are largely responsible for the postnatal decrease of Afp, H19, and Igf2 transcripts in mouse liver. IGF2 mRNA binding protein 1 (IMP1), which regulates stability and translation efficiency of target mRNAs, binds to these fetal liver transcripts. When IMP1 is exogenously expressed in mouse adult liver, fetal liver transcripts show higher expression and possess longer poly(A) tails, suggesting that IMP1 stabilizes them. IMP1 declines concomitantly with fetal liver transcripts as liver matures. Instead, RNA-binding proteins (RBPs) that promote RNA decay, such as cold shock domain containing protein E1 (CSDE1), K-homology domain splicing regulatory protein (KSRP), and CUG-BP1 and ETR3-like factors 1 (CELF1), bind to 3' regions of fetal liver transcripts. These data suggest that transitions among RBPs associated with fetal liver transcripts shift regulation from stabilization to decay, leading to a postnatal decrease in those fetal transcripts.


Subject(s)
Gene Expression Regulation, Developmental , Liver/metabolism , RNA Stability , Animals , CELF1 Protein/genetics , CELF1 Protein/metabolism , Female , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Liver/embryology , Mice , Mice, Inbred C57BL , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism
15.
Nature ; 587(7832): 145-151, 2020 11.
Article in English | MEDLINE | ID: mdl-32908311

ABSTRACT

Nuclear compartments have diverse roles in regulating gene expression, yet the molecular forces and components that drive compartment formation remain largely unclear1. The long non-coding RNA Xist establishes an intra-chromosomal compartment by localizing at a high concentration in a territory spatially close to its transcription locus2 and binding diverse proteins3-5 to achieve X-chromosome inactivation (XCI)6,7. The XCI process therefore serves as a paradigm for understanding how RNA-mediated recruitment of various proteins induces a functional compartment. The properties of the inactive X (Xi)-compartment are known to change over time, because after initial Xist spreading and transcriptional shutoff a state is reached in which gene silencing remains stable even if Xist is turned off8. Here we show that the Xist RNA-binding proteins PTBP19, MATR310, TDP-4311 and CELF112 assemble on the multivalent E-repeat element of Xist7 and, via self-aggregation and heterotypic protein-protein interactions, form a condensate1 in the Xi. This condensate is required for gene silencing and for the anchoring of Xist to the Xi territory, and can be sustained in the absence of Xist. Notably, these E-repeat-binding proteins become essential coincident with transition to the Xist-independent XCI phase8, indicating that the condensate seeded by the E-repeat underlies the developmental switch from Xist-dependence to Xist-independence. Taken together, our data show that Xist forms the Xi compartment by seeding a heteromeric condensate that consists of ubiquitous RNA-binding proteins, revealing an unanticipated mechanism for heritable gene silencing.


Subject(s)
Gene Silencing , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism , Animals , CELF1 Protein/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Female , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Nuclear Matrix-Associated Proteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , X Chromosome Inactivation/genetics
16.
Clin Sci (Lond) ; 134(14): 1973-1990, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32677671

ABSTRACT

Colorectal cancer (CRC) is often diagnosed at later stages after it has metastasized to other organs. The development of chemoresistance also contributes to a poor prognosis. Therefore, an increased understanding of the metastatic properties of CRC and chemoresistance could improve patient survival. CUGBP elav-like family member 1 (CELF1) is an RNA-binding protein, which is overexpressed in many human malignant tumors. However, the influence of CELF1 in CRC is unclear. V-ets erythroblastosis virus E26 oncogene homologue 2 (ETS2) is an evolutionarily conserved proto-oncogene known to be overexpressed in a variety of human cancers including CRC. In thespresent tudy, we investigated the association between CELF1 and ETS2 in CRC tumorigenesis and oxaliplatin (L-OHP) resistance. We found a positive correlation between the elevated expression of CELF1 and ETS2 in human CRC tissues. Overexpression of CELF1 increased CRC cell proliferation, migration, and invasion in vitro and in a xenograft tumor growth model in vivo, and induced resistance to L-OHP. In contrast, CELF1 knockdown improved the response of CRC cells to L-OHP. Overexpression of ETS2 increased the malignant behavior of CRC cells (growth, migration, and invasion) and L-OHP resistance in vitro. Moreover, L-OHP resistance induced by CELF1 overexpression was reversed by ETS2 knockdown. The results of luciferase reporter and ribonucleoprotein immunoprecipitation assays indicated that CELF1 up-regulates ETS2 by binding to its 3'-UTR. Taken together, our findings have identified that CELF1 regulates ETS2 in a mechanism that results in CRC tumorigenesis and L-OHP resistance, and CELF1 may be a promising target for overcoming chemoresistance in CRC.


Subject(s)
CELF1 Protein/metabolism , Carcinogenesis , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm , Proto-Oncogene Protein c-ets-2/metabolism , Animals , Antineoplastic Agents , Cell Movement , Epithelial-Mesenchymal Transition , Female , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Mice, Nude , Middle Aged , Oxaliplatin , Proto-Oncogene Mas , Proto-Oncogene Protein c-ets-2/genetics , Xenograft Model Antitumor Assays
17.
Nat Commun ; 11(1): 1674, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245946

ABSTRACT

Neurodevelopment requires precise regulation of gene expression, including post-transcriptional regulatory events such as alternative splicing and mRNA translation. However, translational regulation of specific isoforms during neurodevelopment and the mechanisms behind it remain unknown. Using RNA-seq analysis of mouse neocortical polysomes, here we report translationally repressed and derepressed mRNA isoforms during neocortical neurogenesis whose orthologs include risk genes for neurodevelopmental disorders. We demonstrate that the translation of distinct mRNA isoforms of the RNA binding protein (RBP), Elavl4, in radial glia progenitors and early neurons depends on its alternative 5' UTRs. Furthermore, 5' UTR-driven Elavl4 isoform-specific translation depends on upstream control by another RBP, Celf1. Celf1 regulation of Elavl4 translation dictates development of glutamatergic neurons. Our findings reveal a dynamic interplay between distinct RBPs and alternative 5' UTRs in neuronal development and underscore the risk of post-transcriptional dysregulation in co-occurring neurodevelopmental disorders.


Subject(s)
CELF1 Protein/metabolism , ELAV-Like Protein 4/genetics , Gene Expression Regulation, Developmental , Neocortex/growth & development , Neurogenesis/genetics , 5' Untranslated Regions/genetics , Alternative Splicing , Animals , Cell Line, Tumor , Female , Glutamic Acid/metabolism , Male , Mice , Mice, Transgenic , Neocortex/cytology , Neural Stem Cells/metabolism , Neuroglia/metabolism , Neurons/metabolism , Polyribosomes/metabolism , Primary Cell Culture , Protein Biosynthesis/genetics , RNA Isoforms/genetics , RNA-Seq
18.
Carcinogenesis ; 41(9): 1294-1305, 2020 09 24.
Article in English | MEDLINE | ID: mdl-31958132

ABSTRACT

The insulin receptor gene (INSR) undergoes alternative splicing to give rise to two functionally related, but also distinct, isoforms IR-A and IR-B, which dictate proliferative and metabolic regulations, respectively. Previous studies identified the RNA-binding protein CUGBP1 as a key regulator of INSR splicing. In this study, we show that the differential splicing of INSR occurs more frequently in breast cancer than in non-tumor breast tissues. In breast cancer cell lines, the IR-A:IR-B ratio varies in different molecular subtypes, knockdown or overexpression of CUGBP1 gene in breast cancer cells altered IR-A:IR-B ratio through modulation of IR-A expression, thereby reversed or enhanced the insulin-induced oncogenic behavior of breast cancer cells, respectively. Our data revealed the predominant mitogenic role of IR-A isoform in breast cancer and depicted a novel interplay between INSR and CUGBP1, implicating CUGBP1 and IR-A isoform as the potential therapeutic targets and biomarkers for breast cancer.


Subject(s)
Antigens, CD/genetics , Breast Neoplasms/pathology , CELF1 Protein/metabolism , RNA Splicing , Receptor, ErbB-2/metabolism , Receptor, Insulin/genetics , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , CELF1 Protein/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Protein Isoforms
19.
Int J Mol Sci ; 21(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877772

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3'-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3ß-CUGBP1 pathway, is a promising option for this complex disease.


Subject(s)
CELF1 Protein/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Myotonic Dystrophy/drug therapy , Myotonin-Protein Kinase/genetics , Animals , Enzyme Inhibitors/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonin-Protein Kinase/metabolism , Signal Transduction , Thiadiazoles/therapeutic use
20.
Mol Cell Biol ; 39(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31383751

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease without cure. One of the possible therapeutic approaches for DM1 is correction of the RNA-binding proteins CUGBP1 and MBNL1, misregulated in DM1. CUGBP1 activity is controlled by glycogen synthase kinase 3ß (GSK3ß), which is elevated in skeletal muscle of patients with DM1, and inhibitors of GSK3 were suggested as therapeutic molecules to correct CUGBP1 activity in DM1. Here, we describe that correction of GSK3ß with a small-molecule inhibitor of GSK3, tideglusib (TG), not only normalizes the GSK3ß-CUGBP1 pathway but also reduces the mutant DMPK mRNA in myoblasts from patients with adult DM1 and congenital DM1 (CDM1). Correction of GSK3ß in a mouse model of DM1 (HSALR mice) with TG also reduces the levels of CUG-containing RNA, normalizing a number of CUGBP1- and MBNL1-regulated mRNA targets. We also found that the GSK3ß-CUGBP1 pathway is abnormal in skeletal muscle and brain of DMSXL mice, expressing more than 1,000 CUG repeats, and that the correction of this pathway with TG increases postnatal survival and improves growth and neuromotor activity of DMSXL mice. These findings show that the inhibitors of GSK3, such as TG, may correct pathology in DM1 and CDM1 via several pathways.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/physiopathology , Animals , CELF1 Protein/genetics , CELF1 Protein/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/genetics , Humans , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Primary Cell Culture , RNA/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Thiadiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...