Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Genes (Basel) ; 15(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39062653

ABSTRACT

The genus Orthopodomyia Theobald, 1904 (Diptera: Culicidae) comprises 36 wild mosquito species, with distribution largely restricted to tropical and temperate areas, most of which are not recognized as vectors of epidemiological importance due to the lack of information related to their bionomy and involvement in the cycle transmission of infectious agents. Furthermore, their evolutionary relationships are not completely understood, reflecting the scarcity of genetic information about the genus. Therefore, in this study, we report the first complete description of the mitochondrial genome of a Neotropical species representing the genus, Orthopodomyia fascipes Coquillet, 1906, collected in the Brazilian Amazon region. Using High Throughput Sequencing, we obtained a mitochondrial sequence of 15,598 bp, with an average coverage of 418.5×, comprising 37 functional subunits and a final portion rich in A + T, corresponding to the control region. The phylogenetic analysis, using Maximum Likelihood and Bayesian Inference based on the 13 protein-coding genes, corroborated the monophyly of Culicidae and its two subfamilies, supporting the proximity between the tribes Orthopodomyiini and Mansoniini, partially disagreeing with previous studies based on the use of molecular and morphological markers. The information generated in this study contributes to a better understanding of the taxonomy and evolutionary history of the genus and other groups of Culicidae.


Subject(s)
Culicidae , Genome, Mitochondrial , Phylogeny , Animals , Culicidae/genetics , Culicidae/classification , Brazil , High-Throughput Nucleotide Sequencing
2.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38989909

ABSTRACT

Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.


Subject(s)
Cell Adhesion Molecules , Drosophila Proteins , Evolution, Molecular , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Phylogeny , Gene Duplication , Drosophila/genetics , Culicidae/genetics
3.
Parasitol Res ; 123(7): 283, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042222

ABSTRACT

Mansonia uniformis (Diptera: Culicidae) is recognized as a vector of Brugia malayi and has been reported to transmit Wuchereria bancrofti, both causing lymphatic filariasis in humans. This study employed geometric morphometrics (GM) to investigate wing shape variation and analyzed genetic diversity through cytochrome c oxidase subunit 1 (COI) gene analyses in Ma. uniformis populations across Thailand. Wing GM analyses indicated significant differences in wing shape based on Mahalanobis distances among nearly all population pairs (p < 0.05), with no significant correlation between wing shape and geographic distance (r = 0.210, p > 0.05). Genetic analyses identified 63 haplotypes and 49 polymorphic sites, with the overall population exhibiting a nucleotide diversity of 0.006 (± 0.001) and a haplotype diversity of 0.912 (± 0.017). Deviations from neutrality, as indicated by Tajima's D and Fu's FS tests for the overall Ma. uniformis populations in Thailand, were statistically significant and negative, suggesting population expansion (both p < 0.05). Analysis of molecular variance revealed no significant genetic structure when all populations were categorized based on collection sites and geographic regions. However, significant differences in FST values were observed between some populations. These findings enhance our understanding of the geographical and genetic factors influencing Ma. uniformis populations, which are crucial for developing effective control strategies in Thailand.


Subject(s)
DNA, Mitochondrial , Electron Transport Complex IV , Genetic Variation , Wings, Animal , Animals , Thailand , DNA, Mitochondrial/genetics , Wings, Animal/anatomy & histology , Electron Transport Complex IV/genetics , Culicidae/genetics , Culicidae/anatomy & histology , Culicidae/classification , Insect Vectors/genetics , Insect Vectors/anatomy & histology , Haplotypes
4.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734639

ABSTRACT

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Culicidae/anatomy & histology , Culicidae/classification , Culicidae/genetics , Mosquito Vectors/anatomy & histology , Mosquito Vectors/classification , Mosquito Vectors/genetics , DNA Barcoding, Taxonomic/methods , Cyclooxygenase 1/genetics , DNA, Ribosomal Spacer/genetics , Phylogeny
5.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Article in English | MEDLINE | ID: mdl-38709820

ABSTRACT

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Subject(s)
Mosquito Control , Animals , Mosquito Control/methods , Culicidae/genetics , Culicidae/physiology , Computational Biology/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Aedes/genetics , Insecticide Resistance/genetics , Female
6.
PLoS Comput Biol ; 20(5): e1012133, 2024 May.
Article in English | MEDLINE | ID: mdl-38805562

ABSTRACT

Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.


Subject(s)
Computer Simulation , Gene Drive Technology , Malaria , Mosquito Control , Mosquito Vectors , Animals , Humans , Mosquito Vectors/genetics , Mosquito Control/methods , Malaria/epidemiology , Malaria/transmission , Malaria/prevention & control , Gene Drive Technology/methods , Computational Biology/methods , Culicidae/genetics , Algorithms , Vector Borne Diseases/transmission , Vector Borne Diseases/epidemiology , Vector Borne Diseases/prevention & control , Population Dynamics
7.
Parasitol Res ; 123(5): 224, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809447

ABSTRACT

Mosquitoes (Diptera: Culicidae) are among the most medically significant insects, with several species acting as vectors for human pathogens. Although there are frequent reports of mosquito-borne diseases in the border island areas of Thailand, comprehensive data on the diversity and DNA barcoding of these mosquito species remain limited. This study investigated mosquito diversity in two main archipelagos in Thailand-the Trat archipelago (comprising Chang Island and Kood Island) and the Ranong archipelago (comprising Chang Island and Phayam Island)-and generated DNA barcode data from the mosquitoes found there. The survey across these islands discovered a total of 41 species, highlighting the presence of several species known to be vectors for human diseases. Thirty-seven mosquito species from the island areas were documented to provide reference DNA barcode sequences for mosquitoes in Thailand's island regions. Two species, Aedes fumidus and Finlaya flavipennis, have been added as new COI sequence records in the database. DNA barcoding was highly effective in classifying almost all species by identifying barcoding gaps, except for Anopheles baimaii and Anopheles dirus, which could not be distinguished. Additionally, the study noted that geographical variations might influence certain mosquito species, such as Anopheles barbirostris A3 and Mansonia dives, causing them to be split into two distinct subgroups. The findings of this study are crucial, as they aid in classifying mosquito species using molecular techniques and expand our knowledge of disease vectors in these biodiverse regions.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic , Animals , Thailand , Culicidae/classification , Culicidae/genetics , Islands , Biodiversity , Mosquito Vectors/genetics , Mosquito Vectors/classification , Genetic Variation , Phylogeny , Electron Transport Complex IV/genetics
8.
Article in Chinese | MEDLINE | ID: mdl-38604685

ABSTRACT

OBJECTIVE: To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens. METHODS: Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe). RESULTS: The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05). CONCLUSIONS: There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.


Subject(s)
Culex , Culicidae , Microbiota , Humans , Animals , RNA, Ribosomal, 16S/genetics , Culex/genetics , Culicidae/genetics , Microbiota/genetics
9.
Acta Trop ; 253: 107171, 2024 May.
Article in English | MEDLINE | ID: mdl-38447704

ABSTRACT

Armigeres subalbatus (Diptera: Culicidae) is a mosquito species of significant medical and veterinary importance. It is widely distributed across Southeast and East Asia and is commonly found throughout Thailand. This study assessed the genetic diversity and population structure of Ar. subalbatus in Thailand using the cytochrome c oxidase subunit I (COI) gene sequences. Additionally, wing shape variations among these populations were examined using geometric morphometrics (GM). Our results demonstrated that the overall haplotype diversity (Hd) was 0.634, and the nucleotide diversity (π) was 0.0019. Significant negative values in neutrality tests (p < 0.05) indicate that the Ar. subalbatus populations in Thailand are undergoing a phase of expansion following a bottleneck event. The mismatch distribution test suggests that the populations may have started expanding approximately 16,678 years ago. Pairwise genetic differentiation among the 12 populations based on Fst revealed significant differences in 32 pairs (p < 0.05), with the degree of differentiation ranging from 0.000 to 0.419. The GM analysis of wing shape also indicated significant differences in nearly all pairs (p < 0.05), except for between populations from Nakhon Pathom and Samut Songkhram, and between those from Chiang Mai and Mae Hong Son, suggesting no significant difference due to their similar environmental settings. These findings enhance our understanding of the population structure and phenotypic adaptations of mosquito vectors, providing vital insights for the formulation of more efficacious vector control strategies.


Subject(s)
Culicidae , Animals , Culicidae/genetics , Thailand , Mosquito Vectors/genetics , Genetics, Population , Asia, Eastern
10.
Sci Rep ; 14(1): 7432, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548880

ABSTRACT

Mosquitoes (Culicidae) represent the main vector insects globally, and they also inhabit many of the terrestrial and aquatic habitats of the world. DNA barcoding and metabarcoding are now widely used in both research and routine practices involving mosquitoes. However, these methodologies rely on information available in databases consisting of barcode sequences representing taxonomically identified voucher specimens. In this study, we assess the availability of public data for mosquitoes in the main online databases, focusing specifically on the two most widely used DNA barcoding markers in Culicidae: COI and ITS2. In addition, we test hypotheses on possible factors affecting species coverage (i.e., the percentage of species covered in the online databases) for COI in different countries and the occurrence of the DNA barcode gap for COI. Our findings showed differences in the data publicly available in the repositories, with a taxonomic or species coverage of 28.4-30.11% for COI in BOLD + GenBank, and 12.32% for ITS2 in GenBank. Afrotropical, Australian and Oriental biogeographic regions had the lowest coverages, while Nearctic, Palearctic and Oceanian had the highest. The Neotropical region had an intermediate coverage. In general, countries with a higher diversity of mosquitoes and higher numbers of medically important species had lower coverage. Moreover, countries with a higher number of endemic species tended to have a higher coverage. Although our DNA barcode gap analyses suggested that the species boundaries need to be revised in half of the mosquito species available in the databases, additional data must be gathered to confirm these results and to allow explaining the occurrence of the DNA barcode gap. We hope this study can help guide regional species inventories of mosquitoes and the completion of a publicly available reference library of DNA barcodes for all mosquito species.


Subject(s)
Culicidae , Animals , Culicidae/genetics , DNA Barcoding, Taxonomic/methods , Mosquito Vectors , Australia , DNA/genetics , Biodiversity
11.
Mol Ecol ; 33(7): e17314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441172

ABSTRACT

Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant, Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito, Wyeomyia smithii, in top-down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population of S. purpurea pitchers over a 74-day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high-level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment-independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top-down control of microbial functions in an aquatic microecosystem.


Subject(s)
Culicidae , Microbiota , Animals , Culicidae/genetics , RNA, Ribosomal, 16S/genetics , Food Chain , Insecta/genetics , Larva , Bacteria/genetics , Microbiota/genetics
12.
J Insect Sci ; 24(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38501855

ABSTRACT

For many mosquito species, the females must obtain vertebrate blood to complete a gonotrophic cycle. These blood meals are frequently supplemented by feeding on sugary plant nectar, which sustains energy reserves needed for flight, mating, and overall fitness. Our understanding of mosquito nectar foraging behaviors is mostly limited to laboratory experiments and direct field observations, with little research into natural mosquito-host plant relationships done in North America. In this study, we collected nectar-fed female mosquitoes over a 2-year period in Manitoba, Canada, and amplified a fragment of the chloroplast rbcL gene to identify the plant species fed upon. We found that mosquitoes foraged from diverse plant families (e.g., grasses, trees, ornamentals, and legumes), but preferred certain species, most notably soybean and Kentucky blue grass. Moreover, there appeared to be some associations between plant feeding preferences and mosquito species, date of collection, landscape, and geographical region. Overall, this study implemented DNA barcoding to identify nectar sources forage by mosquitoes in the Canadian Prairies.


Subject(s)
Aedes , Culex , Culicidae , Female , Animals , Culicidae/genetics , Plant Nectar , Feeding Behavior , Canada , Dietary Supplements , Mosquito Vectors
13.
Virulence ; 15(1): 2329447, 2024 12.
Article in English | MEDLINE | ID: mdl-38548679

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional expression of target genes. Virus-encoded miRNAs play an important role in the replication of viruses, modulate gene expression in both the virus and host, and affect their persistence and immune evasion in hosts. This renders viral miRNAs as potential targets for therapeutic applications, especially against pathogenic viruses that infect humans and animals. Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic RNA virus that causes severe disease in both humans and livestock. High mortality among newborn lambs and abortion storms are key characteristics of an RVF outbreak. To date, limited information is available on RVFV-derived miRNAs. In this study, computational methods were used to analyse the RVFV genome for putative pre-miRNA genes, which were then analysed for the presence of mature miRNAs. We detected 19 RVFV-encoded miRNAs and identified their potential mRNAs targets in sheep (Ovis aries), the most susceptible host. The identification of significantly enriched O. aries genes in association with RVFV miRNAs will help elucidate the molecular mechanisms underlying RVFV pathogenesis and potentially uncover novel drug targets for RVFV.


Subject(s)
Culicidae , MicroRNAs , Rift Valley Fever , Rift Valley fever virus , Humans , Pregnancy , Female , Animals , Sheep/genetics , Rift Valley fever virus/genetics , Rift Valley Fever/genetics , Rift Valley Fever/epidemiology , Culicidae/genetics , Disease Outbreaks , MicroRNAs/genetics
14.
Microb Genom ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38240642

ABSTRACT

The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using blast after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.


Subject(s)
Arboviruses , Culicidae , Nanopore Sequencing , Animals , Humans , Culicidae/genetics , Arboviruses/genetics , Mosquito Vectors , Brazil , DNA
15.
Zootaxa ; 5339(2): 159-176, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-38221060

ABSTRACT

Molecular research based on gene sequence analysis and performed for decades, in general, supported morphology-based groupings of the species within the family Culicidae, but phylogenetic relationships between some genera and tribes remained uncertain for a long time. Interspecific differences in catalase, an antioxidant enzyme important for maintaining prolonged lifespan and reproduction, have not been studied extensively by estimating enzymatic activity levels. Here, catalase enzymatic activity was assayed in extracts of male mosquitoes belonging to 10 species of the subfamily Culicinae, including species from tribes of disputable phylogeny. Three species of Chaoboridae (nearest outgroup taxon) and mosquitoes from the subfamily Anophelinae (one species complex) were also added to the study. At least in Culicinae, immature adult males (less than one day after emergence) have distinctly elevated specific activity of catalase; therefore, only mature males of all species were used for the comparative study. As a result, significant differences in catalase activity were revealed between tribes, genera and particular species. Among culicids, the genera Coquillettidia and Culiseta were found to include the species with the highest and relatively high catalase activity, which is consistent with the affinity of the tribes Mansoniini and Culisetini to each other. Within Ochlerotatus, extremely low catalase activity in Oc. hexodontus suggests the more distant position of this species from Oc. cantans (Meigen) and Oc. communis (de Geer) than the positions of the latter two species from each other. Additional study of catalase activity in overwintering females of the genus Culex revealed significantly higher enzyme activity in Cx. torrentium in comparison with Cx. pipiens, which supports their quite distant positions from each other within the genus. Considering the distribution of catalase activity within the tree obtained, the preliminary outcome is that Culiseta retains the elevated level of catalase activity that was lost during the early separation of Anopheles and subsequent separation of Culex and Aedes/Ochlerotatus after Anopheles from their common branch with Culiseta/Coquillettidia. Overall, the use of taxonomic distribution of catalase activity levels appears to be effective for resolving disputed events of mosquito phylogeny.


Subject(s)
Anopheles , Culex , Culicidae , Ochlerotatus , Male , Female , Animals , Culicidae/genetics , Phylogeny , Catalase/genetics
16.
Ann Med ; 55(2): 2302504, 2023.
Article in English | MEDLINE | ID: mdl-38232762

ABSTRACT

Background: In the era of insecticides and anti-malarial drug resistance, gene drive technology holds considerable promise for malaria control. Gene drive technology deploys genetic modifications into mosquito populations to impede their ability to transmit the malaria parasite. This can be either through the disruption of an essential mosquito gene or the association of gene drive with a desirable effector gene. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a gene editing tool that precisely modifies mosquito vector DNA sequences and curtails the rate of pathogen transmission.Methods: A comprehensive search was conducted in the SCOPUS and MEDLINE databases (via PubMed) until October 2023. The keywords used were related to the principles and mechanisms of gene drive technology, its advantages, and disadvantages, and its ethical and regulatory considerations in sustainable malaria eradication.Results: The development of gene drive enables the preferential inheritance of specific genes in targeted mosquitoes, potentially obstructing the transmission of the Plasmodium parasite. This technology was also studied for the control of other vector-borne diseases such as dengue and chikungunya viruses. Despite its experimental superiority over other traditional methods such as insecticide-treated nets and insecticide sprays, the long-term dynamic interplay of mutation and resistance poses challenges for gene drive efficiency in sustainable malaria control.Conclusions: This commentary elucidates the underlying mechanisms and principles of gene drive technology, underscoring its promise and challenges as a novel strategy to curtail malaria prevalence. Although the release of such genetically modified mosquitoes into the natural environment would result in the eradication of the locally targeted species of mosquitoes, the complete eradication of the entire species remains questionable. Thus, the practical application raises significant ethical and regulatory concerns for further research and risk assessment, including the risk of gene drive spreading to nontarget species in the wider theatre of biodiverse species.


Subject(s)
Culicidae , Gene Drive Technology , Insecticides , Malaria , Animals , Humans , Culicidae/genetics , Mosquito Control/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Malaria/genetics , Malaria/prevention & control
17.
Mem. Inst. Oswaldo Cruz ; 108(supl.1): 100-109, 2013. graf
Article in English | LILACS | ID: lil-697823

ABSTRACT

Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae) in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase ( COI ) I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n = 179) is presented for the first time in 60 years.


Subject(s)
Animals , Biodiversity , Culicidae/classification , Culicidae/genetics , DNA Barcoding, Taxonomic/methods , Ecology/classification , Electron Transport Complex IV/genetics , Ecuador , Oviposition , Polymerase Chain Reaction , Rainforest
18.
Mem. Inst. Oswaldo Cruz ; 108(supl.1): 48-58, 2013. graf
Article in English | LILACS | ID: lil-697831

ABSTRACT

Organisms from bacteria to humans have evolved under predictable daily environmental cycles owing to the Earth’s rotation. This strong selection pressure has generated endogenous circadian clocks that regulate many aspects of behaviour, physiology and metabolism, anticipating and synchronising internal time-keeping to changes in the cyclical environment. In haematophagous insect vectors the circadian clock coordinates feeding activity, which is important for the dynamics of pathogen transmission. We have recently witnessed a substantial advance in molecular studies of circadian clocks in insect vector species that has consolidated behavioural data collected over many years, which provided insights into the regulation of the clock in the wild. Next generation sequencing technologies will facilitate the study of vector genomes/transcriptomes both among and within species and illuminate some of the species-specific patterns of adaptive circadian phenotypes that are observed in the field and in the laboratory. In this review we will explore these recent findings and attempt to identify potential areas for further investigation.


Subject(s)
Animals , Circadian Rhythm/genetics , Culicidae/genetics , Drosophila melanogaster/genetics , Insect Vectors/genetics , Period Circadian Proteins/genetics , Anopheles/physiology , Psychodidae/physiology
19.
Rev. Inst. Med. Trop. Säo Paulo ; 54(5): 287-292, Sept.-Oct. 2012. ilus
Article in English | LILACS | ID: lil-648565

ABSTRACT

Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.


Ao longo das duas últimas décadas, morbidade e mortalidade da malária e dengue e outros patógenos tem se tornado cada vez mais um problema de Saúde Pública. O aumento na distribuição geográfica de seus respectivos vetores é acompanhada pela emergência de doenças em novas áreas. Não estão disponíveis drogas específicas suficientes e não há vacinas específicas para imunizar as populações alvo. As medidas de controle de mosquitos atuais falharam em atingir os objetivos propostos, principalmente devido à grande capacidade reprodutiva dos mosquitos e alta flexibilidade genômica. O controle químico se torna cada vez mais restrito devido a sua potencial toxicidade aos seres humanos, mortalidade de organismos não alvos, resistência a inseticida além de outros impactos ambientais. Novas estratégias de controle são necessárias. A técnica do inseto estéril (SIT) é um método de supressão populacional espécie específico e ambientalmente amigável, baseia-se na criação em massa, esterilização mediante irradiação e liberação de um grande número de insetos machos. Liberar insetos carregando um gene letal dominante (RIDL) oferece uma solução a muitas limitações impostas pela técnica do inseto estéril (SIT) que limitaram sua aplicação em mosquitos e ainda assim mantém suas características de ambientalmente amigável e espécie específica. A natureza auto-limitante de mosquitos estéreis tende a deixar alguns empecilhos para uso no campo, de certa forma, menos desafiadores quando comparados a sistemas auto-propagação, característicos de estratégias de substituição de população. Sistemas auto-limitantes estão mais próximos para uso no campo, portanto pode ser apropriado considerá-lo primeiro. A perspectiva de métodos de controle genéticos contra mosquitos vetores de doenças que acometem humanos está rapidamente se tornando uma realidade, muitas decisões terão de ser tomadas em âmbito nacional, regional e internacional com relação a aspectos étnicos, sociais, culturais e de biossegurança para o uso e liberação destes métodos de controle de vetores.


Subject(s)
Animals , Female , Male , Culicidae/genetics , Genes, Lethal/genetics , Insect Vectors/genetics , Mosquito Control/methods , Culicidae/physiology , Insect Vectors/physiology
20.
Journal of Invertebrate Pathology ; 107(1): 11-15, Mai, 2011. ilus, tab
Article in English | Sec. Est. Saúde SP, SESSP-SUCENPROD, Sec. Est. Saúde SP | ID: biblio-1064273

ABSTRACT

The aim of this study was to investigate the naturally occurring bacteria from Culicidae larvae found in São Paulo state between 2006 and 2008 from the Tiete Ecological Park in the municipality of Caraguatatuba.Bacterial strains were obtained after surface sterilization of larvae followed by thermal treatmentand incubation in bacteriological media under laboratory conditions. Identification was determined using cytomorphology, biochemical and physiological tests. Strains were characterized by qualitative evaluationof biological activity against Culicidae larvae, comparing protein profiles obtained by electrophoresisof crystal protoxins, electrophoresis of Lysinibacillus sphaericus isoenzymes, detection of the L2 fraction of Hemolytic BL enterotoxin and amplification of DNA using Multiplex-PCR to detect HBL, NHE, CytK, BceT and EntFM enterotoxins. The results obtained in this study demonstrated that the endosymbiotic bacterial diversity belonging to Bacillus and related genera associated with Culicidae larvae is limited to a number of species that does not vary throughout the seasons...


Subject(s)
Animals , Bacillus cereus/growth & development , Bacillus thuringiensis/growth & development , Bacillus/growth & development , Bacillus/genetics , Biota/genetics , Culicidae/growth & development , Culicidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL