Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Gene ; 911: 148338, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38438056

ABSTRACT

DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia congenital critical region on X chromosome gene 1), a key sex determinant in various species, plays a vital role in gonad differentiation and development and controls spermatogenesis. However, the identity and function of DAX1 are still unclear in bivalves. In the present study, we identified a DAX1 (designed as Tc-DAX1) gene from the boring giant clam Tridacna crocea, a tropical marine bivalve. The full length of Tc-DAX1 was 1877 bp, encoding 462 amino acids, with a Molecular weight of 51.81 kDa and a theoretical Isoelectric point of 5.87 (pI). Multiple sequence alignments and phylogenetic analysis indicated a putative ligand binding domain (LBD) conserved regions clustered with molluscans DAX1 homologs. The tissue distributions in different reproductive stages revealed a dimorphic pattern, with the highest expression trend in the male reproductive stage, indicating its role in spermatogenesis. The DAX1 expression data from embryonic stages shows its highest expression profile (P < 0.05) in the zygote stage, followed by decreasing trends in the larvae stages (P > 0.05). The localization of DAX1 transcripts has also been confirmed by whole mount in situ hybridization, showing high positive signals in the fertilized egg, 2, and 4-cell stage, and gastrula. Moreover, RNAi knockdown of the Tc-DAX1 transcripts shows a significantly lower expression profile in the ds-DAX1 group compared to the ds-EGFP group. Subsequent histological analysis of gonads revealed that spermatogenesis was affected in a ds-DAX1 group compared to the ds-EGFP group. All these results indicate that Tc-DAX1 is involved in the spermatogenesis and early embryonic development of T. crocea, providing valuable information for the breeding and aquaculture of giant clams.


Subject(s)
Bivalvia , Gonads , Male , Animals , Phylogeny , Gonads/metabolism , Spermatogenesis/genetics , Sequence Alignment , Bivalvia/genetics , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism
2.
Stem Cells Dev ; 32(17-18): 554-564, 2023 09.
Article in English | MEDLINE | ID: mdl-37261981

ABSTRACT

Dax1 (Nr0b1; Dosage-sensitive sex reversal-adrenal hypoplasia congenital on the X-chromosome gene-1) is an important component of the transcription factor network that governs pluripotency in mouse embryonic stem cells (ESCs). Functional evaluation of alternative splice variants of pluripotent transcription factors has shed additional insight on the maintenance of ESC pluripotency and self-renewal. Dax1 splice variants have not been identified and characterized in mouse ESCs. We identified 18 new transcripts of Dax1 with putative protein-coding properties and compared their protein structures with known Dax1 protein (Dax1-472). The expression pattern analysis showed that the novel isoforms were cotranscribed with Dax1-472 in mouse ESCs, but they had transcriptional heterogeneity among single cells and the subcellular localization of the encoded proteins differed. Cell function experiments indicated that Dax1-404 repressed Gata6 transcription and functionally replaced Dax1-472, while Dax1-38 and Dax1-225 partially antagonized Dax1-472 transcriptional repression. This study provided a comprehensive characterization of the Dax1 splice variants in mouse ESCs and suggested complex effects of Dax1 variants in a self-renewal regulatory network.


Subject(s)
DAX-1 Orphan Nuclear Receptor , Embryonic Stem Cells , Mouse Embryonic Stem Cells , Animals , Mice , Cell Differentiation , Embryonic Stem Cells/metabolism , Gene Expression , Gene Expression Regulation , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism
3.
Nat Commun ; 14(1): 3076, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248237

ABSTRACT

Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.


Subject(s)
DAX-1 Orphan Nuclear Receptor , Estrogen Receptor alpha , Hypothalamus , Kisspeptins , Animals , Female , Mice , Arcuate Nucleus of Hypothalamus/metabolism , Estradiol/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Hypothalamus/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism
4.
Reprod Sci ; 29(3): 955-962, 2022 03.
Article in English | MEDLINE | ID: mdl-33891289

ABSTRACT

Testosterone, the male sex hormone, is necessary for the development and function of the male reproductive system. Biosynthesis of testosterone in mammals mainly occurs in testicular Leydig cells. Many proteins such as P450c17, 3ß-HSD, and StAR are involved in testicular steroidogenesis. DAX1 is essential for sex development and interacts with nuclear receptors such as steroidogenic factor 1 to inhibit steroidogenesis. In this study, we investigated the role of DAX1 in testicular steroidogenesis in vivo by generating Leydig cell-specific DAX1-knockout mice. Radioimmunoassay revealed that the levels of testosterone and progesterone were higher in Leydig cell-specific DAX1-knockout testes than in the testes from wild-type mice during the first 3-4 weeks of aging. In addition, the expression levels of steroidogenic genes, such as StAR, P450c17, P450scc, and 3ß-HSD, were considerably higher in the testes from DAX1-knockout mice. DAX1-deficient mouse testes seemed to attain early puberty with the acceleration of germ cell development. These data suggest that DAX1 regulates the expression of steroidogenic genes, and thereby controls and fine-tunes steroidogenesis during testis development.


Subject(s)
DAX-1 Orphan Nuclear Receptor/metabolism , Leydig Cells/metabolism , Testis/metabolism , Testosterone/metabolism , Animals , Male , Mice , Mice, Knockout , Progesterone/metabolism , Sexual Maturation
5.
Article in English | MEDLINE | ID: mdl-34653610

ABSTRACT

DAX1 plays an essential role in the differentiation and physiology of the Hypothalamic-Pituitary-Adrenal-Gonadal (HPAG) axis during embryogenesis. However, in adult tissues, in addition to the HPAG axis, evidence has not been found for its differential expression and function. We isolated the DAX1 cDNA to analyze its tissue localization and gene expression profiles in male and female hamsters' Harderian glands (HGs), Mesocricetus auratus. The isolated cDNA clone contains 1848 base pairs (bp), and a 1428-bp open reading frame (ORF) encodes a 476 amino acid protein. Sequence alignments and the phylogenetic tree display a relevant percentage of similarity with human (66%), rat (81%), and mouse (84%) sequences. In adult tissues, the mRNA distribution demonstrated that DAX1 is present in testis, ovaries, and male and female HGs. The highest expression profiles were identified in the adrenal glands, where females exhibit higher mRNA levels than males. The sexually dimorphic expression of DAX1 in adrenals suggests that its presence could be associated with regulating, functioning, and maintaining this endocrine tissue. These findings indicate that the DAX1 gene is limitedly expressed in adult tissues. In the HGs, we demonstrate the absence of sexually dimorphic gene expression. Our results suggest that DAX1 might have an additional physiological function outside of the HPAG axis, specifically in the HG, which may be required for the regulation of intracrine steroidogenesis, secretion, and maintenance of exocrine tissue.


Subject(s)
DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Harderian Gland/metabolism , Mesocricetus/genetics , Mesocricetus/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DAX-1 Orphan Nuclear Receptor/chemistry , Female , Male , Models, Molecular , Phylogeny , Sequence Homology, Amino Acid , Transcriptome
6.
Article in English | MEDLINE | ID: mdl-34224854

ABSTRACT

Nuclear receptor subfamily 0 group B member 1 (Nr0b1) belongs to the nuclear receptor (NR) superfamily. It plays critical roles in sex determination, sex differentiation, and gonadal development in mammals. In this study, the duplicated genes nr0b1a and nr0b1b were identified in spotted scat (Scatophagus argus). Phylogenetic and synteny analyses revealed that, unlike nr0b1a, nr0b1b was retained in several species of teleosts after an nr0b1 gene duplication event but was secondarily lost in other fish species, amphibians, reptiles, birds, and mammals. In a sequence analysis, only 1.5 LXXLL-related repeat motifs were identified in spotted scat Nr0b1a, Nr0b1b, and non-mammalian Nr0b1a/Nr0b1, different from the 3.5 repeat motifs in mammalian Nr0b1. By qPCR, nr0b1a and nr0b1b were highly expressed in testes from stages IV to V and in ovaries from stages II to IV, respectively. Male-to-female sex reversal was induced in XY spotted scat by the administration of exogenous E2. A qPCR analysis showed that nr0b1b mRNA expression was higher in sex-reversed XY fish than in control XY fish, with no difference in nr0b1a. A luciferase assay showed that spotted scat Nr0b1a and Nr0b1b did not individually activate cyp19a1a gene transcription. As in mammals, spotted scat Nr0b1a suppressed Nr5a1-mediated cyp19a1a expression, despite containing only 1.5 LXXLL-related repeat motifs in its N-terminal region, while Nr0b1b stimulated Nr5a1-mediated cyp19a1a transcription. These results demonstrated that nr0b1a and nr0b1b in spotted scat have distinct expression patterns and regulatory effects and further indicate that nr0b1b might be involved in ovarian development by regulating Nr5a1-mediated cyp19a1a expression.


Subject(s)
DAX-1 Orphan Nuclear Receptor/metabolism , Fish Proteins/metabolism , Fishes/metabolism , Gene Expression Regulation, Developmental , Ovary/metabolism , Testis/metabolism , Amino Acid Sequence , Animals , DAX-1 Orphan Nuclear Receptor/genetics , Female , Fish Proteins/genetics , Fishes/genetics , Male , Ovary/cytology , Sequence Homology , Sex Factors , Testis/cytology
7.
EMBO J ; 40(12): e106818, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33909924

ABSTRACT

Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.


Subject(s)
DAX-1 Orphan Nuclear Receptor , Histone Deacetylases , Mouse Embryonic Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Female , GATA6 Transcription Factor/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Male , Mice , RNA, Small Interfering/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
8.
Eur J Med Genet ; 64(5): 104192, 2021 May.
Article in English | MEDLINE | ID: mdl-33766795

ABSTRACT

The case study unveils the likely mechanism of a novel stop-loss DAX1 variant preceding the prolonged precocious puberty in the adrenal hypoplasia congenital (AHC) boy. A boy aged five years and nine months initially examined for the primary adrenal insufficiency symptoms. Next-generation sequencing confirmed the X-linked inheritance of a novel stop-loss DAX1 variant: c.1411T>C/p.Ter471Gln associated with AHC in the patient. The patient was subjected to a brief clinical follow-up from 11 to 15.1 years of age. The effect of the mutant-DAX1 variant (p.Ter471Gln) on DAX1-steroidogenic factor 1 (SF1) (protein-protein) interaction was studied by protein-protein docking using the ClusPro-online tool. At 5.9 yrs of age, the patient exhibited precocious puberty with the secondary sexual characteristics of Tanner 2 stage (of 9-14 yrs of age). The patient showed primary adrenal insufficiency with diminished cortisol concentrations at blood serum (25 ng/ml) and urine (3.55 µg/24 h) levels. Upon steroidal exposure, the patient showed normalized serum cortisol levels of 45-61 ng/ml. However, the precocious puberty got prolonged with the increased penis length of 8.5 cm and the bone age of 18 yrs old during the follow-up. The patient showed increased basal serum adrenocorticotropic hormone (110->2000 pg/ml) and follicle-stimulating hormone (18.4-22.3 mIU/ml) concentrations. Following an elevated hypothalamic-pituitary-gonadal axis activity witnessed upon gonarellin stimulation. Protein-protein docking confirmed a weaker interaction between the mutant-DAX1 (p.Ter471Gln) protein and the wild-SF1 protein. Overall, we hypothesize the weakened mutant-DAX1-SF1 (protein-protein) interaction could govern the prolonged precocious puberty augmented with the elevated hypothalamic-pituitary-gonadal/adrenal axis responses via SF1-induced neuronal nitric oxide synthetase activation in the patient.


Subject(s)
DAX-1 Orphan Nuclear Receptor/genetics , Hypoadrenocorticism, Familial/genetics , Hypothalamo-Hypophyseal System/metabolism , Loss of Function Mutation , Puberty, Precocious/genetics , Adolescent , Adrenocorticotropic Hormone/blood , Binding Sites , Codon, Nonsense , DAX-1 Orphan Nuclear Receptor/chemistry , DAX-1 Orphan Nuclear Receptor/metabolism , Follicle Stimulating Hormone/blood , Humans , Hypoadrenocorticism, Familial/pathology , Male , Protein Binding , Puberty, Precocious/pathology , Steroidogenic Factor 1/metabolism
9.
Reprod Sci ; 27(1): 342-354, 2020 01.
Article in English | MEDLINE | ID: mdl-32046386

ABSTRACT

Prenatal testosterone (T) excess, partly via androgenic programming, enhances follicular recruitment/persistence in sheep as in women with polycystic ovarian syndrome (PCOS). Decreased anti-Mullerian hormone (AMH) in early growing and increased AMH in antral follicles may underlie enhanced recruitment and persistence, respectively. Changes in AMH may be mediated by steroidogenic factor 1 (SF1), an enhancer of AMH, and dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX1), that antagonizes SF1. Another mediator could be forkhead box 03 (FOXO3) which regulates follicular recruitment/atresia. To test if androgen-programmed changes in SF1, DAX1, and FOXO3 proteins contribute to follicular defects in prenatal T-treated sheep, ovaries from control, prenatal T-, and dihydrotestosterone (DHT)-treated (days 30-90 of gestation) animals at fetal day (FD) 90, FD140, and 1 and 2 years-of-age were studied. Prenatal T increased DAX1 in granulosa cells of primordial through large preantral and theca cells of large preantral follicles at FD140 and increased SF1 in the granulosa cells of preantral and antral and theca cells of large preantral follicle at 2 years-of-age. Prenatal T increased FOXO3 only in theca cells of preantral (FD140) and antral (2 years-of-age) follicles. Prenatal DHT increased DAX1 in granulosa cells from small preantral follicles at FD140 while increasing SF1 in granulosa cells from antral follicles at 1 year-of-age. These age-dependent changes in DAX1/SF1 partly via androgen-programming are consistent with changes in AMH and may contribute to the enhanced follicular recruitment/persistence, and multifollicular phenotype of prenatal T-treated females and may be of translational relevance to PCOS.


Subject(s)
Androgens/pharmacology , DAX-1 Orphan Nuclear Receptor/metabolism , Dihydrotestosterone/pharmacology , Forkhead Box Protein O3/metabolism , Ovary/drug effects , Prenatal Exposure Delayed Effects/metabolism , Steroidogenic Factor 1/metabolism , Testosterone/pharmacology , Animals , Female , Ovary/metabolism , Pregnancy , Sheep
10.
Mol Biol Rep ; 46(4): 4599-4604, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31280422

ABSTRACT

NR0B1 (nuclear receptor subfamily 0, group B, member 1) is a transcription factor encoded by DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) responsible for the development and maintenance of the steroidogenic tissues. In humans the DAX1 mutations cause congenital adrenal hypoplasia (AHC) and hypogonadotropic hypogonadism (HHG) in boys. Here we report two brothers who were assessed by endocrinologist at the age of 51 and 43 because of their serious osteoporosis. They had been substituted with prednisolone since the age of 4 and 9 years because of their primary adrenal insufficiency (PAI). Due to their late puberty caused by HHG at the age of 16 and 17 years their heights were - 3.1 and - 3.3 SD, but then they had a significant growth during their adulthood and reached the + 1.85 SD and + 3.78 SD respectively. During this period, they received glucocorticoid supplementation, but the treatment of their HHG was inadequate. At the age of 51 and 43 years insulin tolerance test (ITT) and gonadotropin releasing hormone (GnRH) test confirmed their PAI and HHG. Genetic test performed at this time revealed a novel, four nucleotides deletion (del.586-571c.GGGC or 572-575c.GGGC) of DAX1 gene. The two brothers with AHC and HHG caused by a novel DAX1 mutation, reached tall final heights, despite of the disadvantageous prednisolone treatment during their childhood. We assume that the long-term lack of the sexual hormone substitution was a significant reason of their above average height as well as their serious osteoporosis.


Subject(s)
DAX-1 Orphan Nuclear Receptor/genetics , Frameshift Mutation , Hypoadrenocorticism, Familial/genetics , Hypogonadism/genetics , Addison Disease/genetics , Adult , DAX-1 Orphan Nuclear Receptor/metabolism , Humans , Male , Middle Aged , Sexual Maturation , Siblings
11.
Gene ; 702: 17-26, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30898704

ABSTRACT

P450c17, a key enzyme in the steroid generation pathway, plays an important role in the production of sex steroid and cortisol. In this study, two cyp17 gene isoforms, Pocyp17-I and Pocyp17-II were isolated from Paralichthys olivaceus gonads. Domain architecture analysis of Pocyp17-I and Pocyp17-II revealed that they had three regions important to enzymatic function. Structural analysis showed that Pocyp17-I and Pocyp17-II had 8 and 9 exons respectively, and the difference was caused by the insertion of an extra intron (intron1) in the latter. Quantitative real-time polymerase chain reaction results indicated that the expression of these two genes showed sexually dimorphism that Pocyp17-I and Pocyp17-II were highest expressed in testis and ovary, respectively. The in situ hybridization analysis of gonads indicated that Pocyp17-I and Pocyp17-II mRNA were both detected in oocytes, spermatocytes and Sertoli cells. After injection of androgen and estrogen (17α-methyltestosterone, 17ß-estradiol) of different concentrations, the expression level of Pocyp17-I decreased significantly (P < 0.01), whereas estrogen had no influence on Pocyp17-II, but androgen upregulated the expression of Pocyp17-II (P < 0.05). Moreover, Pocyp17-I expression level was down-regulated significantly by NR0b1 but up-regulated by NR5a2 (P < 0.05), whereas Pocyp17-II expression level was down-regulated significantly by NR0b1 and NR5a2 (P < 0.05). All these results demonstrated that there were differences in expression patterns, feedback actions of sex hormones and transcriptional regulations between cyp17-I and cyp17-II, which revealed that cyp17-I and cyp17-II might perform different functions in sex hormones biosynthesis and gonadal differentiation in Japanese flounder.


Subject(s)
Flounder/genetics , Steroid 17-alpha-Hydroxylase/genetics , Androgens/pharmacology , Animals , Cell Differentiation , DAX-1 Orphan Nuclear Receptor/metabolism , Estrogens/pharmacology , Female , Flounder/metabolism , Gene Expression Regulation , Gonadal Steroid Hormones/biosynthesis , Male , Ovary/cytology , Ovary/enzymology , Sequence Alignment , Sex Characteristics , Steroid 17-alpha-Hydroxylase/chemistry , Steroid 17-alpha-Hydroxylase/metabolism , Testis/cytology , Testis/enzymology , Transcription, Genetic
12.
Eur Rev Med Pharmacol Sci ; 23(4): 1574-1583, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30840280

ABSTRACT

OBJECTIVE: The aim of this study was to explore the expression of microRNA-106a in breast cancer (BC) and to further investigate its role in BC development and the potential regulatory mechanism. PATIENTS AND METHODS: 72 pairs of BC tissues and para-cancerous tissues were collected, and microRNA-106a expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between microRNA-106a expression and BC pathological parameters was analyzed. Meanwhile, the expression of microRNA-106a in BC cells was verified by qRT-PCR as well. In addition, microRNA-106a knockdown model was constructed by transfecting small interfering RNA in BC cell lines including MCF-7 and SKBR3. Subsequently, the effects of microRNA-106a on biological functions of BC cells were analyzed by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EDU), and transwell invasion and migration assays, respectively. Finally, the underlying mechanism was explored by cellular rescue experiment. RESULTS: QRT-PCR results illustrated that microRNA-106a expression in BC tissues was markedly higher than that of normal tissues. Patients with high expression of microRNA-106a exhibited significantly higher tumor stage as well as higher incidence of lymph node metastasis and distant metastasis when compared with those with low expression. Cell proliferation, invasion, and migration abilities in microRNA-106a inhibitor group were markedly decreased when compared with control group. Subsequent experiments demonstrated that DAX-1 expression was reduced in BC cell lines and tissues. Moreover, DAX-1 expression was negatively correlated with microRNA-106a expression. In addition, a recovery experiment found that microRNA-106a and DAX-1 had mutual regulation, which could affect the malignant progression of BC. CONCLUSIONS: We found that the expression of microRNA-106a was significantly increased in BC. Meanwhile, microRNA-106a expression was closely related to BC stage, distant metastasis, lymph node metastasis, and poor prognosis. Therefore, microRNA-106a promoted the invasion, migration, and proliferation of BC by targeting DAX-1.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , MicroRNAs/genetics , Aged , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Middle Aged
13.
Mol Biol Rep ; 46(3): 2971-2978, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30879272

ABSTRACT

Two sisters phenotypically normal females, presenting with tumor abdominal mass with histopathological findings of teratoma and gonadoblastoma associated to 46,XY male-to-female sex reversal syndrome, secondary to a duplication in DAX-1, possibly inherited of maternal gonadal mosaicism. Copy number variation and functional effects of the duplication were done by MLPA multiplex ligation-dependent probe amplification and real time PCR. DAX-1, also known as dosage sensitive sex reversal gene (DSS), is considered the most likely candidate gene involved in XY gonadal dysgenesis when overexpressed. The excess of DAX-1 gene disturbs testicular development by down regulation of SF-1, WT1, and SOX9. This is the first report of 46,XY sex reversal in two siblings who have a maternally inherited duplication of DAX-1 associated with reduced levels of expression of downstream genes as SOX9-SF1.


Subject(s)
DAX-1 Orphan Nuclear Receptor/genetics , Gonadal Dysgenesis/genetics , Sex Determination Processes/genetics , Adolescent , Child , DAX-1 Orphan Nuclear Receptor/metabolism , DNA Copy Number Variations , DNA-Binding Proteins/genetics , Female , Gene Dosage/genetics , Gene Duplication , Gonadal Dysgenesis, 46,XY/genetics , Gonadoblastoma/genetics , Humans , Pedigree , Sex Determination Analysis/methods , Sex Differentiation , Sexual Maturation/genetics , Siblings , Teratoma , Testis/abnormalities
14.
Int J Biol Macromol ; 129: 13-22, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30731167

ABSTRACT

The atypical orphan receptors DAX1 and SHP constitute the NR0B subgroup of human nuclear receptor (hNR) family; they play key roles in metabolism, reproduction, nutrition and steroidogenesis, and are involved in the pathogenesis of a variety of diseases such as cancer and adrenal hypoplasia. The two receptors lack the classical DNA-binding domain and act as the corepressors of other hNRs. The DAX1 and SHP contains three and two conserved LXXLL motifs, respectively, which can be recognized and bound by the activation function-2 (AF-2) domain of hNR proteins in agonist conformation. Here, we attempt to explore the systematic interaction profile between the five DAX1/SHP LXXLL motifs and all the 48 hNR AF-2 domains found in the human genome, to analyze the binding affinity and specificity of these motifs towards the complete domain array, and to design LXXLL-based, hydrocarbon-stapled peptides that can target the specific interaction profile for each motif. A weighted source-target network from motifs to domains is created based on the modeled domain-motif complex structures and calculated binding potencies, from which the specific interaction profile of each motif against the whole hNR array is depicted and clustered to measure the binding similarity and relationship among these motifs. Dynamics simulations reveal that the LXXLL-based peptides are highly flexible in free unbound state, thus unfavorable to be recognized and bound by AF-2 domains. Hydrocarbon-stapling technique is employed to help the constraint of these unstructured peptides to active helical conformation, thus largely improving their binding affinity to the hNR array. The hydrocarbon bridge is designed to point out of the domain's active pocket, which would not disrupt the direct interaction between the domain and peptide. Energetic decomposition imparts that the stapling has only a very modest influence on the interaction enthalpy and desolvation effect of domain-peptide binding, but can substantially reduce entropy penalty upon the binding. For a peptide ligand, the entropic reduction can be roughly regarded as a constant, which only improves (absolute) peptide binding affinity towards the whole domain array, but does not alter (relative) peptide binding specificity over different domains in the array. Overall, the stapled peptides can be considered as potent competitors to selectively target the specific interaction networks mediated by their parent LXXLL motifs in DAX1 and SHP proteins.


Subject(s)
Amino Acid Motifs , DAX-1 Orphan Nuclear Receptor/metabolism , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Interaction Maps , Receptors, Cytoplasmic and Nuclear/metabolism , Amino Acid Sequence , Binding Sites , Cluster Analysis , DAX-1 Orphan Nuclear Receptor/chemistry , DAX-1 Orphan Nuclear Receptor/genetics , Drug Design , Genome-Wide Association Study , Humans , Models, Molecular , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Protein Conformation , Quantitative Structure-Activity Relationship , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics
15.
Stem Cells Dev ; 28(3): 151-164, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30417748

ABSTRACT

The platypus (Ornithorhynchus anatinus) is an egg-laying monotreme mammal whose ancestors diverged ∼166 million years ago from the evolutionary pathway that eventually gave rise to both marsupial and eutherian mammals. Consequently, its genome is an extraordinary amalgam of both ancestral reptilian and derived mammalian features. To gain insight into the evolution of mammalian pluripotency, we have generated induced pluripotent stem cells from the platypus (piPSCs). Deep sequencing of the piPSC transcriptome revealed that piPSCs robustly express the core eutherian pluripotency factors POU5F1/OCT4, SOX2, and NANOG. Given the more extensive role of SOX3 over SOX2 in avian pluripotency, our data indicate that between 315 and 166 million years ago, primitive mammals replaced the role of SOX3 in the vertebrate pluripotency network with SOX2. DAX1/NR0B1 is not expressed in piPSCs and an analysis of the platypus DAX1 promoter revealed the absence of a proximal SOX2-binding DNA motif known to be critical for DAX1 expression in eutherian pluripotent stem cells, suggesting that the acquisition of SOX2 responsiveness by DAX1 has facilitated its recruitment into the pluripotency network of eutherians. Using the RNAseq data, we were also able to demonstrate that in both fibroblasts and piPSCs, the expression ratio of X chromosomes to autosomes (X1-5 X1-5:AA) is approximately equal to 1, indicating that there is no upregulation of X-linked genes. Finally, the RNAseq data also allowed us to explore the process of X-linked gene inactivation in the platypus, where we determined that for any given gene, there is no preference for silencing of the maternal or paternal allele; that is, within a population of cells, the silencing of X-linked genes is not imprinted.


Subject(s)
Cell Differentiation , Platypus , Pluripotent Stem Cells/cytology , Transcriptome , Animals , Cells, Cultured , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Genomic Imprinting , Pluripotent Stem Cells/metabolism , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism , X Chromosome Inactivation
16.
Horm Res Paediatr ; 91(5): 336-345, 2019.
Article in English | MEDLINE | ID: mdl-30537713

ABSTRACT

BACKGROUND/AIMS: Mutations in the DAX1 gene cause X-linked adrenal hypoplasia congenita (AHC) classically associated with hypogonadotropic hypogonadism. Unexpectedly, precocious puberty (PP) has been reported in some cases, its mechanism remaining unclear. METHODS: We longitudinally studied a boy with AHC due to DAX1 gene mutation who developed peripheral PP at age 4.5 years. Initially he presented pubic hair, penile enlargement, advanced bone age and elevated testosterone levels. PP progressed with acne, body odour and ejaculations. In addition, we summarized reported findings of patients with DAX1 mutations and PP in the literature in a structured manner providing a basis to discuss possible pathomechanisms of PP in DAX1 patients. RESULTS: In our patient, hydrocortisone treatment was increased to 20 mg/m2/day as suggested in similar published cases. However, despite the suppression of adrenocorticotropic hormone (ACTH), this remained without clinical effect or change in laboratory results. The progression of symptoms of pubertal development was well suppressed under cyproterone acetate treatment. Twenty-four-hour steroid urine excretion rate measurements excluded an effect of adrenal androgens and showed a prepubertal rise of excreted testosterone. Testes size remained small. GnRH testing showed peripheral PP. CONCLUSION: We hypothesize that an intrinsic, gonadotropin- and ACTH-independent activation of steroidogenesis in the DAX1 deficient testes leads to PP in AHC patients with DAX1 mutations.


Subject(s)
Adrenal Hyperplasia, Congenital , Adrenocorticotropic Hormone/blood , DAX-1 Orphan Nuclear Receptor , Gonadotropins/blood , Mutation , Puberty, Precocious , Adrenal Hyperplasia, Congenital/blood , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/pathology , Child, Preschool , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Humans , Male , Puberty, Precocious/blood , Puberty, Precocious/genetics , Puberty, Precocious/pathology , Testis/metabolism , Testis/pathology
17.
J Physiol Pharmacol ; 69(3)2018 Jun.
Article in English | MEDLINE | ID: mdl-30342431

ABSTRACT

In this study, we tested the hypothesis that modulation of endogenous gonadotropin-releasing hormone (Gnrh) neuronal network activity alters the mRNA expression of nuclear receptor subfamily 5 group A member 1 (Nr5a1), through one of the component of Wnt pathway signaling - catenin beta 1 (Ctnnb1) (its co-activator), and its co-repressor nuclear receptor subfamily 0, group B member 1 (Nr0b1) in the female rat pituitary gland in vivo. Adult ovariectomized rats were given a serial infusion of Gnrh, kisspeptin-10, Gnrh + Gnrh antagonist (Antide), or kisspeptin-10 + kisspeptin antagonist (kisspeptin-234) into the third ventricle of the brain. The anterior pituitary and blood was used to mRNA and protein expression analysis. We demonstrated that Gnrh up-regulates Nr5a1 mRNA expression in the anterior pituitary and induces NR5A1 depletion in gonadotropes. Gnrh administration increased both Ctnnb1 mRNA expression and protein synthesis, and induced activation of cellular Ctnnb1 via translocation from the gonadotropes cytoplasm to nucleus. After kisspeptin-10 treatment, up-regulation of Nr0b1 mRNA and protein expression in the anterior pituitary was observed. These data indicate that Gnrh-neuron-mediated network activity alters Nr5a1 gene transcription and translation in gonadotrope cells and this effect may result from the changes induced in the Ctnnb1 and Nr0b1 gene/protein expression balance.


Subject(s)
DAX-1 Orphan Nuclear Receptor/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Kisspeptins/pharmacology , Pituitary Gland, Anterior/drug effects , Steroidogenic Factor 1/metabolism , beta Catenin/metabolism , Animals , DAX-1 Orphan Nuclear Receptor/genetics , Female , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Kisspeptins/antagonists & inhibitors , Pituitary Gland, Anterior/metabolism , Rats, Wistar , Steroidogenic Factor 1/genetics , beta Catenin/genetics
18.
Genetica ; 146(6): 487-496, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30206752

ABSTRACT

The mechanisms of sex determination and differentiation have not been elucidated in most fish species. In this study, the full-length cDNAs of DAX1 was cloned and characterized in aquaculture fish Chinese loach (Paramisgurnus dabryanus), designated as Pd-DAX1. The cDNA sequence of Pd-DAX1 was 1261 bp, including 795 bp open reading frame (ORF) encoding 264 amino acids. Pd-DAX1 shares highly identical sequence with DAX1 homologues from different species. The expression profiles of Pd-DAX1 in different developmental stages and diverse adult tissues were analyzed by quantitative real-time RT-PCR and in situ hybridization (ISH). Pd-DAX1 was continuously expressed during embryogenesis, with the extensive distribution in the development of the central nervous system. Tissue distribution analysis revealed that Pd-DAX1 expressed widely in adult tissues, with the highest expression level found in testis, moderate level in ovary, showing a sex-dimorphic expression pattern. Pd-DAX1 mainly located in spermatogonia cells, spermatocytes, primary oocytes and previtellogenic oocyte cells, implying that Pd-DAX1 may involve in gametogenesis. These preliminary findings suggest that Pd-DAX1 gene is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, central nervous system development and gonad development.


Subject(s)
Cypriniformes/genetics , DAX-1 Orphan Nuclear Receptor/genetics , Fish Proteins/genetics , Animals , Central Nervous System/metabolism , Cloning, Molecular , Cypriniformes/growth & development , DAX-1 Orphan Nuclear Receptor/metabolism , Evolution, Molecular , Female , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Gonads/metabolism , Male , Organ Specificity
19.
Cell Rep ; 24(5): 1330-1341, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30067986

ABSTRACT

Mammalian sex determination depends on a complex interplay of signals that promote the bipotential fetal gonad to develop as either a testis or an ovary, but the details are incompletely understood. Here, we investigated whether removal of the signaling molecule retinoic acid (RA) by the degradative enzyme CYP26B1 is necessary for proper development of somatic cells of the testes. Gonadal organ culture experiments suggested that RA promotes expression of some ovarian markers and suppresses expression of some testicular markers, acting downstream of Sox9. XY Cyp26b1-null embryos, in which endogenous RA is not degraded, develop mild ovotestes, but more important, steroidogenesis is impaired and the reproductive tract feminized. Experiments involving purified gonadal cells showed that these effects are independent of germ cells and suggest the direct involvement of the orphan nuclear receptor DAX1. Our results reveal that active removal of endogenous RA is required for normal testis development in the mouse.


Subject(s)
Sex Determination Processes , Testis/metabolism , Tretinoin/pharmacology , Animals , Cells, Cultured , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , SOX9 Transcription Factor/metabolism , Testis/drug effects , Testis/embryology
20.
Cell Death Dis ; 9(3): 339, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29497051

ABSTRACT

DAX1 is well known for its fundamental role in several types of cancer, while its biological role in cervical cancer remains largely unexplored. The expression of DAX1 in cervical carcinoma tissue was examined using immunohistochemistry and western blot. The effects of DAX1 silencing on the cell growth, tumor formation, and CSC (cancer stem cell) characteristics were also investigated. DAX1 expressed a gradual increase from normal cervix to high-grade squamous intraepithelial lesions, and consequently to cervical cancer. Silence of DAX1 significantly inhibited the cell growth, tumorigenicity, and tumorsphere formation. Furthermore, the TOP/FOP-Flash reporter assay revealed that Wnt/ß-catenin pathway was significantly inactivated in DAX1-silenced cervical cancer cells with the downregulation of Wnt/ß-catenin targeting genes, including cyclinD1 and c-myc. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assay confirmed that DAX1 transcriptionally repressed glycogen synthase kinase 3ß (GSK3ß), an inhibitor of the Wnt/ß-catenin pathway, by physically interacting with -666~-444 motif on the GSK3ß promoter. Additionally, the blockage of GSK3ß by CHIR-99021 resulted in a significant increase of CSC characteristics induced by the silence of DAX1. Our data demonstrated that DAX1 is overexpressed in cervical cancer, and that it promotes cell growth and tumorigenicity through activating Wnt/ß-catenin pathway mediated by GSK3ß.


Subject(s)
DAX-1 Orphan Nuclear Receptor/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/physiopathology , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Proliferation , DAX-1 Orphan Nuclear Receptor/genetics , Female , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/genetics , Humans , Mice , Mice, Inbred BALB C , Promoter Regions, Genetic , Protein Binding , Uterine Cervical Neoplasms/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...