Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.850
Filter
1.
Sci Rep ; 14(1): 10601, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719921

ABSTRACT

A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe. Several hints point to the hypothesis that G. minor is transported to the deep ocean attached to particles, and the absence of G. minor in bathypelagic Atlantic waters could then be explained by the absence of this organism in surface waters of the equatorial Atlantic. The good correlation of G. minor biomass with Apparent Oxygen Utilization, recalcitrant carbon and free-living prokaryotic biomass in South Pacific waters, together with the identification of the observed cells as yeasts and not as resting spores (teliospores), point to the possibility that once arrived at deep layers this species keeps on growing and thriving.


Subject(s)
Basidiomycota , Pacific Ocean , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , RNA, Ribosomal, 18S/genetics , Seawater/microbiology , Phylogeny , Atlantic Ocean , DNA, Ribosomal/genetics , DNA, Fungal/genetics
2.
BMC Microbiol ; 24(1): 156, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724913

ABSTRACT

BACKGROUND: To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS: Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS: Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Cefoperazone , Feces , Gastrointestinal Microbiome , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Sulbactam , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/growth & development , Female , Anti-Bacterial Agents/pharmacology , Cefoperazone/pharmacology , Feces/microbiology , Campylobacter Infections/microbiology , Mice , Gastrointestinal Microbiome/drug effects , Sulbactam/pharmacology , RNA, Ribosomal, 16S/genetics , Intestines/microbiology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/drug effects , DNA, Bacterial/genetics , DNA, Ribosomal/genetics
3.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717338

ABSTRACT

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
4.
Front Cell Infect Microbiol ; 14: 1367673, 2024.
Article in English | MEDLINE | ID: mdl-38707512

ABSTRACT

Most species of Dothiora are known from the dead parts of various host plants as saprobic fungi in terrestrial habitats occurring in tropical and temperate regions. In the present study, samples of Dothiora were collected from dead twigs and branches of Capparis spinosa, Rhaponticum repens, and an unknown angiosperm plant from the Tashkent and Jizzakh regions of Uzbekistan. Multi-gene phylogenetic analyses based on a combined ITS, LSU, SSU, TEF1, and TUB2 sequence data revealed their taxonomic positions within the Dothideaceae. Three new species of Dothiora, namely, Dothiora capparis, Dothiora rhapontici, and Dothiora uzbekistanica were proposed by molecular and morphological data. Likewise, the phylogenetic relationship and morphology of Dothiora are discussed. In addition, we provide a list of accepted Dothiora species, including host information, distribution, morphology descriptions, and availability of sequence data, to enhance the current knowledge of the diversity within Dothiora.


Subject(s)
Ascomycota , DNA, Fungal , Phylogeny , Sequence Analysis, DNA , DNA, Fungal/genetics , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Uzbekistan , DNA, Ribosomal/genetics , Plant Diseases/microbiology
5.
Syst Parasitol ; 101(3): 37, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700664

ABSTRACT

A synopsis of Ortholinea Shulman, 1962 (Cnidaria: Myxosporea: Ortholineidae) is presented and identifies 26 nominal species presently allocated within this genus. Species morphological and morphometric features, tissue tropism, type-host, and type-locality are provided from original descriptions. Data from subsequent redescriptions and reports is also given. Accession numbers to sequences deposited in GenBank are indicated when available, and the myxospores were redrawn based on original descriptions. The information gathered shows that Ortholinea infect a wide taxonomic variety of freshwater and marine fish. Nonetheless, the broad host specificity reported for several species is not fully supported by morphological descriptions and requires molecular corroboration. The members of this genus are coelozoic and mainly parasitize the urinary system, with few species occurring in the gallbladder. Ortholinea visakhapatnamensis is the only exception, being histozoic in the visceral peritoneum. Molecular data of the small subunit ribosomal RNA gene (SSU rDNA) is available for about one third of Ortholinea species, with genetic interspecific variation ranging between 1.65% and 29.1%. Phylogenetic analyses reveal Ortholinea to be polyphyletic, with available SSU rDNA sequences clustering within the subclades of the highly heterogenous freshwater urinary clade of the oligochaete-infecting lineage. The life cycles of two Ortholinea species have been clarified based on molecular inferences and identify triactinomyxon actinospores as counterparts, and marine oligochaetes of the family Naididae as permissive hosts to this genus.


Subject(s)
Myxozoa , Species Specificity , Animals , Myxozoa/classification , Myxozoa/genetics , Myxozoa/anatomy & histology , Phylogeny , Host Specificity , Fishes/parasitology , DNA, Ribosomal/genetics
6.
J Helminthol ; 98: e39, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726571

ABSTRACT

During nematode surveys of natural vegetation in forests of La Cima de Copey de Dota, San José, San José province, Costa Rica, a Xenocriconemella species closely resembling X. macrodora and related species was found. Integrative taxonomical approaches demonstrated that it is a new species described herein as X. costaricense sp. nov. The new species is parthenogenetic (only females have been detected) and characterised by a short body (276-404 µm); lip region with two annuli, not offset, not separated from body contour; first lip annulus partially covering the second lip annulus. Stylet thin, very long (113-133 µm) and flexible, occupying 30.5-47.8% of body length. Excretory pore located from one or two annuli anterior to one or two annuli posterior to level of stylet knobs, at 42 (37-45) µm from anterior end. Female genital tract monodelphic, prodelphic, outstretched, and occupying 35-45% of body length, with vagina slightly ventrally curved (14-18 µm long). Anus located 6-11 annuli from the tail terminus. Tail conoid and bluntly rounded terminus, the last 2-3 annuli oriented dorsally. Results of molecular characterisation and phylogenetic analyses of D2-D3 expansion segments of 28S rRNA, ITS, and partial 18S rRNA, as well as cytochrome oxidase c subunit 1 gene sequences further characterised the new species and clearly separated it from X. macrodora and other related species (X. iberica, X. paraiberica, and X. pradense).


Subject(s)
Phylogeny , Animals , Costa Rica , Female , Male , Nematoda/classification , Nematoda/anatomy & histology , Nematoda/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 28S/genetics , DNA, Helminth/genetics , Forests , Sequence Analysis, DNA
7.
BMC Res Notes ; 17(1): 124, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693573

ABSTRACT

OBJECTIVE: The eukaryotic tree of life has been subject of numerous studies ever since the nineteenth century, with more supergroups and their sister relations being decoded in the last years. In this study, we reconstructed the phylogeny of eukaryotes using complete 18S rDNA sequences and their individual secondary structures simultaneously. After the sequence-structure data was encoded, it was automatically aligned and analyzed using sequence-only as well as sequence-structure approaches. We present overall neighbor-joining trees of 211 eukaryotes as well as the respective profile neighbor-joining trees, which helped to resolve the basal branching pattern. A manually chosen subset was further inspected using neighbor-joining, maximum parsimony, and maximum likelihood analyses. Additionally, the 75 and 100 percent consensus structures of the subset were predicted. RESULTS: All sequence-structure approaches show improvements compared to the respective sequence-only approaches: the average bootstrap support per node of the sequence-structure profile neighbor-joining analyses with 90.3, was higher than the average bootstrap support of the sequence-only profile neighbor-joining analysis with 73.9. Also, the subset analyses using sequence-structure data were better supported. Furthermore, more subgroups of the supergroups were recovered as monophyletic and sister group relations were much more comparable to results as obtained by multi-marker analyses.


Subject(s)
Eukaryota , Nucleic Acid Conformation , Phylogeny , RNA, Ribosomal, 18S , Eukaryota/genetics , Eukaryota/classification , RNA, Ribosomal, 18S/genetics , DNA, Ribosomal/genetics , Sequence Analysis, DNA/methods , Base Sequence
8.
J Helminthol ; 98: e38, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721629

ABSTRACT

The deepest recorded depth for trematodes currently stands at approximately 6200 m. This depth record was achieved solely through sequence datasets of Lepidapedon sp. obtained from a gastropod. Given that trematodes of this genus typically use fish as definitive hosts, the origin of the trematode sequence was thought to be larval stages. However, the specific species remained unclear owing to the absence of reported adult-stage sequences. In the present study, we definitively identified the deepest trematode as Lepidapedon oregonense by comparing 28S ribosomal DNA sequences from adult worms from the macrourid fish Coelorinchus gilberti with data from the gastropod in the previous study.


Subject(s)
DNA, Helminth , DNA, Ribosomal , Phylogeny , RNA, Ribosomal, 28S , Trematoda , Animals , Trematoda/classification , Trematoda/genetics , Trematoda/isolation & purification , RNA, Ribosomal, 28S/genetics , DNA, Helminth/genetics , DNA, Ribosomal/genetics , Gastropoda/parasitology , Sequence Analysis, DNA , Fishes/parasitology , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary
9.
BMC Med Genomics ; 17(1): 125, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715056

ABSTRACT

Naegleria fowleri, also known as brain-earing amoeba, causes severe and rapidly fatal CNS infection in humans called primary amebic meningoencephalitis (PAM). The DNA from the N. fowleri clinical isolate was sequenced for circular extrachromosomal ribosomal DNA (CERE - rDNA). The CERE contains 18 S, 5.8 S, and 28 S ribosomal subunits separated by internal transcribed spacers, 5 open reading frames (ORFs), and mostly repeat elements comprising 7268 bp out of 15,786 bp (46%). A wide variety of variations and recombination events were observed. Finally, the ORFs that comprised only 4 hypothetical proteins were modeled and screened against Zinc drug-like compounds. Two compounds [ZINC77564275 (ethyl 2-(((4-isopropyl-4 H-1,2,4-triazol-3-yl) methyl) (methyl)amino) oxazole-4-carboxylate) and ZINC15022129 (5-(2-methoxyphenoxy)-[2,2'-bipyrimidine]-4,6(1 H,5 H)-dione)] were finalized as potential druggable compounds based on ADME toxicity analysis. We propose that the compounds showing the least toxicity would be potential drug candidates after laboratory experimental validation is performed.


Subject(s)
DNA, Ribosomal , High-Throughput Nucleotide Sequencing , Naegleria fowleri , Naegleria fowleri/genetics , Humans , DNA, Ribosomal/genetics , Brain/metabolism , Genotype , Open Reading Frames
10.
Parasitol Res ; 123(5): 206, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713306

ABSTRACT

The Australian skink Egernia stokesii had been recognised as a host of two species of Plasmodium, Plasmodium mackerrasae and P. circularis; nevertheless, molecular data are available for only a single haemosporidian species of this host. Its sequences are labelled as "Plasmodium sp." or "Plasmodium mackerrasae", but morphological characteristics of this isolate are unavailable. Phylogenetic analyses of these sequences placed them into the clade of the genus Haemocystidium. In this study, blood samples of six E. stokesii were analysed by both, molecular and microscopic methods to clarify the haemosporidia of this lizard. Application of these approaches offered discordant results. Whereas sequence analysis clustered our isolates with lizard species of Haemocystidium, morphology of blood stages is more akin to Plasmodium than Haemocystidium. However, limited sampling, indistinguishable nuclei/merozoites and risk of possible hidden presence of mixed infection prevent reliable species identification of detected parasites or their description as new species of Haemocystidium.


Subject(s)
Haemosporida , Lizards , Phylogeny , Animals , Lizards/parasitology , Australia , Haemosporida/genetics , Haemosporida/classification , Haemosporida/isolation & purification , DNA, Protozoan/genetics , Sequence Analysis, DNA , Molecular Sequence Data , Cluster Analysis , DNA, Ribosomal/genetics , Microscopy , Blood/parasitology , RNA, Ribosomal, 18S/genetics , Protozoan Infections, Animal/parasitology
11.
Sci Rep ; 14(1): 10292, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704408

ABSTRACT

Presenting new molecular and scanning electron microscope (SEM) features, this study gives additional data to the better knowledge of Thaparocleidus vistulensis (Siwak, 1932) (Monopisthocotyla, Ancylodiscoididae), a parasite of the European catfish Silurus glanis Linnaeus, 1758 (Siluriformes, Siluridae) cultured in a commercial fish farm in Hungary. In addition, notes on the early development of sclerotized anchors are also provided. The main morphological difference of T. vistulensis compared to other congeneric species is associated with the male copulatory organ, which exhibits 5-7 loops in the middle of the penis length and a long open V-shaped sclerotized accessory piece, dividing terminally into two parts, securing the terminal part of the penis tube. The present study provides for the first time molecular characterization data based on the 2694 bp long nucleotide sequence of rDNA (ITS1, 5.8S, ITS2, and flanked with partial 18S and partial 28S) submitted in GenBank with the accession number OR916383. A phylogenetic tree based on ITS1 sequences supports a well-defined clade including T. vistulensis, forming a sister group with T. siluri, a species-specific monopisthocotylan parasite to S. glanis. The morphological characterization of T. vistulensis, especially for the male copulatory organ, together with the molecular data in the present study, extends knowledge about this monopisthocotylan species and provides new information for future phylogeny studies.


Subject(s)
Catfishes , Microscopy, Electron, Scanning , Phylogeny , Animals , Male , Catfishes/parasitology , Catfishes/genetics , Fish Diseases/parasitology , Trematoda/genetics , Trematoda/ultrastructure , Trematoda/classification , DNA, Ribosomal/genetics
12.
J Helminthol ; 98: e37, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706044

ABSTRACT

The genus Ancyrocephalus sensu lato is a large assemblage of species of dactylogyrid monopisthocotyleans without clear taxonomic boundaries. Despite an urgent need for revision, only three representatives of this taxon have been molecularly characterised so far. We found specimens of Ancyrocephalus curtus, a previously non-genotyped species, in gills of Perccottus glenii caught in the River Syumnyur, Amur Basin, Russia. The aim of this study was to assess the phylogenetic position of this parasite using partial sequences of 28S rRNA gene. In the phylogenetic tree, A. curtus appeared as a sister taxon to the dactylogyrine genus Gobioecetes. The new molecular evidence supports the hypothesis about the non-monophyletic status of Ancyrocephalus sensu lato.


Subject(s)
Fish Diseases , Gills , Perciformes , Phylogeny , RNA, Ribosomal, 28S , Animals , Fish Diseases/parasitology , Gills/parasitology , Perciformes/parasitology , RNA, Ribosomal, 28S/genetics , Russia , Rivers/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary , Platyhelminths/classification , Platyhelminths/genetics , Platyhelminths/isolation & purification , DNA, Helminth/genetics , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , DNA, Ribosomal/genetics , Sequence Analysis, DNA
13.
Parasitol Res ; 123(5): 202, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703234

ABSTRACT

Theileria orientalis, the causal agent of oriental theileriosis, is known to cause mild disease in cattle and buffalo across the world. Recently, different genotypes of T. orientalis have emerged as pathogenic, causing high reported morbidity in cattle. This study focuses on investigating three suspected outbreaks of oriental theileriosis that resulted in fatalities among crossbred and indigenous bulls in Karnataka, India. Examination of blood smears revealed the presence of T. orientalis piroplasms within erythrocytes. The genetic characterization of T. orientalis was conducted by targeting specific markers, including the mpsp gene, p23 gene, and ribosomal DNA markers (18S rRNA gene, ITS-1, and ITS-2). Analysis based on the 18S rRNA gene unveiled the presence of both Type A and Type E genotypes of T. orientalis in the outbreaks. The mpsp gene-based analysis identified genotype 7 of T. orientalis in crossbred cows, whereas genotype 1 (Chitose B) was found to be present in indigenous bulls. Haplotype network analysis based on the mpsp gene revealed the presence of 39 distinct haplotypes within the 12 defined genotypes of T. orientalis with a high haplotype diversity of 0.9545 ± 0.017. Hematological and biochemical analysis revealed a decrease in calcium, hemoglobin levels, red blood cell counts, and phosphorus. This study constitutes the initial documentation of a clinical outbreak of oriental theileriosis in indigenous bulls with genotype 1 (Chitose 1B). Substantial epidemiological investigations are imperative to gain a comprehensive understanding of the geographical distribution of distinct genotypes and the diverse clinical manifestations of the disease across various hosts.


Subject(s)
Disease Outbreaks , Genetic Variation , Genotype , RNA, Ribosomal, 18S , Theileria , Theileriasis , Animals , Theileria/genetics , Theileria/classification , Cattle , Theileriasis/epidemiology , Theileriasis/parasitology , India/epidemiology , Disease Outbreaks/veterinary , RNA, Ribosomal, 18S/genetics , Male , DNA, Protozoan/genetics , Phylogeny , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Sequence Analysis, DNA , Protozoan Proteins/genetics , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
14.
Protist ; 175(3): 126034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569353

ABSTRACT

The relationships of the mainly free living, obligately anaerobic ciliated protists belonging to order Metopida continue to be clarified and now comprise three families: Metopidae, Tropidoatractidae, and Apometopidae. The most species-rich genus of the Metopidae, Metopus has undergone considerable subdivision into new genera in recent years as more taxa are characterized by modern morphologic and molecular methods. The genus, Castula, was established to accommodate setae-bearing species previously assigned to Metopus: C. setosa and C. fusca, and one new species, C. flexibilis. Another new species, C. specialis, has been added since. Here we redescribe another species previously included in Metopus, using morphologic and molecular methods, and transfer it to Castula as C. strelkowi n. comb. (original combination Metopus strelkowi). We also reassess the monotypic genus, Pileometopus, which nests within the strongly supported Castula clade in 18S rRNA gene trees and conclude that it represents a morphologically divergent species of Castula.


Subject(s)
Fresh Water , Phylogeny , Czech Republic , Fresh Water/parasitology , Ciliophora/classification , Ciliophora/genetics , Ciliophora/cytology , Species Specificity , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics
15.
J Eukaryot Microbiol ; 71(3): e13028, 2024.
Article in English | MEDLINE | ID: mdl-38613145

ABSTRACT

The phylogenetic and taxonomic affinities of lineages currently assigned to the non-monophyletic ciliate order Loxocephalida Jankowski (1980) within subclass Scuticociliatia Small (1967) remain unresolved. In the current study, we redescribe the morphology of the type species, Loxocephalus luridus Eberhard (1862) based on two Czech populations and include the first scanning and transmission electron microscopy images of the species. We provide the first 18S rRNA gene sequences for L. luridus and consider its phylogenetic position. Our results support the separation of Dexiotricha from Loxocephalus; however, the former genus is recovered as non-monophyletic. The monophyly of genus Dexiotricha and that of Loxocephalus + Dexiotricha is rejected. Loxocephalus luridus, together with Dexiotricha species, nests within a fully supported clade with Conchophthirus species, long presumed to belong to the Pleuronematida. Haptophrya is recovered as sister to this clade. The monophyly of the Astomatia Schewiakoff (1896) including Haptophrya is rejected. No clear morphologic synapomorphy is identified for the fully supported clade consisting of Haptophrya, Dexiotricha, Loxocephalus, and Conchophthirus.


Subject(s)
DNA, Protozoan , Phylogeny , RNA, Ribosomal, 18S , Czech Republic , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Microscopy, Electron, Scanning , Sequence Analysis, DNA , Microscopy, Electron, Transmission , Ciliophora/classification , Ciliophora/genetics , Ciliophora/ultrastructure , Molecular Sequence Data
16.
Curr Microbiol ; 81(6): 150, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647555

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped, motile, flagellated bacterial strain, designated as CAU 1639T, was isolated from the tidal flat sediment on the Yellow Sea in the Republic of Korea. Growth of the isolate was observed at 20-37 °C, at pH 5.0-10.5 and with 0-7% (w/v) NaCl. The genomic DNA G + C content was 60.8%. Phylogenetic analysis, grounded on 16S rRNA gene sequencing, revealed that strain CAU 1639T was closely related to species within the genus Roseibium. It shared the highest similarity with Roseibium album CECT 5095T, followed by Roseibium aggregatum IAM 12614T and Roseibium salinum Cs25T, with 16S rRNA gene sequence similarity ranging from 98.0-98.4%. It was observed that the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values ranged between 72.5-79.5 and 20.0-22.9%, respectively. The polyphasic taxonomic analysis reveals that strain CAU 1639T represents a novel species in the genus Roseibium with the proposed name Roseibium sediminicola sp. nov. The type strain is CAU 1639T (= KCTC 82430T = MCCC 1K06081T).


Subject(s)
Base Composition , DNA, Bacterial , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Seawater , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Republic of Korea , Seawater/microbiology , Bacterial Typing Techniques , Rhodobacteraceae/classification , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Nucleic Acid Hybridization , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Ribosomal/genetics
17.
J Helminthol ; 98: e36, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659305

ABSTRACT

New morphological and molecular data were generated for trematodes recovered from the intestines of the fish Pseudaspius hakonensis from two locations in the south of the Russian Far East. Morphologically, these trematodes are identical to Pseudozoogonoides ugui (Microphalloidea: Zoogonidae) from Japan. According to results of phylogenetic analysis based on 28S rDNA sequence data, P. ugui was closely related to Zoogonoides viviparus, and P. subaequiporus appears as a sister taxon to these two species. Genetic distance values, calculated based on both 28S rDNA and ITS2 rDNA, between P. ugui and Z. viviparus represents an interspecific differentiation level. Our results have an ambiguous explanation, indicating that the implication of the presence of one or two compact vitellarial aggregations for the differentiation of Zoogonoides and Pseudozoogonoides should be reconsidered or that our results open up the question of the taxonomical status of trematodes previously denoted as Z. viviparus and P. subaequiporus.


Subject(s)
DNA, Helminth , DNA, Ribosomal , Fish Diseases , Phylogeny , RNA, Ribosomal, 28S , Trematoda , Trematode Infections , Animals , Trematoda/genetics , Trematoda/classification , Trematoda/anatomy & histology , RNA, Ribosomal, 28S/genetics , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary , DNA, Helminth/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Russia , Sequence Analysis, DNA , Intestines/parasitology
18.
J Helminthol ; 98: e32, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618914

ABSTRACT

Two new species of the genus Sectonema found in northern Iran are characterized, including morphological descriptions and molecular (18S-, 28S-rDNA) analyses. Sectonema tehranense sp. nov. is distinguished by its 7.22 - 8.53 mm long body, lip region offset by constriction and 24 - 31 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, mural tooth 15.5 - 17 µm long at its ventral side, neck 1091 - 1478 µm long, pharyngeal expansion occupying 61 - 71% of the total neck length, female genital system diovarian, uterus simple and 3.9 - 4.2 times the corresponding body diameter long, transverse vulva (V = 49 - 59), tail short and rounded (44 - 65 µm, c = 99 - 162, c' = 0.6 - 0.8), spicules 111 - 127 µm long, and 7 - 10 spaced ventromedian supplements with hiatus. Sectonema noshahrense sp. nov. displays a 4.07 - 4.73 mm long body, lip region offset by constriction and 23 - 25 µm wide with perioral lobes and abundant setae- or cilia-like projections covering the oral field, odontostyle 14 - 14.5 µm long, neck 722 - 822 µm long, pharyngeal expansion occupying 66 - 68% of the total neck length, female genital system diovarian, uterus simple and 2.4 - 2.7 times the corresponding body diameter long, transverse vulva (V = 54 - 55), tail convex conoid (39 - 47 µm, c = 91 - 111, c' = 0.8 - 0.9), spicules 82 µm long, and seven spaced ventromedian supplements with hiatus. Molecular analyses confirm a maximally supported (Epacrolaimus + Metaporcelaimus + Sectonema) clade and a tentative biogeographical pattern, with sequences of Indolamayan taxa forming a clade separated from those of Palearctic ones. Parallel or convergent evolution processes might be involved in the phylogeny of the species currently classified under Sectonema. This genus is certainly more heterogeneous than previously assumed.


Subject(s)
Helminths , Nematoda , Female , Animals , Iran , Cytoskeleton , DNA, Ribosomal/genetics , Nematoda/genetics
19.
J Helminthol ; 98: e35, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651383

ABSTRACT

As part of a parasitological survey, several specimens of two new monopisthocotylean species, Neotetraonchus celsomanueli sp. nov. and N.peruvianus sp. nov. (Dactylogyridea, Dactylogyridae), were collected from the gill filaments of the Peruvian sea catfish Galeichthys peruvianus (Siluriformes, Ariidae) off Puerto Pizarro, Tumbes region, Peru. Neotetraonchus celsomanueli sp. nov. is characterised by an MCO with a T-shaped distal end and an accessory piece that is ribbed and expanded proximally with a worm-shaped termination. Neotetraonchus peruvianus sp. nov. is typified by its MCO, which has a sledgehammer-shaped distal end and an accessory piece with a claw-shaped distal end. Additionally, N.peruvianus sp. nov. is characterised by its jellyfish-shaped onchium. A partial 28S rDNA sequence was obtained from N.celsomanueli sp. nov., and a phylogenetic analysis was conducted. This analysis revealed the phylogenetic position of Neotetraonchus celsomanueli sp. nov. within a clade comprising monopisthocotylean parasites of diadromous and marine ariid catfishes, including Hamatopeduncularia spp., Chauhanellus spp., Thysanotohaptor Kritsky, Shameem, Kumari & Krishnaveni, , and Neocalceostomoides spinivaginalis Lim, 1995. This finding brings the number of known Neotetraonchus species to seven and represents the first described Neotetraonchus species infecting marine catfishes from Peru.


Subject(s)
Catfishes , Fish Diseases , Gills , Phylogeny , Animals , Catfishes/parasitology , Peru , Fish Diseases/parasitology , Gills/parasitology , Trematode Infections/veterinary , Trematode Infections/parasitology , DNA, Ribosomal/genetics , Trematoda/classification , Trematoda/genetics , Trematoda/anatomy & histology , Trematoda/isolation & purification , DNA, Helminth/genetics , RNA, Ribosomal, 28S/genetics , Platyhelminths/classification , Platyhelminths/genetics , Platyhelminths/anatomy & histology , Platyhelminths/isolation & purification , Sequence Analysis, DNA
20.
PLoS One ; 19(4): e0298905, 2024.
Article in English | MEDLINE | ID: mdl-38578734

ABSTRACT

Nematodes are keystone actors of soil, freshwater and marine ecosystems, but the complexity of morphological identification has limited broad-scale monitoring of nematode biodiversity. DNA metabarcoding is increasingly used to assess nematode diversity but requires universal primers with high taxonomic coverage and high taxonomic resolution. Several primers have been proposed for the metabarcoding of nematode diversity, many of which target the 18S rRNA gene. In silico analyses have a great potential to assess key parameters of primers, including taxonomic coverage, resolution and specificity. Based on a recently-available reference database, we tested in silico the performance of fourteen commonly used and one newly optimized primer for nematode metabarcoding. Most primers showed very good coverage, amplifying most of the sequences in the reference database, while four markers showed limited coverage. All primers showed good taxonomic resolution. Resolution was particularly good if the aim was the identification of higher-level taxa, such as genera or families. Overall, species-level resolution was higher for primers amplifying long fragments. None of the primers was highly specific for nematodes as, despite some variation, they all amplified a large number of other eukaryotes. Differences in performance across primers highlight the complexity of the choice of markers appropriate for the metabarcoding of nematodes, which depends on a trade-off between taxonomic resolution and the length of amplified fragments. Our in silico analyses provide new insights for the identification of the most appropriate primers, depending on the study goals and the origin of DNA samples. This represents an essential step to design and optimize metabarcoding studies assessing nematode diversity.


Subject(s)
Ecosystem , Nematoda , Humans , Animals , DNA, Ribosomal/genetics , DNA Barcoding, Taxonomic , Nematoda/genetics , RNA, Ribosomal, 18S/genetics , Biodiversity
SELECTION OF CITATIONS
SEARCH DETAIL
...