Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.058
Filter
1.
Biomol NMR Assign ; 18(1): 105-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689205

ABSTRACT

The BRCA1 carboxyl-terminal (BRCT) domain, an evolutionarily conserved structural motif, is ubiquitous in a multitude of proteins spanning prokaryotic and eukaryotic organisms. In Mycobacterium tuberculosis (Mtb), BRCT domain plays a pivotal role in the catalytic activity of the NAD+-dependent DNA ligase (LigA). LigA is pivotal in DNA replication, catalyzing the formation of phosphodiester bonds in Okazaki fragments and repairing single-strand breaks in damaged DNA, essential for the survival of Mtb. Structural and functional aspects of LigA unveil its character as a highly modular protein, undergoing substantial conformational changes during its catalytic cycle. Although the BRCT domain of Mtb LigA plays an essential role in DNA binding and protein-protein interactions, the precise mechanism of action remains poorly understood. Unravelling the structure of the BRCT domain holds the promise of advancing our understanding of this pivotal domain. Additionally, it will facilitate further exploration of the protein-protein interactions and enhance our understanding of inter domain interactions within LigA, specifically between BRCT and the Adenylation domain. In this study, we demonstrate the overexpression of the BRCT domain of Mtb LigA and conduct its analysis using solution NMR spectroscopy, revealing a well-folded structure and we present the nearly complete chemical shift assignments of both backbone and sidechains. In addition, a secondary structure prediction by TALOS N predicts BRCT consisting of 3 α-helices and 4 ß-sheets, closely resembling the typical structural topology of most BRCT domains.


Subject(s)
Mycobacterium tuberculosis , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Protein Structure, Secondary , DNA Ligase ATP/chemistry , DNA Ligase ATP/metabolism , DNA Ligases/chemistry , DNA Ligases/metabolism
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 410-413, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660906

ABSTRACT

The first patient, a 10-year-old girl, presented with pancytopenia and recurrent epistaxis, along with a history of repeated upper respiratory infections, café-au-lait spots, and microcephaly. Genetic testing revealed compound heterozygous mutations in the DNA ligase IV (LIG4) gene, leading to a diagnosis of LIG4 syndrome. The second patient, a 6-year-old girl, was seen for persistent thrombocytopenia lasting over two years and was noted to have short stature, hyperpigmented skin, and hand malformations. She had a positive result from chromosome breakage test. She was diagnosed with Fanconi anemia complementation group A. Despite similar clinical presentations, the two children were diagnosed with different disorders, suggesting that children with hemocytopenia and malformations should not only be evaluated for hematological diseases but also be screened for other potential underlying conditions such as immune system disorders.


Subject(s)
Abnormalities, Multiple , Humans , Female , Child , Abnormalities, Multiple/genetics , Pancytopenia/etiology , Pancytopenia/genetics , DNA Ligase ATP/genetics , DNA Ligase ATP/deficiency , Thrombocytopenia/genetics , Thrombocytopenia/etiology , Cytopenia
3.
Nat Commun ; 15(1): 2156, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461154

ABSTRACT

This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Mitochondrial Diseases , Motor Neuron Disease , RNA-Binding Protein FUS , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , DNA, Mitochondrial/genetics , Ligases/metabolism , Mice, Transgenic , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Mutation , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism
4.
Nucleic Acids Res ; 52(9): 5048-5066, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38412274

ABSTRACT

Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.


Subject(s)
DNA End-Joining Repair , DNA-Activated Protein Kinase , Translocation, Genetic , V(D)J Recombination , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Animals , Humans , Mice , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , Ku Autoantigen/genetics , Ku Autoantigen/metabolism
5.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38366780

ABSTRACT

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


Subject(s)
DNA Ligase ATP , DNA Polymerase beta , DNA Repair , DNA Polymerase beta/metabolism , DNA Polymerase beta/genetics , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA/metabolism , DNA/genetics , DNA Damage , DNA Ligases/metabolism , DNA Ligases/genetics , Excision Repair
6.
Nat Commun ; 15(1): 1250, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341432

ABSTRACT

Nonhomologous end joining (NHEJ), the primary pathway of vertebrate DNA double-strand-break (DSB) repair, directly re-ligates broken DNA ends. Damaged DSB ends that cannot be immediately re-ligated are modified by NHEJ processing enzymes, including error-prone polymerases and nucleases, to enable ligation. However, DSB ends that are initially compatible for re-ligation are typically joined without end processing. As both ligation and end processing occur in the short-range (SR) synaptic complex that closely aligns DNA ends, it remains unclear how ligation of compatible ends is prioritized over end processing. In this study, we identify structural interactions of the NHEJ-specific DNA Ligase IV (Lig4) within the SR complex that prioritize ligation and promote NHEJ fidelity. Mutational analysis demonstrates that Lig4 must bind DNA ends to form the SR complex. Furthermore, single-molecule experiments show that a single Lig4 binds both DNA ends at the instant of SR synapsis. Thus, Lig4 is poised to ligate compatible ends upon initial formation of the SR complex before error-prone processing. Our results provide a molecular basis for the fidelity of NHEJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Ligase ATP/metabolism , DNA Repair , DNA Ligases/metabolism , DNA/genetics , DNA/metabolism
7.
Eur J Hum Genet ; 32(5): 545-549, 2024 May.
Article in English | MEDLINE | ID: mdl-38351293

ABSTRACT

Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown. We report here 4 fetuses from 2 unrelated families presenting with ventriculomegaly at prenatal ultra-sonography as well as an aqueduct stenosis and skeletal abnormalities as revealed by fetal autopsy. Genome sequencing identified biallelic pathogenic variations in LIG4, a DNA-repair gene responsible for the LIG4 syndrome which associates a wide range of clinical manifestations including developmental delay, microcephaly, short stature, radiation hypersensitivity and immunodeficiency. Thus, not only this report expands the phenotype spectrum of LIG4-related disorders, adding ventriculomegaly due to aqueduct stenosis, but we also provide the first neuropathological description of fetuses carrying LIG4 pathogenic biallelic variations.


Subject(s)
DNA Ligase ATP , Hydrocephalus , Phenotype , Humans , Female , Hydrocephalus/genetics , Hydrocephalus/pathology , Hydrocephalus/diagnostic imaging , Male , DNA Ligase ATP/genetics , Cerebral Aqueduct/pathology , Cerebral Aqueduct/abnormalities , Cerebral Aqueduct/diagnostic imaging , Fetus/pathology , Pregnancy , Mutation , Adult , Constriction, Pathologic/genetics , Constriction, Pathologic/pathology
8.
BMC Microbiol ; 24(1): 29, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245708

ABSTRACT

BACKGROUND: The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. RESULTS: This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. CONCLUSIONS: These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.


Subject(s)
DNA Ligases , Neisseria gonorrhoeae , Humans , DNA Ligase ATP/genetics , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , DNA Ligases/genetics , DNA Ligases/chemistry , DNA Ligases/metabolism , DNA , Biofilms
9.
J Mol Biol ; 436(1): 168276, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37714297

ABSTRACT

The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.


Subject(s)
DNA Ligases , DNA Repair , DNA , Animals , Humans , DNA/genetics , DNA/metabolism , DNA Damage , DNA Ligase ATP/genetics , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Replication , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
10.
J Mol Biol ; 436(4): 168410, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38135179

ABSTRACT

Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) ß to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polß and LIGIIIα. Yet, the impact of the polß mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polß colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polß by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polß variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polß/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.


Subject(s)
DNA Breaks, Single-Stranded , DNA Ligase ATP , DNA Polymerase beta , Excision Repair , X-ray Repair Cross Complementing Protein 1 , DNA Ligase ATP/chemistry , DNA Polymerase beta/chemistry , X-ray Repair Cross Complementing Protein 1/chemistry , X-ray Repair Cross Complementing Protein 1/genetics , Humans , Protein Binding
11.
Nat Commun ; 14(1): 7638, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993452

ABSTRACT

Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.


Subject(s)
Eukaryota , Rotifera , Animals , Humans , Eukaryota/genetics , Phylogeny , DNA Ligases/genetics , DNA Ligases/metabolism , Ligases/metabolism , Proteomics , Rotifera/genetics , DNA Damage , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism
12.
Genomics ; 115(6): 110731, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37871849

ABSTRACT

Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.


Subject(s)
DNA Ligase ATP , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , DNA Damage/genetics , DNA End-Joining Repair , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Repair/genetics , Ligases/genetics , Ligases/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism
13.
Int J Biol Macromol ; 253(Pt 2): 126711, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37673141

ABSTRACT

The genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0039, which encodes a putative DNA ligase. Structural analysis disclosed the presence of signature sequences of ATP-dependent DNA ligases. We have heterologously expressed Pcal_0039 gene in Escherichia coli. The recombinant protein, majorly produced in soluble form, was purified and functionally characterized. Recombinant Pcal_0039 displayed nick-joining activity between 40 and 85 °C. Optimal activity was observed at 70 °C and pH 5.5. Nick-joining activity was retained even after heating for 1 h at 90 °C, indicating highly thermostable nature of Pcal_0039. The nick-joining activity, displayed by Pcal_0039, was metal ion dependent and Mg2+ was the most preferred. NaCl and KCl inhibited the nick-joining activity at or above 200 mmol/L. The activity catalyzed by recombinant Pcal_0039 was independent of addition of ATP or NAD+ or any other nucleotide cofactor. A mismatch adjacent to the nick, either at 3'- or 5'-end, abolished the nick-joining activity. These characteristics make Pcal_0039 a potential candidate for applications in DNA diagnostics. To the best of our knowledge, Pcal_0039 is the only DNA ligase, characterized from genus Pyrobaculum, which exhibits optimum nick-joining activity at pH below 6.0 and independent of any nucleotide cofactor.


Subject(s)
Pyrobaculum , Pyrobaculum/genetics , NAD/metabolism , Enzyme Stability , DNA Ligase ATP/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , Archaea/metabolism , Cloning, Molecular , Adenosine Triphosphate/metabolism
14.
Nat Struct Mol Biol ; 30(10): 1505-1515, 2023 10.
Article in English | MEDLINE | ID: mdl-37620586

ABSTRACT

DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA-DNA junction, thus marking the end of the RNA primer and creating a 5' end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.


Subject(s)
DNA Polymerase III , DNA , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA/chemistry , DNA Replication , RNA/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Ligase ATP/metabolism , Endonucleases/metabolism
15.
Anticancer Res ; 43(8): 3447-3453, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500161

ABSTRACT

BACKGROUND/AIM: Impaired non-homologous end-joining DNA repair capacity may have a significant role in maintaining genome integrity and triggering carcinogenesis. However, the specific impact of DNA ligase 4 (Lig4) genotypes remains unclear. This study aimed to assess the contribution of Lig4 genotypes to the risk of developing lung cancer. MATERIALS AND METHODS: Polymerase chain reaction-restriction fragment length polymorphism analysis was used to examine the genotypes of Lig4 rs1805388, and their association with lung cancer risk was evaluated in a case-control study consisting of 358 lung cancer cases and 716 age- and sex-matched cancer-free control subjects. RESULTS: The distribution of CC, CT, and TT genotypes for Lig4 rs1805388 among the cases was 45.0%, 41.6%, and 13.4%, respectively, compared to 58.0%, 36.3%, and 5.7% among the controls (p for trend=1.98×10-6). Allelic analysis indicated that individuals carrying the T-allele for Lig4 rs1805388 had a 1.66-fold higher risk of developing lung cancer compared to those carrying the wild-type C-allele [95% confidence interval (CI)=1.36-2.02, p=4.04×10-7]. Moreover, a significant interaction was observed between the Lig4 rs1805388 genotype and smoking status (p=1.32×10-7). CONCLUSION: These findings suggest that the CT and TT variant genotypes of Lig4 rs1805388, combined with cigarette smoking, may contribute to a higher risk of developing lung cancer.


Subject(s)
DNA Ligase ATP , Genetic Predisposition to Disease , Lung Neoplasms , Humans , Case-Control Studies , Genotype , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Risk Factors , Taiwan , DNA Ligase ATP/genetics
16.
Structure ; 31(8): 895-902.e3, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37311458

ABSTRACT

The ability of humans to maintain the integrity of the genome is imperative for cellular survival. DNA double-strand breaks (DSBs) are considered the most critical type of DNA lesion, which can ultimately lead to diseases including cancer. Non-homologous end joining (NHEJ) is one of two core mechanisms utilized to repair DSBs. DNA-PK is a key component in this process and has recently been shown to form alternate long-range synaptic dimers. This has led to the proposal that these complexes can be formed before transitioning to a short-range synaptic complex. Here we present cryo-EM data representing an NHEJ supercomplex consisting of a trimer of DNA-PK in complex with XLF, XRCC4, and DNA Ligase IV. This trimer represents a complex of both long-range synaptic dimers. We discuss the potential role of the trimeric structure, and possible higher order oligomers, as structural intermediates in the NHEJ mechanism, or as functional DNA repair centers.


Subject(s)
DNA Repair Enzymes , DNA Repair , Humans , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Cryoelectron Microscopy , DNA End-Joining Repair , DNA Ligase ATP , DNA-Activated Protein Kinase/metabolism , DNA/genetics
17.
Plant J ; 116(1): 58-68, 2023 10.
Article in English | MEDLINE | ID: mdl-37340932

ABSTRACT

Non-homologous end joining (NHEJ) plays a major role in repairing DNA double-strand breaks and is key to genome stability and editing. The minimal core NHEJ proteins, namely Ku70, Ku80, DNA ligase IV and XRCC4, are conserved, but other factors vary in different eukaryote groups. In plants, the only known NHEJ proteins are the core factors, while the molecular mechanism of plant NHEJ remains unclear. Here, we report a previously unidentified plant ortholog of PAXX, the crystal structure of which showed a similar fold to human 'PAXX'. However, plant PAXX has similar molecular functions to human XLF, by directly interacting with Ku70/80 and XRCC4. This suggests that plant PAXX combines the roles of mammalian PAXX and XLF and that these functions merged into a single protein during evolution. This is consistent with a redundant function of PAXX and XLF in mammals.


Subject(s)
DNA End-Joining Repair , DNA Repair Enzymes , Animals , Humans , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA , Mammals/genetics , Mammals/metabolism
19.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Article in English | MEDLINE | ID: mdl-37004747

ABSTRACT

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Subject(s)
DNA Ligases , Immunologic Deficiency Syndromes , Humans , DNA Ligases/genetics , Autoimmunity/genetics , Haploinsufficiency , DNA Ligase ATP/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , DNA
20.
Curr Protoc ; 3(3): e690, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36880776

ABSTRACT

DNA ligases catalyze the joining of breaks in nucleic acid backbones and are essential enzymes for in vivo genome replication and repair across all domains of life. These enzymes are also critically important to in vitro manipulation of DNA in applications such as cloning, sequencing, and molecular diagnostics. DNA ligases generally catalyze the formation of a phosphodiester bond between an adjacent 5'-phosphate and 3'-hydroxyl in DNA, but they exhibit different substrate structure preferences, sequence-dependent biases in reaction kinetics, and variable tolerance for mismatched base pairs. Information on substrate structure and sequence specificity can inform both biological roles and molecular biology applications of these enzymes. Given the high complexity of DNA sequence space, testing DNA ligase substrate specificity on individual nucleic acid sequences in parallel rapidly becomes impractical when a large sequence space is investigated. Here, we describe methods for investigating DNA ligase sequence bias and mismatch discrimination using Pacific Biosciences Single-Molecule Real-Time (PacBio SMRT) sequencing technology. Through its rolling-circle amplification methodology, SMRT sequencing can give multiple reads of the same insert. This feature permits high-quality top- and bottom-strand consensus sequences to be determined while preserving information on top-bottom strand mismatches that can be obfuscated or lost when using other sequencing methods. Thus, PacBio SMRT sequencing is uniquely suited to measuring substrate bias and enzyme fidelity through multiplexing a diverse set of sequences in a single reaction. The protocols describe substrate synthesis, library preparation, and data analysis methods suitable for measuring fidelity and bias of DNA ligases. The methods are easily adapted to different nucleic acid substrate structures and can be used to characterize many enzymes under a variety of reaction conditions and sequence contexts in a rapid and high-throughput manner. © 2023 New England Biolabs and The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of overhang DNA substrates for ligation Basic Protocol 2: Preparation of ligation fidelity libraries Support Protocol 1: Preparation of ligation libraries for PacBio Sequel II sequencing Support Protocol 2: Loading and sequencing of a prepared library on the Sequel II instrument Basic Protocol 3: Computational processing of ligase fidelity sequencing data.


Subject(s)
DNA Ligases , Technology , Substrate Specificity , DNA Ligase ATP , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...