Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
J Clin Immunol ; 44(7): 151, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896336

ABSTRACT

A cell's ability to survive and to evade cancer is contingent on its ability to retain genomic integrity, which can be seriously compromised when nucleic acid phosphodiester bonds are disrupted. DNA Ligase 1 (LIG1) plays a key role in genome maintenance by sealing single-stranded nicks that are produced during DNA replication and repair. Autosomal recessive mutations in a limited number of individuals have been previously described for this gene. Here we report a homozygous LIG1 mutation (p.A624T), affecting a universally conserved residue, in a patient presenting with leukopenia, neutropenia, lymphopenia, pan-hypogammaglobulinemia, and diminished in vitro response to mitogen stimulation. Patient fibroblasts expressed normal levels of LIG1 protein but exhibited impaired growth, poor viability, high baseline levels of gamma-H2AX foci, and an enhanced susceptibility to DNA-damaging agents. The mutation reduced LIG1 activity by lowering its affinity for magnesium 2.5-fold. Remarkably, it also increased LIG1 fidelity > 50-fold against 3' end 8-Oxoguanine mismatches, exhibiting a marked reduction in its ability to process such nicks. This is expected to yield increased ss- and dsDNA breaks. Molecular dynamic simulations, and Residue Interaction Network studies, predicted an allosteric effect for this mutation on the protein loops associated with the LIG1 high-fidelity magnesium, as well as on DNA binding within the adenylation domain. These dual alterations of suppressed activity and enhanced fidelity, arising from a single mutation, underscore the mechanistic picture of how a LIG1 defect can lead to severe immunological disease.


Subject(s)
DNA Ligase ATP , Homozygote , Mutation , Severe Combined Immunodeficiency , Female , Humans , Male , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , Fibroblasts , Molecular Dynamics Simulation , Mutation/genetics , Severe Combined Immunodeficiency/genetics , Infant
2.
J Biol Chem ; 300(6): 107355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718860

ABSTRACT

Base excision repair (BER) requires a tight coordination between the repair enzymes through protein-protein interactions and involves gap filling by DNA polymerase (pol) ß and subsequent nick sealing by DNA ligase (LIG) 1 or LIGIIIα at the downstream steps. Apurinic/apyrimidinic-endonuclease 1 (APE1), by its exonuclease activity, proofreads 3' mismatches incorporated by polß during BER. We previously reported that the interruptions in the functional interplay between polß and the BER ligases result in faulty repair events. Yet, how the protein interactions of LIG1 and LIGIIIα could affect the repair pathway coordination during nick sealing at the final steps remains unknown. Here, we demonstrate that LIGIIIα interacts more tightly with polß and APE1 than LIG1, and the N-terminal noncatalytic region of LIG1 as well as the catalytic core and BRCT domain of LIGIIIα mediate interactions with both proteins. Our results demonstrated less efficient nick sealing of polß nucleotide insertion products in the absence of LIGIIIα zinc-finger domain and LIG1 N-terminal region. Furthermore, we showed a coordination between APE1 and LIG1/LIGIIIα during the removal of 3' mismatches from the nick repair intermediate on which both BER ligases can seal noncanonical ends or gap repair intermediate leading to products of single deletion mutagenesis. Overall results demonstrate the importance of functional coordination from gap filling by polß coupled to nick sealing by LIG1/LIGIIIα in the presence of proofreading by APE1, which is mainly governed by protein-protein interactions and protein-DNA intermediate communications, to maintain repair efficiency at the downstream steps of the BER pathway.


Subject(s)
DNA Ligase ATP , DNA Polymerase beta , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA Polymerase beta/metabolism , DNA Polymerase beta/chemistry , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/chemistry , Humans , Protein Binding , Excision Repair , Poly-ADP-Ribose Binding Proteins , Xenopus Proteins
3.
Nucleic Acids Res ; 52(11): 6424-6440, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38801073

ABSTRACT

TIMELESS (TIM) in the fork protection complex acts as a scaffold of the replisome to prevent its uncoupling and ensure efficient DNA replication fork progression. Nevertheless, its underlying basis for coordinating leading and lagging strand synthesis to limit single-stranded DNA (ssDNA) exposure remains elusive. Here, we demonstrate that acute degradation of TIM at ongoing DNA replication forks induces the accumulation of ssDNA gaps stemming from defective Okazaki fragment (OF) processing. Cells devoid of TIM fail to support the poly(ADP-ribosyl)ation necessary for backing up the canonical OF processing mechanism mediated by LIG1 and FEN1. Consequently, recruitment of XRCC1, a known effector of PARP1-dependent single-strand break repair, to post-replicative ssDNA gaps behind replication forks is impaired. Physical disruption of the TIM-PARP1 complex phenocopies the rapid loss of TIM, indicating that the TIM-PARP1 interaction is critical for the activation of this compensatory pathway. Accordingly, combined deficiency of FEN1 and the TIM-PARP1 interaction leads to synergistic DNA damage and cytotoxicity. We propose that TIM is essential for the engagement of PARP1 to the replisome to coordinate lagging strand synthesis with replication fork progression. Our study identifies TIM as a synthetic lethal target of OF processing enzymes that can be exploited for cancer therapy.


Subject(s)
Cell Cycle Proteins , DNA Replication , DNA, Single-Stranded , Intracellular Signaling Peptides and Proteins , Poly (ADP-Ribose) Polymerase-1 , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA/metabolism , DNA/genetics , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , DNA Repair , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism , X-ray Repair Cross Complementing Protein 1/genetics
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 410-413, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660906

ABSTRACT

The first patient, a 10-year-old girl, presented with pancytopenia and recurrent epistaxis, along with a history of repeated upper respiratory infections, café-au-lait spots, and microcephaly. Genetic testing revealed compound heterozygous mutations in the DNA ligase IV (LIG4) gene, leading to a diagnosis of LIG4 syndrome. The second patient, a 6-year-old girl, was seen for persistent thrombocytopenia lasting over two years and was noted to have short stature, hyperpigmented skin, and hand malformations. She had a positive result from chromosome breakage test. She was diagnosed with Fanconi anemia complementation group A. Despite similar clinical presentations, the two children were diagnosed with different disorders, suggesting that children with hemocytopenia and malformations should not only be evaluated for hematological diseases but also be screened for other potential underlying conditions such as immune system disorders.


Subject(s)
Abnormalities, Multiple , Humans , Female , Child , Abnormalities, Multiple/genetics , Pancytopenia/etiology , Pancytopenia/genetics , DNA Ligase ATP/genetics , DNA Ligase ATP/deficiency , Thrombocytopenia/genetics , Thrombocytopenia/etiology , Cytopenia
5.
J Biol Chem ; 300(5): 107216, 2024 May.
Article in English | MEDLINE | ID: mdl-38522520

ABSTRACT

Human DNA ligase 1 (LIG1) is the main replicative ligase that seals Okazaki fragments during nuclear replication and finalizes DNA repair pathways by joining DNA ends of the broken strand breaks in the three steps of the ligation reaction. LIG1 can tolerate the RNA strand upstream of the nick, yet an atomic insight into the sugar discrimination mechanism by LIG1 against a ribonucleotide at the 3'-terminus of nick DNA is unknown. Here, we determined X-ray structures of LIG1/3'-RNA-DNA hybrids and captured the ligase during pre- and post-step 3 the ligation reaction. Furthermore, the overlays of 3'-rA:T and 3'-rG:C step 3 structures with step 2 structures of canonical 3'-dA:T and 3'-dG:C uncover a network of LIG1/DNA interactions through Asp570 and Arg871 side chains with 2'-OH of the ribose at nick showing a final phosphodiester bond formation and the other ligase active site residues surrounding the AMP site. Finally, we demonstrated that LIG1 can ligate the nick DNA substrates with pre-inserted 3'-ribonucleotides as efficiently as Watson-Crick base-paired ends in vitro. Together, our findings uncover a novel atomic insight into a lack of sugar discrimination by LIG1 and the impact of improper sugar on the nick sealing of ribonucleotides at the last step of DNA replication and repair.


Subject(s)
DNA Ligase ATP , DNA , Ribonucleotides , Humans , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/chemistry , DNA/metabolism , DNA/chemistry , Ribonucleotides/metabolism , Ribonucleotides/chemistry , Crystallography, X-Ray , DNA Repair
6.
Nat Commun ; 15(1): 2156, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461154

ABSTRACT

This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Mitochondrial Diseases , Motor Neuron Disease , RNA-Binding Protein FUS , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , DNA, Mitochondrial/genetics , Ligases/metabolism , Mice, Transgenic , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Mutation , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism
7.
Nucleic Acids Res ; 52(9): 5048-5066, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38412274

ABSTRACT

Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.


Subject(s)
Chromosome Aberrations , DNA End-Joining Repair , DNA-Activated Protein Kinase , Animals , Humans , Mice , Cell Line , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Translocation, Genetic , V(D)J Recombination
8.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38366780

ABSTRACT

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


Subject(s)
DNA Ligase ATP , DNA Polymerase beta , DNA Repair , DNA Polymerase beta/metabolism , DNA Polymerase beta/genetics , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA/metabolism , DNA/genetics , DNA Damage , DNA Ligases/metabolism , DNA Ligases/genetics , Excision Repair
9.
Eur J Hum Genet ; 32(5): 545-549, 2024 May.
Article in English | MEDLINE | ID: mdl-38351293

ABSTRACT

Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown. We report here 4 fetuses from 2 unrelated families presenting with ventriculomegaly at prenatal ultra-sonography as well as an aqueduct stenosis and skeletal abnormalities as revealed by fetal autopsy. Genome sequencing identified biallelic pathogenic variations in LIG4, a DNA-repair gene responsible for the LIG4 syndrome which associates a wide range of clinical manifestations including developmental delay, microcephaly, short stature, radiation hypersensitivity and immunodeficiency. Thus, not only this report expands the phenotype spectrum of LIG4-related disorders, adding ventriculomegaly due to aqueduct stenosis, but we also provide the first neuropathological description of fetuses carrying LIG4 pathogenic biallelic variations.


Subject(s)
DNA Ligase ATP , Hydrocephalus , Phenotype , Humans , Female , Hydrocephalus/genetics , Hydrocephalus/pathology , Hydrocephalus/diagnostic imaging , Male , DNA Ligase ATP/genetics , Cerebral Aqueduct/pathology , Cerebral Aqueduct/abnormalities , Cerebral Aqueduct/diagnostic imaging , Fetus/pathology , Pregnancy , Mutation , Adult , Constriction, Pathologic/genetics , Constriction, Pathologic/pathology
10.
BMC Microbiol ; 24(1): 29, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245708

ABSTRACT

BACKGROUND: The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. RESULTS: This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. CONCLUSIONS: These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.


Subject(s)
DNA Ligases , Neisseria gonorrhoeae , Humans , DNA Ligase ATP/genetics , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , DNA Ligases/genetics , DNA Ligases/chemistry , DNA Ligases/metabolism , DNA , Biofilms
11.
J Mol Biol ; 436(1): 168276, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37714297

ABSTRACT

The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.


Subject(s)
DNA Ligases , DNA Repair , DNA , Animals , Humans , DNA/genetics , DNA/metabolism , DNA Damage , DNA Ligase ATP/genetics , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Replication , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
12.
Nat Commun ; 14(1): 7638, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993452

ABSTRACT

Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.


Subject(s)
Eukaryota , Rotifera , Animals , Humans , Eukaryota/genetics , Phylogeny , DNA Ligases/genetics , DNA Ligases/metabolism , Ligases/metabolism , Proteomics , Rotifera/genetics , DNA Damage , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism
13.
Genomics ; 115(6): 110731, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37871849

ABSTRACT

Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.


Subject(s)
DNA Ligase ATP , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , DNA Damage/genetics , DNA End-Joining Repair , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Repair/genetics , Ligases/genetics , Ligases/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism
14.
Anticancer Res ; 43(8): 3447-3453, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500161

ABSTRACT

BACKGROUND/AIM: Impaired non-homologous end-joining DNA repair capacity may have a significant role in maintaining genome integrity and triggering carcinogenesis. However, the specific impact of DNA ligase 4 (Lig4) genotypes remains unclear. This study aimed to assess the contribution of Lig4 genotypes to the risk of developing lung cancer. MATERIALS AND METHODS: Polymerase chain reaction-restriction fragment length polymorphism analysis was used to examine the genotypes of Lig4 rs1805388, and their association with lung cancer risk was evaluated in a case-control study consisting of 358 lung cancer cases and 716 age- and sex-matched cancer-free control subjects. RESULTS: The distribution of CC, CT, and TT genotypes for Lig4 rs1805388 among the cases was 45.0%, 41.6%, and 13.4%, respectively, compared to 58.0%, 36.3%, and 5.7% among the controls (p for trend=1.98×10-6). Allelic analysis indicated that individuals carrying the T-allele for Lig4 rs1805388 had a 1.66-fold higher risk of developing lung cancer compared to those carrying the wild-type C-allele [95% confidence interval (CI)=1.36-2.02, p=4.04×10-7]. Moreover, a significant interaction was observed between the Lig4 rs1805388 genotype and smoking status (p=1.32×10-7). CONCLUSION: These findings suggest that the CT and TT variant genotypes of Lig4 rs1805388, combined with cigarette smoking, may contribute to a higher risk of developing lung cancer.


Subject(s)
DNA Ligase ATP , Genetic Predisposition to Disease , Lung Neoplasms , Humans , Case-Control Studies , Genotype , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Risk Factors , Taiwan , DNA Ligase ATP/genetics
15.
Plant J ; 116(1): 58-68, 2023 10.
Article in English | MEDLINE | ID: mdl-37340932

ABSTRACT

Non-homologous end joining (NHEJ) plays a major role in repairing DNA double-strand breaks and is key to genome stability and editing. The minimal core NHEJ proteins, namely Ku70, Ku80, DNA ligase IV and XRCC4, are conserved, but other factors vary in different eukaryote groups. In plants, the only known NHEJ proteins are the core factors, while the molecular mechanism of plant NHEJ remains unclear. Here, we report a previously unidentified plant ortholog of PAXX, the crystal structure of which showed a similar fold to human 'PAXX'. However, plant PAXX has similar molecular functions to human XLF, by directly interacting with Ku70/80 and XRCC4. This suggests that plant PAXX combines the roles of mammalian PAXX and XLF and that these functions merged into a single protein during evolution. This is consistent with a redundant function of PAXX and XLF in mammals.


Subject(s)
DNA End-Joining Repair , DNA Repair Enzymes , Animals , Humans , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA , Mammals/genetics , Mammals/metabolism
16.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Article in English | MEDLINE | ID: mdl-37004747

ABSTRACT

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Subject(s)
DNA Ligases , Immunologic Deficiency Syndromes , Humans , DNA Ligases/genetics , Autoimmunity/genetics , Haploinsufficiency , DNA Ligase ATP/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , DNA
18.
Sci Rep ; 13(1): 4363, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928068

ABSTRACT

DNA ligase I (LigI), the predominant enzyme that joins Okazaki fragments, interacts with PCNA and Pol δ. LigI also interacts with UHRF1, linking Okazaki fragment joining with DNA maintenance methylation. Okazaki fragments can also be joined by a relatively poorly characterized DNA ligase IIIα (LigIIIα)-dependent backup pathway. Here we examined the effect of LigI-deficiency on proteins at the replication fork. Notably, LigI-deficiency did not alter the kinetics of association of the PCNA clamp, the leading strand polymerase Pol ε, DNA maintenance methylation proteins and core histones with newly synthesized DNA. While the absence of major changes in replication and methylation proteins is consistent with the similar proliferation rate and DNA methylation levels of the LIG1 null cells compared with the parental cells, the increased levels of LigIIIα/XRCC1 and Pol δ at the replication fork and in bulk chromatin indicate that there are subtle replication defects in the absence of LigI. Interestingly, the non-replicative histone H1 variant, H1.0, is enriched in the chromatin of LigI-deficient mouse CH12F3 and human 46BR.1G1 cells. This alteration was not corrected by expression of wild type LigI, suggesting that it is a relatively stable epigenetic change that may contribute to the immunodeficiencies linked with inherited LigI-deficiency syndrome.


Subject(s)
DNA Ligase ATP , DNA Replication , Histones , Proliferating Cell Nuclear Antigen , Animals , Humans , Mice , Chromatin/genetics , DNA/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Polymerase III/genetics , Histones/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , X-ray Repair Cross Complementing Protein 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
19.
Basic Clin Pharmacol Toxicol ; 132(6): 521-531, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36988399

ABSTRACT

Adverse effects are the major limiting factors in combinatorial chemotherapies. To identify genetic associations in ovarian cancer chemotherapy-induced toxicities and therapy outcomes, we examined a cohort of 101 patients receiving carboplatin-paclitaxel treatment with advanced high-grade serous ovarian cancers. Based on literature and database searches, we selected 19 candidate polymorphisms, designed a multiplex single nucleotide polymorphism-genotyping assay and applied Cox regression analysis, case-control association statistics and the log-rank Mantel-Cox test. In the Cox regression analysis, the SLCO1B3 rs1052536 AA-genotype was associated with a reduced risk of any severe toxicity (hazard ratio = 0.35, p = 0.023). In chi-square allelic test, the LIG3 rs1052536 T-allele was associated with an increased risk of neuropathy (odds ratio [OR] = 2.79, p = 0.031) and GSTP1 rs1695 G allele with a poorer response in the first-line chemotherapy (OR = 2.65, p = 0.026). In Kaplan-Meier survival analysis, ABCB1 rs2032582 TT-genotype was associated with shorter overall survival (uncorrected p = 0.025) and OPRM1 rs544093 GG and GT genotypes with shorter platinum-free interval (uncorrected p = 0.027) and progression-free survival (uncorrected p = 0.012). Results suggest that SLCO1B3 and LIG3 variants are associated with the risk of adverse effects in patients receiving carboplatin-paclitaxel treatment, the GSTP1 variant may affect the treatment response and ABCB1 and OPRM1 variants may influence the prognosis.


Subject(s)
Ovarian Neoplasms , Humans , Female , Carboplatin/adverse effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Paclitaxel/adverse effects , Polymorphism, Single Nucleotide , Genotype , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Glutathione S-Transferase pi/genetics , Receptors, Opioid, mu/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , DNA Ligase ATP/genetics , Poly-ADP-Ribose Binding Proteins/genetics
20.
Nucleic Acids Res ; 51(2): 796-805, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36625284

ABSTRACT

Double-strand DNA breaks (DSBs) are toxic to cells, and improper repair can cause chromosomal abnormalities that initiate and drive cancer progression. DNA ligases III and IV (LIG3, LIG4) have long been credited for repair of DSBs in mammals, but recent evidence suggests that DNA ligase I (LIG1) has intrinsic end-joining (EJ) activity that can compensate for their loss. To test this model, we employed in vitro biochemical assays to compare EJ by LIG1 and LIG3. The ligases join blunt-end and 3'-overhang-containing DNA substrates with similar catalytic efficiency, but LIG1 joins 5'-overhang-containing DNA substrates ∼20-fold less efficiently than LIG3 under optimal conditions. LIG1-catalyzed EJ is compromised at a physiological concentration of Mg2+, but its activity is restored by increased molecular crowding. In contrast to LIG1, LIG3 efficiently catalyzes EJ reactions at a physiological concentration of Mg2+ with or without molecular crowding. Under all tested conditions, LIG3 has greater affinity than LIG1 for DNA ends. Remarkably, LIG3 can ligate both strands of a DSB during a single binding encounter. The weaker DNA binding affinity of LIG1 causes significant abortive ligation that is sensitive to molecular crowding and DNA terminal structure. These results provide new insights into mechanisms of alternative nonhomologous EJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA Ligase ATP , DNA Repair , Animals , Humans , DNA End-Joining Repair , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , Magnesium , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...