Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Bull Exp Biol Med ; 172(4): 495-498, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35175481

ABSTRACT

The measurement of the level of mitochondrial DNA (mtDNA) in the blood is a difficult problem due to high variability of mitochondrial genes, deletions in the mitochondrial genome in some pathological conditions, different sources of mtDNA into the bloodstream (mtDNA from tissues, from blood cells, etc.). We designed primers and TaqMan probes for highly conserved regions of the ND1 and ND2 genes outside the mitochondrial deletions "hot zones". For standardizing the technique, the true concentration of low-molecular-weight mtDNA was determined by real-time PCR for two targets: a fragment of the ND2 gene (122 bp) and the ND1 and ND2 genes (1198 bp). The sensitivity and specificity of the developed approach were verified on a DNA pool isolated from the blood plasma of healthy donors of various nationalities. The concentration of low-molecular-weight mtDNA in the blood plasma of two patients with COVID-19 was monitored over two weeks of inpatient treatment. A significant increase in the content of low-molecular-weight mtDNA was observed during the first 5 days after hospitalization, followed by a drop to the level of healthy donors. The developed technique makes it possible to assess the blood level of low-molecular-weight mtDNA regardless of the quality of sampling and makes it possible to standardize this biological marker in a wide range of infectious and non-infectious pathologies.


Subject(s)
COVID-19/metabolism , Cell-Free Nucleic Acids/genetics , DNA, Mitochondrial/genetics , NADH Dehydrogenase/genetics , Real-Time Polymerase Chain Reaction/standards , Adult , Aged , COVID-19/virology , Case-Control Studies , Cell-Free Nucleic Acids/blood , DNA Primers/chemical synthesis , DNA, Mitochondrial/blood , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/virology , NADH Dehydrogenase/blood , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity
2.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Article in English | MEDLINE | ID: mdl-34907347

ABSTRACT

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Subject(s)
DNA Primers/standards , SARS-CoV-2/genetics , Sequence Analysis/standards , COVID-19/diagnosis , DNA Primers/chemical synthesis , Genome, Viral/genetics , Humans , Quality Control , RNA, Viral/genetics , Reproducibility of Results , Sequence Analysis/methods , Whole Genome Sequencing , Workflow
3.
Nat Protoc ; 16(12): 5592-5615, 2021 12.
Article in English | MEDLINE | ID: mdl-34773119

ABSTRACT

Genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) is a sensitive, unbiased, genome-wide method for defining the activity of genome-editing nucleases in living cells. GUIDE-seq is based on the principle of efficient integration of an end-protected double-stranded oligodeoxynucleotide tag into sites of nuclease-induced DNA double-stranded breaks, followed by amplification of tag-containing genomic DNA molecules and high-throughput sequencing. Here we describe a detailed GUIDE-seq protocol including cell transfection, library preparation, sequencing and bioinformatic analysis. The entire protocol including cell culture can be completed in 9 d. Once tag-integrated genomic DNA is isolated, library preparation, sequencing and analysis can be performed in 3 d. The result is a genome-wide catalog of off-target sites ranked by nuclease activity as measured by GUIDE-seq read counts. GUIDE-seq is one of the most sensitive cell-based methods for defining genome-wide off-target activity and has been broadly adopted for research and therapeutic use.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Editing/methods , Genome, Human , Polymerase Chain Reaction/methods , RNA, Guide, Kinetoplastida/genetics , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Primers/chemical synthesis , DNA Primers/metabolism , Deoxyribonucleases, Type II Site-Specific/chemistry , Electroporation/methods , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Plasmids/chemistry , Plasmids/metabolism , Primary Cell Culture , RNA, Guide, Kinetoplastida/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
5.
Nat Protoc ; 16(12): 5460-5483, 2021 12.
Article in English | MEDLINE | ID: mdl-34716450

ABSTRACT

DNA hydrogels have unique properties, including sequence programmability, precise molecular recognition, stimuli-responsiveness, biocompatibility and biodegradability, that have enabled their use in diverse applications ranging from material science to biomedicine. Here, we describe a rolling circle amplification (RCA)-based synthesis of 3D DNA hydrogels with rationally programmed sequences and tunable physical, chemical and biological properties. RCA is a simple and highly efficient isothermal enzymatic amplification strategy to synthesize ultralong single-stranded DNA that benefits from mild reaction conditions, and stability and efficiency in complex biological environments. Other available methods for synthesis of DNA hydrogels include hybridization chain reactions, which need a large amount of hairpin strands to produce DNA chains, and PCR, which requires temperature cycling. In contrast, the RCA process is conducted at a constant temperature and requires a small amount of circular DNA template. In this protocol, the polymerase phi29 catalyzes the elongation and displacement of DNA chains to amplify DNA, which subsequently forms a 3D hydrogel network via various cross-linking strategies, including entanglement of DNA chains, multi-primed chain amplification, hybridization between DNA chains, and hybridization with functional moieties. We also describe how to use the protocol for isolation of bone marrow mesenchymal stem cells and cell delivery. The whole protocol takes ~2 d to complete, including hydrogel synthesis and applications in cell isolation and cell delivery.


Subject(s)
Aptamers, Nucleotide/metabolism , DNA, Circular/chemistry , DNA, Single-Stranded/chemistry , Hydrogels/chemistry , Nucleic Acid Amplification Techniques/standards , Polymerase Chain Reaction/methods , Animals , Aptamers, Nucleotide/chemical synthesis , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Separation/methods , DNA Primers/chemical synthesis , DNA Primers/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Hybridization/methods , Viral Proteins/genetics , Viral Proteins/metabolism
6.
Genes (Basel) ; 12(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34680882

ABSTRACT

PrimPol is required to re-prime DNA replication at both nucleus and mitochondria, thus facilitating fork progression during replicative stress. ddC is a chain-terminating nucleotide that has been widely used to block mitochondrial DNA replication because it is efficiently incorporated by the replicative polymerase Polγ. Here, we show that human PrimPol discriminates against dideoxynucleotides (ddNTP) when elongating a primer across 8oxoG lesions in the template, but also when starting de novo synthesis of DNA primers, and especially when selecting the 3'nucleotide of the initial dimer. PrimPol incorporates ddNTPs with a very low efficiency compared to dNTPs even in the presence of activating manganese ions, and only a 40-fold excess of ddNTP would significantly disturb PrimPol primase activity. This discrimination against ddNTPs prevents premature termination of the primers, warranting their use for elongation. The crystal structure of human PrimPol highlights Arg291 residue as responsible for the strong dNTP/ddNTP selectivity, since it interacts with the 3'-OH group of the incoming deoxynucleotide, absent in ddNTPs. Arg291, shown here to be critical for both primase and polymerase activities of human PrimPol, would contribute to the preferred binding of dNTPs versus ddNTPs at the 3'elongation site, thus avoiding synthesis of abortive primers.


Subject(s)
DNA Primase/genetics , DNA Primers/genetics , DNA Replication/genetics , DNA, Mitochondrial/genetics , DNA-Directed DNA Polymerase/genetics , Multifunctional Enzymes/genetics , Amino Acid Sequence/genetics , DNA Primers/chemical synthesis , Dideoxynucleotides/genetics , Humans , Nucleotides/genetics
7.
Sci Rep ; 11(1): 15329, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321522

ABSTRACT

Mycoplasma capricolum subsp.subsp. capripneumonia (Mccp) and Mycoplasma mycoides subsp.sbusp. capri (Mmc) cause caprine pleuropneumonia (CCPP) and mycoplasmal pneumonia in goats and sheep (MPGS), respectively. These diseases cannot be identified on clinical symptoms alone and it is laborious to distinguish them using biochemical methods. It is therefore important to establish a simple, rapid identification method for Mccp and Mmc. Here, we report a high-resolution melting (HRM) curve analysis using specific primers based on the Mmc 95010 strain MLC_0560 and Mccp F38 strain MCCPF38_00984 gene sequences. The method was highly specific with intra- and inter-batch coefficients of variation < 1%. The lower limit of detection for Mccp and Mmc was 55 copies/µL and 58 copies/µL, respectively. HRM and fluorescence qPCR results were compared using 106 nasal swabs and 47 lung tissue samples from goats (HRM-qPCR coincidence rate 94.8%; 145/153). Mycoplasma isolation and identification was performed on 30 lung tissue samples and 16 nasal swabs (HRM-culturing coincidence rate 87.0%; 40/46). HRM analysis was more sensitive than fluorescence qPCR and Mycoplasma isolation, indicating the practicality of HRM for accurate and rapid identification of Mccp and Mmc, and diagnosis and epidemiology of CCPP and MPGS.


Subject(s)
DNA, Bacterial/genetics , Mycoplasma/genetics , Pleuropneumonia, Contagious/diagnosis , Pneumonia, Mycoplasma/diagnosis , Animals , Base Sequence , DNA Primers/chemical synthesis , DNA Primers/metabolism , Diagnosis, Differential , Goats/microbiology , Limit of Detection , Lung/microbiology , Mycoplasma/classification , Mycoplasma/isolation & purification , Nasal Cavity/microbiology , Nucleic Acid Denaturation , Pleuropneumonia, Contagious/microbiology , Pneumonia, Mycoplasma/microbiology , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sheep/microbiology
8.
Mol Hum Reprod ; 27(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34152407

ABSTRACT

Mammalian oocytes and embryos rely exclusively on maternal mRNAs to accomplish early developmental processes. Since oocytes and early embryos are transcriptionally silent after meiotic resumption, most of the synthesised maternal mRNA does not undergo immediate translation but is instead stored in the oocyte. Quantitative RT-PCR is commonly used to quantify mRNA levels, and correct quantification relies on reverse transcription and the choice of reference genes. Different methods for reverse transcription may affect gene expression determination in oocytes. In this study, we examined the suitability of either random or oligo(dT) primers for reverse transcription to be used for quantitative RT-PCR. We further looked for changes in poly(A) length of the maternal mRNAs during oocyte maturation. Our data indicate that depending on the method of reverse transcription, the optimal combination of reference genes for normalisation differed. Surprisingly, we observed a shortening of the poly(A) tail lengths of maternal mRNA as oocytes progressed from germinal vesicle to metaphase II. Overall, our findings suggest dynamic maternal regulation of mRNA structure and gene expression during oocyte maturation and early embryo development.


Subject(s)
Blastomeres/metabolism , DNA Primers , Gene Expression Regulation, Developmental , Morula/metabolism , Oocytes/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcription , Zygote/metabolism , Animals , Cattle , DNA Primers/chemical synthesis , DNA, Complementary/genetics , Embryo Culture Techniques , Genes , Poly A/analysis , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , Reference Standards , Research Embryo Creation , Sequence Alignment , Sequence Homology, Nucleic Acid
9.
Biomed Res Int ; 2021: 6653950, 2021.
Article in English | MEDLINE | ID: mdl-34124257

ABSTRACT

The study is aimed at establishing the optimal parameters for RNA purification of pooled specimens, in SARS-CoV-2 assay. This research work evaluates the difference of extracted RNA purity of pooled samples with and without treatment with isopropyl alcohol and its effect on real-time RT-PCR. As per the protocol of the Indian Council of Medical Research (ICMR), 5 sample pools were analysed using qRT-PCR. A total of 100 pooled samples were selected for the study by mixing 50 µL of one COVID-19 positive nasopharyngeal/oropharyngeal (NP/OP) specimen and 50 µL each of 4 known negative specimens. Pool RNA was extracted using the column-based method, and 1 set of pooled extracted RNA was tested as such, while RNA of the second set was treated additionally with chilled isopropyl alcohol (modified protocol). Further, the purity of extracted RNA in both the groups was checked using Microvolume Spectrophotometers (Nanodrop) followed by RT-PCR targeting E-gene and RNaseP target. The results showed that the purity index of extracted RNA of untreated pooled specimens was inferior to isopropyl alcohol-treated templates, which was observed to be 85% sensitivity and 100% specificity. The average Cq (E gene) in the unpurified and purified pool RNA group was 34.66 and 31.48, respectively. The nanodrop data suggested that purified RNA concentration was significantly increased with an average value of 24.73 ± 1.49 ng/uL, which might be the reason for high sensitivity and specificity. Thus, this group testing of SARS-CoV-2 cases using pools of 5 individual samples would be the best alternative for saving molecular reagents, personnel time, and can increase the overall testing capacity. However, purity of RNA is one of the important determinants to procure unfailing results, thus, this additional purification step must be included in the protocol after RNA has been extracted using commercially available kit before performing qRT-PCR.


Subject(s)
COVID-19/diagnosis , Coronavirus Envelope Proteins/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , 2-Propanol/chemistry , Biomarkers/analysis , COVID-19/virology , DNA Primers/chemical synthesis , DNA Primers/genetics , Humans , Nasopharynx/virology , Oropharynx/virology , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/economics , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
10.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070906

ABSTRACT

A rapid and accurate PCR-based method was developed in this study for detecting and identifying a new species of root-lesion nematode (Pratylenchus dakotaensis) recently discovered in a soybean field in North Dakota, USA. Species-specific primers, targeting the internal transcribed spacer region of ribosomal DNA, were designed to be used in both conventional and quantitative real-time PCR assays for identification of P.dakotaensis. The specificity of the primers was evaluated in silico analysis and laboratory PCR experiments. Results showed that only P.dakotaensis DNA was exclusively amplified in conventional and real-time PCR assays but none of the DNA from other control species were amplified. Detection sensitivity analysis revealed that the conventional PCR was able to detect an equivalent to 1/8 of the DNA of a single nematode whereas real-time PCR detected an equivalent to 1/32 of the DNA of a single nematode. According to the generated standard curve the amplification efficiency of the primers in real-time PCR was 94% with a R2 value of 0.95 between quantification cycle number and log number of P.dakotaensis. To validate the assays to distinguish P.dakotaensis from other Pratylenchus spp. commonly detected in North Dakota soybean fields, 20 soil samples collected from seven counties were tested. The PCR assays amplified the DNA of P.dakotaensis and discriminated it from other Pratylenchus spp. present in North Dakota soybean fields. This is the first report of a species-specific and rapid PCR detection method suitable for use in diagnostic and research laboratories for the detection of P.dakotaensis.


Subject(s)
DNA, Helminth/genetics , Glycine max/parasitology , Real-Time Polymerase Chain Reaction/methods , Tylenchoidea/genetics , Animals , DNA Primers/chemical synthesis , DNA Primers/metabolism , Limit of Detection , North Dakota , Plant Diseases/parasitology , Plant Roots/parasitology , Soil/parasitology , Species Specificity , Tylenchoidea/classification , Tylenchoidea/isolation & purification
11.
Sci Rep ; 11(1): 11611, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078985

ABSTRACT

Tilletia controversa causing dwarf bunt of wheat is a quarantine pathogen in several countries. Therefore, its specific detection is of great phytosanitary importance. Genomic regions routinely used for phylogenetic inferences lack suitable polymorphisms for the development of species-specific markers. We therefore compared 21 genomes of six Tilletia species to identify DNA regions that were unique and conserved in all T. controversa isolates and had no or limited homology to other Tilletia species. A loop-mediated isothermal amplification (LAMP) assay for T. controversa was developed based on one of these DNA regions. The specificity of the assay was verified using 223 fungal samples comprising 43 fungal species including 11 Tilletia species, in particular 39 specimens of T. controversa, 92 of T. caries and 40 of T. laevis, respectively. The assay specifically amplified genomic DNA of T. controversa from pure cultures and teliospores. Only Tilletia trabutii generated false positive signals. The detection limit of the LAMP assay was 5 pg of genomic DNA per reaction. A test performance study that included five laboratories in Germany resulted in 100% sensitivity and 97.7% specificity of the assay. Genomic regions, specific to common bunt (Tilletia caries and Tilletia laevis together) are also provided.


Subject(s)
Basidiomycota/genetics , DNA, Fungal/genetics , Genome, Fungal , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , Base Sequence , Basidiomycota/classification , Basidiomycota/isolation & purification , DNA Primers/chemical synthesis , DNA Primers/metabolism , Limit of Detection , Plant Diseases/microbiology , Reproducibility of Results , Spores, Fungal/classification , Spores, Fungal/genetics , Spores, Fungal/isolation & purification , Triticum/microbiology
12.
Methods Mol Biol ; 2281: 323-332, 2021.
Article in English | MEDLINE | ID: mdl-33847969

ABSTRACT

The single-stranded DNA-binding protein gp2.5 of bacteriophage T7 plays myriad functions in the replication of phage genomes. In addition to interacting with ssDNA, gp2.5 binds to the T7 DNA polymerase and primase/helicase proteins, regulating their enzymatic activities. Here we describe in vitro methods to examine the effects of gp2.5 on primer synthesis and extension by the T7 replisome.


Subject(s)
Bacteriophage T7/physiology , DNA Primers/chemical synthesis , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Viral Proteins/metabolism , DNA Primers/genetics , DNA Replication , DNA, Viral/metabolism , DNA-Directed DNA Polymerase/metabolism , Virus Replication
13.
Sci Rep ; 11(1): 3139, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542430

ABSTRACT

Transposable elements (TEs) are DNA sequences that cut or introduced into the genome, and they represent a massive portion of the human genome. TEs generate a considerable number of microRNAs (miRNAs) are derived from TEs (MDTEs). Numerous miRNAs are related to cancer, and hsa-miRNA-625 is a well-known oncomiR derived from long interspersed nuclear elements (LINEs). The relative expression of hsa-miRNA-625-5p differs in humans, chimpanzees, crab-eating monkeys, and mice, and four primers were designed against the 3'UTR of GATAD2B to analyze the different quantities of canonical binding sites and the location of miRNA binding sites. Luciferase assay was performed to score for the interaction between hsa-miRNA-625 and the 3'UTR of GATAD2B, while blocking NF-κB. In summary, the different numbers of canonical binding sites and the locations of miRNA binding sites affect gene expression, and NF-κB induces the enhancer activity of hsa-miRNA-625-5p by sharing the binding sites.


Subject(s)
DNA Transposable Elements , Enhancer Elements, Genetic , Genome , Long Interspersed Nucleotide Elements , MicroRNAs/genetics , NF-kappa B/genetics , Repressor Proteins/genetics , 3' Untranslated Regions , A549 Cells , Animals , Base Pairing , Computational Biology/methods , DNA Primers/chemical synthesis , DNA Primers/metabolism , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Macaca fascicularis , Mice , MicroRNAs/metabolism , NF-kappa B/metabolism , Pan troglodytes , Repressor Proteins/metabolism
14.
Sci Rep ; 11(1): 3138, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542447

ABSTRACT

Liquid biopsy testing utilising Next Generation Sequencing (NGS) is rapidly moving towards clinical adoption for personalised oncology. However, before NGS can fulfil its potential any novel testing approach must identify ways of reducing errors, allowing separation of true low-frequency mutations from procedural artefacts, and be designed to improve upon current technologies. Popular NGS technologies typically utilise two DNA capture approaches; PCR and ligation, which have known limitations and seem to have reached a development plateau with only small, stepwise improvements being made. To maximise the ultimate utility of liquid biopsy testing we have developed a highly versatile approach to NGS: Adaptor Template Oligo Mediated Sequencing (ATOM-Seq). ATOM-Seq's strengths and versatility avoid the major limitations of both PCR- and ligation-based approaches. This technology is ligation free, simple, efficient, flexible, and streamlined, and it offers novel advantages that make it perfectly suited for use on highly challenging clinical material. Using reference and clinical materials, we demonstrate detection of known SNVs down to allele frequencies of 0.1% using as little as 20-25 ng of cfDNA, as well as the ability to detect fusions from RNA. We illustrate ATOM-Seq's suitability for clinical testing by showing high concordance rates between paired cfDNA and FFPE clinical samples.


Subject(s)
Circulating Tumor DNA/genetics , Colonic Neoplasms/diagnosis , High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/diagnosis , RNA, Neoplasm/genetics , Alleles , Base Sequence , Circulating Tumor DNA/blood , Colonic Neoplasms/blood , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , DNA Primers/chemical synthesis , DNA Primers/metabolism , Gene Frequency , Gene Library , Humans , Liquid Biopsy , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Polymorphism, Single Nucleotide , RNA, Neoplasm/blood , Sensitivity and Specificity
15.
Sci Rep ; 11(1): 3131, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542337

ABSTRACT

Rabies is a generally fatal encephalitis caused by a negative-sense single-stranded RNA lyssavirus transmitted to humans mainly from dog bite. Despite the recommendation by WHO and OIE to use the direct immunofluorescence test as standard method, molecular diagnostic assays like reverse transcription quantitative polymerase chain reaction (RT-qPCR) are increasing as a confirmatory method. However, both technologies are inaccessible in resource-limited settings. Moreover, the available point-of-need molecular assay is of poor detection limit for African strains. Herein, we developed a reverse transcription recombinase polymerase amplification (RT-RPA) assay as potential point-of-need diagnostic tool for rapid detection of various strains of rabies virus including locally isolated African strains. The sensitivity and specificity of the method was evaluated using a molecular RNA standard and different Rabies-related viruses belonging to the Rhabdoviridea family, respectively. The RABV-RPA performances were evaluated on isolates representative of the existing diversity and viral dilutions spiked in non-neural clinical specimen. The results were compared with RT-qPCR as a gold standard. The RABV-RPA detected down to 4 RNA molecules per reaction in 95% of the cases in less than 10 min. The RABV-RPA assay is highly specific as various RABV isolates were identified, but no amplification was observed for other member of the Rhabdoviridea family. The sample background did not affect the performance of the RABV-RPA as down to 11 RNA molecules were identified, which is similar to the RT-qPCR results. Our developed assay is suitable for use in low-resource settings as a promising alternative tool for ante-mortem rabies diagnosis in humans for facilitating timely control decisions.


Subject(s)
Point-of-Care Testing/organization & administration , RNA, Viral/genetics , Rabies virus/genetics , Rabies/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Rhabdoviridae/genetics , Africa/epidemiology , Animals , DNA Primers/chemical synthesis , DNA Primers/metabolism , Dogs , Fluorescent Dyes/chemistry , Humans , Limit of Detection , Point-of-Care Testing/economics , Rabies/epidemiology , Rabies/transmission , Rabies/virology , Rabies virus/isolation & purification , Recombinases/genetics , Recombinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction/economics , Reverse Transcriptase Polymerase Chain Reaction/standards , Rhabdoviridae/classification
16.
Arch Virol ; 165(10): 2241-2247, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32681408

ABSTRACT

Cervical cancer is primarily caused by persistent infection with high-risk human papillomavirus (HPV), and 70% of cases are associated with HPV16 and 18 infections. The objective of this study was to establish rapid, simple, and sensitive internally controlled recombinase-aided amplification (IC-RAA) assays for the detection of HPV16 and 18. The assays were performed at 39 ℃ and were completed within 30 min. A total of 277 clinical samples of exfoliated cervical cells were tested by IC-RAA assays and commercial HPV real-time fluorescent PCR kits using extracted DNA and samples treated with nucleic acid releasing agent. The analytical sensitivity of the IC-RAA assay was found to be 10 copies/µL for the detection of HPV16 and 18 when using recombinant plasmids as targets. The optimal concentration of the internal control (IC) plasmid and 18 was 1000 copies/µL for HPV16 and 100 copies/µL for HPV18. The clinical sensitivity of the IC-RAA assays for HPV16 using extracted DNA and samples treated with nucleic acid releasing agent was 98.73% and 97.47%, respectively, with kappa values of 0.977 (P < 0.01) and 0.955 (P < 0.01), respectively, and 100% The specificity in both cases. For HPV18, the sensitivity and specificity were 100%, and the kappa value was 1 for both samples (P < 0.01). The IC-RAA assay is a promising tool for the detection of HPV16 and HPV18, especially in resource-constrained settings.


Subject(s)
DNA, Viral/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Nucleic Acid Amplification Techniques , Papillomavirus Infections/diagnosis , Uterine Cervical Neoplasms/diagnosis , Adolescent , Adult , Aged , Cervix Uteri/pathology , Cervix Uteri/virology , DNA Primers/chemical synthesis , DNA Primers/genetics , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Human papillomavirus 16/classification , Human papillomavirus 16/isolation & purification , Human papillomavirus 18/classification , Human papillomavirus 18/isolation & purification , Humans , Middle Aged , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Reagent Kits, Diagnostic , Sensitivity and Specificity , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology
17.
Emerg Infect Dis ; 26(8): 1944-1946, 2020 08.
Article in English | MEDLINE | ID: mdl-32433015
18.
Emerg Infect Dis ; 26(8)2020 Aug.
Article in English | MEDLINE | ID: mdl-32396505

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the etiologic agent associated with coronavirus disease, which emerged in late 2019. In response, we developed a diagnostic panel consisting of 3 real-time reverse transcription PCR assays targeting the nucleocapsid gene and evaluated use of these assays for detecting SARS-CoV-2 infection. All assays demonstrated a linear dynamic range of 8 orders of magnitude and an analytical limit of detection of 5 copies/reaction of quantified RNA transcripts and 1 x 10-1.5 50% tissue culture infectious dose/mL of cell-cultured SARS-CoV-2. All assays performed comparably with nasopharyngeal and oropharyngeal secretions, serum, and fecal specimens spiked with cultured virus. We obtained no false-positive amplifications with other human coronaviruses or common respiratory pathogens. Results from all 3 assays were highly correlated during clinical specimen testing. On February 4, 2020, the Food and Drug Administration issued an Emergency Use Authorization to enable emergency use of this panel.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Nucleocapsid Proteins/genetics , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Biomarkers/analysis , COVID-19 , Centers for Disease Control and Prevention, U.S. , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , DNA Primers/chemical synthesis , DNA Primers/genetics , Feces/virology , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Humans , Limit of Detection , Nasopharynx/virology , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , SARS-CoV-2 , Sputum/virology , United States
19.
Microb Drug Resist ; 26(9): 1023-1037, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32212994

ABSTRACT

Oxacillinases (OXA) have been mostly described in Enterobacteriaceae, Acinetobacter, and Pseudomonas species. Recent years have witnessed an increased prevalence of intrinsic and/or acquired ß-lactamase-producing Acinetobacter in food-producing animals. This study was conducted to assess the prevalence of OXA among selected bacterial species and to characterize these enzymes by in silico analysis. Screening of OXA was performed by PCR amplification using specific pairs of oligonucleotides. Overall, 40 pairs of primers were designed, of which 6 were experimentally tested in vitro. Among 49 bacterial isolates examined, the presence of blaOXA-1-like genes was confirmed in 20 cases (41%; 19 times in Klebsiella pneumoniae and once in Enterobacter cloacae). No OXA were found in animal isolates. The study results confirmed the specificity of the designed oligonucleotide pairs. Furthermore, the designed primers were found to possess the ability to specifically detect 90.2% of all OXA. These facts suggest that the in silico and in vitro tested primers could be used for single or multiplex PCR to screen for the presence of OXA in various bacteria, as well as to monitor their spread. At the same time, the presence of conserved characteristic amino acids and motifs was confirmed by in silico analysis of sequences of representative members of OXA.


Subject(s)
Bacterial Proteins/genetics , Enterobacter cloacae/genetics , Escherichia coli/genetics , Gram-Negative Bacterial Infections/veterinary , Klebsiella pneumoniae/genetics , Multiplex Polymerase Chain Reaction/methods , beta-Lactamases/genetics , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Chickens/microbiology , Czech Republic/epidemiology , DNA Primers/chemical synthesis , DNA Primers/metabolism , Enterobacter cloacae/classification , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Escherichia coli/classification , Escherichia coli/drug effects , Escherichia coli/enzymology , Gene Expression , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Humans , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Meat/microbiology , Microbial Sensitivity Tests , Penicillins/pharmacology , Phylogeny , beta-Lactamases/metabolism
20.
Molecules ; 24(19)2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31591283

ABSTRACT

Aptamers are small oligonucleotides that are capable of binding specifically to a target, with impressive potential for analysis, diagnostics, and therapeutics applications. Aptamers are isolated from large nucleic acid combinatorial libraries using an iterative selection process called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since being implemented 30 years ago, the SELEX protocol has undergone many modifications and improvements, but it remains a laborious, time-consuming, and costly method, and the results are not always successful. Each step in the aptamer selection protocol can influence its results. This review discusses key technical points of the SELEX procedure and their influence on the outcome of aptamer selection.


Subject(s)
Aptamers, Nucleotide/chemistry , DNA Primers/chemistry , SELEX Aptamer Technique/methods , Aptamers, Nucleotide/chemical synthesis , DNA Primers/chemical synthesis , DNA, Single-Stranded/isolation & purification , Gene Library , High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Amplification Techniques , Nucleic Acids/chemistry , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL