Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.046
Filter
1.
FASEB J ; 38(13): e23759, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949635

ABSTRACT

The epidermal growth factor receptor (EGFR) is an important target for cancer therapies. Many head and neck cancer (HNC) cells have been reported to overexpress EGFR; therefore, anti-EGFR therapies have been attempted in patients with HNC. However, its clinical efficacy is limited owing to the development of drug resistance. In this study, we developed an EGFR-targeting immunotoxin consisting of a clinically proven anti-EGFR IgG (cetuximab; CTX) and a toxin fragment (LR-LO10) derived from Pseudomonas exotoxin A (PE) using a novel site-specific conjugation technology (peptide-directed photo-crosslinking reaction), as an alternative option. The immunotoxin (CTX-LR-LO10) showed specific binding to EGFR and properties of a typical IgG, such as stability, interactions with receptors of immune cells, and pharmacokinetics, and inhibited protein synthesis via modification of elongation factor-2. Treatment of EGFR-positive HNC cells with the immunotoxin resulted in apoptotic cell death and the inhibition of cell migration and invasion. The efficacy of CTX-LR-LO10 was evaluated in xenograft mouse models, and the immunotoxin exhibited much stronger tumor suppression than CTX or LR-LO10. Transcriptome analyses revealed that the immunotoxins elicited immune responses and altered the expression of genes related to its mechanisms of action. These results support the notion that CTX-LR-LO10 may serve as a new therapeutic agent targeting EGFR-positive cancers.


Subject(s)
ADP Ribose Transferases , ErbB Receptors , Exotoxins , Head and Neck Neoplasms , Immunoglobulin G , Immunotoxins , Pseudomonas aeruginosa Exotoxin A , Virulence Factors , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/immunology , Animals , Immunotoxins/pharmacology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Mice , Immunoglobulin G/pharmacology , Cell Line, Tumor , Exotoxins/pharmacology , Xenograft Model Antitumor Assays , Cetuximab/pharmacology , Mice, Nude , Bacterial Toxins , Apoptosis/drug effects , Mice, Inbred BALB C , Female , Cell Movement/drug effects , Antineoplastic Agents/pharmacology
2.
Infect Dis Now ; 54(4S): 104882, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849255

ABSTRACT

Athletes are vulnerable to Staphylococcus aureus infections due to skin-to-skin contact and skin abrasions during training and competitions involving sharied sport equipment or toiletries, which promote the spread of the bacteria between athletes and within sport teams. This results not only in higher prevalence of S.aureus carriage among athletes compared to the general population, but also in outbreaks of infections, particularly skin infections, within sports teams. To limit the spread of S. aureus among athletes, a decolonization protocol can be applied when clustered cases of S. aureus infections occur, especially if Panton-Valentine leukocidin-producing strains are implicated. Finally, to avoid exposing athletes to S.aureus transmission/colonization, it is recommended to establish strict and clearly formulated individual and collective hygiene rules and to regularly disinfect shared sports equipment.


Subject(s)
Athletes , Sports , Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcal Infections/epidemiology , Carrier State/epidemiology , Paris/epidemiology , Bacterial Toxins , Leukocidins , Exotoxins , Prevalence , Hygiene , Sports Equipment , Anniversaries and Special Events , Disease Outbreaks/prevention & control
3.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38806245

ABSTRACT

Streptococcus pyogenes is a significant human pathogen, producing a range of virulence factors, including streptococcal pyrogenic exotoxin B (SpeB) that is associated with foodborne outbreaks. It was only known that this cysteine protease mediates cleavage of transmembrane proteins to permit bacterial penetration and is found in 25% of clinical isolates from streptococcal toxic shock syndrome patients with extreme inflammation. Its interaction with host and streptococcal proteins has been well characterized, but doubt remains about whether it constitutes a superantigen. In this study, for the first time it is shown that SpeB acts as a superantigen, similarly to other known superantigens such as staphylococcal enterotoxin A or streptococcal pyrogenic exotoxin type C, by inducing proliferation of murine splenocytes and cytokine secretion, primarily of interleukin-2 (IL-2), as shown by cytometric bead array analysis. IL-2 secretion was confirmed by enzyme-linked immunosorbent assay (ELISA) as well as secretion of interferon-γ. ELISA showed a dose-dependent relationship between SpeB concentration in splenocyte cells and IL-2 secretion levels, and it was shown that SpeB retains activity in milk pasteurized for 30 min at 63°C.


Subject(s)
Bacterial Proteins , Cell Proliferation , Exotoxins , Interferon-gamma , Interleukin-2 , Spleen , Streptococcus pyogenes , Superantigens , Animals , Interleukin-2/metabolism , Superantigens/immunology , Superantigens/metabolism , Exotoxins/metabolism , Exotoxins/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice , Spleen/microbiology , Spleen/cytology , Spleen/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Streptococcus pyogenes/immunology , Streptococcus pyogenes/metabolism , Female , Mice, Inbred BALB C
4.
Sci Rep ; 14(1): 10758, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730020

ABSTRACT

Staphylococcus aureus is a frequent agent of bacteraemia. This bacterium has a variety of virulence traits that allow the establishment and maintenance of infection. This study explored the virulence profile of S. aureus strains causing paediatric bacteraemia (SAB) in Manhiça district, Mozambique. We analysed 336 S. aureus strains isolated from blood cultures of children younger than 5 years admitted to the Manhiça District Hospital between 2001 and 2019, previously characterized for antibiotic susceptibility and clonality. The strains virulence potential was evaluated by PCR detection of the Panton-Valentine leucocidin (PVL) encoding genes, lukS-PV/lukF-PV, assessment of the capacity for biofilm formation and pathogenicity assays in Galleria mellonella. The overall carriage of PVL-encoding genes was over 40%, although reaching ~ 70 to 100% in the last years (2014 to 2019), potentially linked to the emergence of CC152 lineage. Strong biofilm production was a frequent trait of CC152 strains. Representative CC152 and CC121 strains showed higher virulence potential in the G. mellonella model when compared to reference strains, with variations within and between CCs. Our results highlight the importance of monitoring the emergent CC152-MSSA-PVL+ and other lineages, as they display important virulence traits that may negatively impact the management of SAB paediatric patients in Manhiça district, Mozambique.


Subject(s)
Bacteremia , Biofilms , Community-Acquired Infections , Staphylococcal Infections , Staphylococcus aureus , Humans , Mozambique/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Virulence/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Biofilms/growth & development , Child, Preschool , Bacteremia/microbiology , Bacteremia/epidemiology , Community-Acquired Infections/microbiology , Infant , Animals , Exotoxins/genetics , Bacterial Toxins/genetics , Leukocidins/genetics , Virulence Factors/genetics , Female , Male , Moths/microbiology
5.
Mol Biol Rep ; 51(1): 665, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777940

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) associated with COVID-19 has not been well documented. This cross-sectional study evaluated the association between nasal S. aureus carriage and COVID-19. METHODS AND RESULTS: Nasopharyngeal samples were collected from 391 participants presenting for COVID-19 test in Lagos, Nigeria, and S. aureus was isolated from the samples. Antimicrobial susceptibility test was done by disc diffusion method. All S. aureus isolates were screened for the presence of mecA, panton-valentine leucocidin (PVL) and toxic shock syndrome toxin (TSST) virulence genes by polymerase chain reaction. Staphylococcal protein A (spa) typing was conducted for all the isolates. Participants with COVID-19 had double the prevalence of S. aureus (42.86%) compared to those who tested negative (20.54%). A significant association was seen between S. aureus nasal carriage and COVID-19 (p = 0.004). Antimicrobial sensitivity results showed resistance to oxacillin (100%), cefoxitin (53%), and vancomycin (98.7%). However, only 41% of the isolates harbored the mecA gene, with SCCmecV being the most common SCCmec type. There was no association between the carriage of virulence genes and COVID-19. A total of 23 Spa types were detected, with t13249 and t095 being the two most common spa types. CONCLUSION: This study examined the association between nasal S. aureus carriage and SARS-COV-2 infection. Further research is required to fully explore the implications of S. aureus co-infection with COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Staphylococcal Infections , Staphylococcus aureus , Humans , COVID-19/microbiology , COVID-19/epidemiology , COVID-19/virology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Cross-Sectional Studies , Male , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Adult , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Middle Aged , Bacterial Toxins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Comorbidity , Bacterial Proteins/genetics , Virulence/genetics , Nigeria/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Carrier State/epidemiology , Carrier State/microbiology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Leukocidins/genetics , Exotoxins/genetics , Virulence Factors/genetics , Young Adult
6.
Pediatr Infect Dis J ; 43(8): 715-719, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38567978

ABSTRACT

BACKGROUND: We aimed to investigate the clinical features, antimicrobial susceptibility and pvl gene expression in Staphylococcus aureus causing acute hematogenous bone and joint infections (BJIs) in children in Vietnam. METHODS: In this prospective study, the demographics, microbiology and clinical outcomes of pediatric patients with acute hematogenous BJIs were collected from September 2022 to September 2023. Antimicrobial susceptibility profiles were determined using VITEK2 Compact system. The pvl gene encoding the Panton-Valentine leukocidin (PVL) toxin was detected by using polymerase chain reaction. Mann-Whitney, χ 2 and Fisher test were used for statistical analysis. RESULTS: In total, 78 patients (46 boys) with S. aureus acute hematogenous BJIs were recruited at the National Children's Hospital, Hanoi, Vietnam. Of all S. aureus isolates, 84.6% were methicillin-resistant S. aureus . All S. aureus isolates were susceptible to vancomycin, ciprofloxacin and levofloxacin; 97% of methicillin-resistant S. aureus isolates was resistant to clindamycin (minimum inhibitory concentration ≥8 µg/mL). The pvl gene was detected in 83.3% of isolates, including 57 methicillin-resistant S. aureus isolates. Patients in the pvl -positive group had significantly higher C-reactive protein levels than those in the pvl -negative group ( P = 0.04). In addition, all 8 children with septic shock were infected with pvl -positive S. aureus . CONCLUSIONS: PVL is a prevalent virulence factor of S. aureus in Vietnam. Furthermore, high inflammatory parameters (C-reactive protein) may be present at the time of diagnosis in PVL positivity-related acute hematogenous BJIs. Further research is necessary to enhance our understanding of the varying correlations between virulence factors and outcomes of S. aureus BJIs.


Subject(s)
Anti-Bacterial Agents , Bacterial Toxins , Exotoxins , Hospitals, Pediatric , Leukocidins , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Tertiary Care Centers , Humans , Leukocidins/genetics , Exotoxins/genetics , Vietnam/epidemiology , Male , Female , Bacterial Toxins/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Child, Preschool , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Prospective Studies , Child , Tertiary Care Centers/statistics & numerical data , Prevalence , Infant , Anti-Bacterial Agents/pharmacology , Arthritis, Infectious/microbiology , Arthritis, Infectious/epidemiology , Adolescent , Osteomyelitis/microbiology , Osteomyelitis/epidemiology
7.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612529

ABSTRACT

Clostridium perfringens is a kind of anaerobic Gram-positive bacterium that widely exists in the intestinal tissue of humans and animals. And the main virulence factor in Clostridium perfringens is its exotoxins. Clostridium perfringens type C is the main strain of livestock disease, its exotoxins can induce necrotizing enteritis and enterotoxemia, which lead to the reduction in feed conversion, and a serious impact on breeding production performance. Our study found that treatment with exotoxins reduced cell viability and triggered intracellular reactive oxygen species (ROS) in human mononuclear leukemia cells (THP-1) cells. Through transcriptome sequencing analysis, we found that the levels of related proteins such as heme oxygenase 1 (HO-1) and ferroptosis signaling pathway increased significantly after treatment with exotoxins. To investigate whether ferroptosis occurred after exotoxin treatment in macrophages, we confirmed that the protein expression levels of antioxidant factors glutathione peroxidase 4/ferroptosis-suppressor-protein 1/the cystine/glutamate antiporter solute carrier family 7 member 11 (GPX4/FSP1/xCT), ferroptosis-related protein nuclear receptor coactivator 4/transferrin/transferrin receptor (NCOA4/TF/TFR)/ferritin and the level of lipid peroxidation were significantly changed. Based on the above results, our study suggested that Clostridium perfringens type C exotoxins can induce macrophage injury through oxidative stress and ferroptosis.


Subject(s)
Antioxidants , Clostridium perfringens , Animals , Humans , Antiporters , Exotoxins , Glutamic Acid
8.
Colloids Surf B Biointerfaces ; 238: 113870, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555763

ABSTRACT

Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.


Subject(s)
Aggregatibacter actinomycetemcomitans , Anti-Bacterial Agents , Liposomes , Liposomes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Aggregatibacter actinomycetemcomitans/drug effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Drug Liberation , Cholesterol/chemistry , Cholesterol/metabolism , Microbial Sensitivity Tests , Exotoxins/metabolism , Exotoxins/chemistry , Phosphatidylethanolamines/chemistry , Drug Delivery Systems
9.
J Control Release ; 368: 355-371, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432468

ABSTRACT

Delayed wound healing caused by bacterial infection remains a major challenge in clinical treatment. Exotoxins incorporated in bacterial extracellular vesicles play a key role as the disease-causing virulence factors. Safe and specific antivirulence agents are expected to be developed as an effective anti-bacterial infection strategy, instead of single antibiotic therapy. Plant-derived extracellular vesicle-like nanoparticles have emerged as promising therapeutic agents for skin diseases, but the elucidations of specific mechanisms of action and clinical transformation still need to be advanced. Here, dandelion-derived extracellular vesicle-like nanoparticles (TH-EVNs) are isolated and exert antivirulence activity through specifically binding to Staphylococcus aureus (S. aureus) exotoxins, thereby protecting the host cell from attack. The neutralization of TH-EVNs against exotoxins has considerable binding force and stability, showing complete detoxification effect in vivo. Then gelatin methacryloyl hydrogel is developed as TH-EVNs-loaded dressing for S. aureus exotoxin-invasive wounds. Hydrogel dressings demonstrate good physical and mechanical properties, thus achieving wound retention and controlled release of TH-EVNs, in addition to promoting cell proliferation and migration. In vivo results show accelerated re-epithelialization, promotion of collagen maturity and reduction of inflammation after treatment. Collectively, the developed TH-EVNs-laden hydrogel dressings provide a potential therapeutic approach for S. aureus exotoxin- associated trauma.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Taraxacum , Hydrogels/chemistry , Staphylococcus aureus , Wound Healing , Exotoxins , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Bandages
10.
Elife ; 122024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517935

ABSTRACT

Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.


Subject(s)
Caveolin 1 , Endothelial Cells , Animals , Mice , Caveolae/metabolism , Caveolin 1/metabolism , Cell Membrane/metabolism , Endothelial Cells/metabolism , Exotoxins/metabolism
11.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542105

ABSTRACT

RTX toxins are important virulence factors produced by a wide range of Gram-negative bacteria. They are secreted as water-soluble proteins that are able to bind to the host cell membrane and insert hydrophobic segments into the lipid bilayer that ultimately contribute to the formation of transmembrane pores. Ion diffusion through these pores leads then to cytotoxic and cytolytic effects on the hosts. Several reports have evidenced that the binding of several RTX toxins to the target cell membrane may take place through a high-affinity interaction with integrins of the ß2 family that is highly expressed in immune cells of the myeloid lineage. However, at higher toxin doses, cytotoxicity by most RTX toxins has been observed also on ß2-deficient cells in which toxin binding to the cell membrane has been proposed to occur through interaction with glycans of glycosylated lipids or proteins present in the membrane. More recently, cumulative pieces of evidence show that membrane cholesterol is essential for the mechanism of action of several RTX toxins. Here, we summarize the most important aspects of the RTX toxin interaction with the target cell membrane, including the cholesterol dependence, the recent identification in the sequences of several RTX toxins of linear motifs coined as the Cholesterol Recognition/interaction Amino acid Consensus (CRAC), and the reverse or mirror CARC motif, which is involved in the toxin-cholesterol interaction.


Subject(s)
Bacterial Toxins , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Exotoxins/metabolism , Cholesterol/metabolism
12.
Pol J Microbiol ; 73(1): 21-28, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437463

ABSTRACT

This study aimed to determine resistance to antimicrobials of Staphylococcus aureus strains isolated from clinical specimens in Lithuanian hospitals and to identify the genes conferring resistance and virulence. The study was carried out from June 2019 to September 2021. S. aureus strains were isolated from skin, soft tissues, blood, lower respiratory tract, urine and other specimens. Antibiotic susceptibility testing was performed using the disc diffusion method according to EUCAST guidelines. All isolates were analyzed for detection of the ermA, ermC, mecA, mecC, tetK, tetM, and lukF-PV genes by multiplex real-time PCR. The 16S rRNA coding sequence was applied as an internal PCR control. Altogether, 745 S. aureus strains were analyzed. Antimicrobial susceptibility testing revealed that all isolates were susceptible to rifampin and vancomycin. Of the 745 strains, 94.8% were susceptible to tetracycline, 94.5% to clindamycin, and 88.3% to erythromycin. The lowest susceptibility rate was found for penicillin (25.8%). Six percent of the tested strains were methicillin-resistant S. aureus (MRSA). The majority of methicillin-resistant strains were isolated from skin and soft tissues (73.3%), with a smaller portion isolated from blood (17.8%) and respiratory tract (8.9%). The ermC gene was detected in 41.1% of erythromycin-resistant S. aureus strains, whereas ermA was detected in 32.2% of erythromycin-resistant S. aureus strains. 69.2% of tetracycline-resistant S. aureus strains had tetK gene, and 28.2% had tetM gene. 7.3% of S. aureus isolates harbored lukF-PV gene. The frequency of the pvl gene detection was significantly higher in MRSA isolates than in methicillin-susceptible S. aureus isolates (p < 0.0001).


Subject(s)
Bacterial Toxins , Exotoxins , Leukocidins , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Lithuania/epidemiology , Prevalence , Methicillin-Resistant Staphylococcus aureus/genetics , RNA, Ribosomal, 16S , Drug Resistance, Bacterial , Staphylococcal Infections/epidemiology , Erythromycin , Tetracycline
13.
Folia Med (Plovdiv) ; 66(1): 88-96, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38426470

ABSTRACT

AIM: Due to the importance of exotoxin A and pyocyanin in the pathogenicity of this bacterium, we decided to evaluate the prevalence of genes encoding these virulence factors in clinical isolates of P.aeruginosa.


Subject(s)
Pseudomonas Infections , Pyocyanine , Humans , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Exotoxins/genetics , Virulence Factors/genetics , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology
14.
Emerg Microbes Infect ; 13(1): 2316809, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38323591

ABSTRACT

Previous studies have mainly focused on outpatient cases of skin and soft tissue infections (SSTIs), with limited attention to inpatient occurrences. Thus, we aimed to compare the clinical parameters of inpatients with SSTIs, performed genomic characterization, and determined the subtypes of Panton-Valentine leucocidin (PVL) bacteriophages of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from these patients. We found that PVL-positive patients had shorter hospital stays (mean, 9 vs. 24 days; p < 0.001) and abscess resolution durations (mean, 8 vs. 13 days; p < 0.01). PVL-positive MRSA-induced SSTIs were more frequently associated with abscesses [36/55 (65.5%) vs. 15/124 (12.1%), p < 0.001], with 52.7% undergoing incision and drainage; over 80% of PVL-negative patients received incision, drainage, and antibiotics. In PVL-positive patients receiving empirical antibiotics, anti-staphylococcal agents such as vancomycin and linezolid were administered less frequently (32.7%, 18/55) than in PVL-negative patients (74.2%, 92/124), indicating that patients with PVL-positive SSTIs are more likely to require surgical drainage rather than antimicrobial treatment. We also found that the ST59 lineage was predominant, regardless of PVL status (41.3%, 74/179). Additionally, we investigated the linear structure of the lukSF-PV gene, revealing that major clusters were associated with specific STs, suggesting independent acquisition of PVL by different strain types and indicating that significant diversity was observed even within PVL-positive strains detected in the same facility. Overall, our study provides comprehensive insights into the clinical, genetic, and phage-related aspects of MRSA-induced SSTIs in hospitalized patients and contributes to a more profound understanding of the epidemiology and evolution of these pathogens in the Chinese population.


Subject(s)
Community-Acquired Infections , Methicillin-Resistant Staphylococcus aureus , Soft Tissue Infections , Staphylococcal Infections , Staphylococcal Skin Infections , Humans , Inpatients , Soft Tissue Infections/epidemiology , Retrospective Studies , Leukocidins/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Skin Infections/epidemiology , Exotoxins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Abscess , Community-Acquired Infections/epidemiology
15.
Clin Microbiol Infect ; 30(6): 779-786, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38408643

ABSTRACT

OBJECTIVES: Globally, the isolation of community-associated methicillin-resistant Staphylococcus aureus (MRSA) harbouring both the Panton-Valentine leucocidin (PVL) and toxic shock syndrome toxin 1 (TSST-1) genes is rare. However, we encountered an outbreak of the ST22-PT clone exhibiting this phenotype in Japan. Notably, the TSST-1 gene was duplicated in most of the strains. This study aimed to elucidate the mechanisms underlying this gene duplication. METHODS: A total of 90 MRSA isolates were collected from the skin of outpatients in Fukuoka City, Japan, between 2017 and 2019. Whole-genome sequencing was performed on MRSA strains that were PVL and TSST-1 positive. RESULTS: A total of 43 (47.8%) strains produced TSST-1, 20 (22.2%) produced PVL, and 16 (17.8%) produced both. Fifteen isolates were classified as ST22/SCCmec type IVa (ST22-PT clone) and one as ST1/SCCmec type V (ST1-PT clone). Three distinct ST22-PT clones were identified: Fukuoka clone I (one PVL gene and one TSST-1 gene), Fukuoka clone II (addition of a TSST-1 gene to Fukuoka clone I), and Fukuoka clone III (marked by a chromosomal inversion in a large region from Fukuoka clone II). DISCUSSION: Fukuoka clone I may have integrated a novel pathogenicity island bearing the TSST-1 gene, leading to the emergence of Fukuoka clone II with a duplicated TSST-1 gene. This duplication subsequently instigated a chromosomal inversion in a large region owing to the homologous sequence surrounding TSST-1, giving rise to Fukuoka clone III. These findings provide crucial insights into the genetic evolution of MRSA.


Subject(s)
Bacterial Toxins , Enterotoxins , Exotoxins , Leukocidins , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Superantigens , Superantigens/genetics , Bacterial Toxins/genetics , Exotoxins/genetics , Enterotoxins/genetics , Leukocidins/genetics , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Japan/epidemiology , Whole Genome Sequencing , Gene Duplication , Male , Female , Middle Aged , Aged , Disease Outbreaks , Evolution, Molecular , Adult , Community-Acquired Infections/microbiology
16.
Expert Rev Anti Infect Ther ; 22(4): 253-272, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37461145

ABSTRACT

BACKGROUND: Based on gas chromatography - mass spectrometry (GC-MS) results of a previous study, six metabolites including alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol showed significantly higher amounts relative to other metabolites. METHODS: A continuation of the previous study, the interaction of these metabolites with the main virulence factors of P. aeruginosa (pseudomonas elastase and exotoxin A), Staphylococcus aureus (alpha-hemolysin and protein 2a), Mycobacterium tuberculosis (ESX-secreted protein B and the serine/threonine protein kinase), and Escherichia coli (heat-labile enterotoxin and Shiga toxin) were evaluated by molecular docking study and molecular simulation. RESULTS: In the case of Shiga toxin, higher and lower binding affinities were related to alpha-terpinolene and zincite with values of -5.8 and -2.6 kcal/mol, respectively. For alpha-hemolysin, terpinolene and alpha-terpinolene demonstrated higher binding affinities with similar energies of -5.9 kcal/mol. Thymol and geranyl acetate showed lower binding energy of -5.7 kcal/mol toward protein 2a. Furthermore, thymol had a higher binding affinity toward heat-labile enterotoxin and ESX-secreted protein B with values of -5.9 and -6.1 kcal/mol, respectively. CONCLUSIONS: It is concluded that the availability of secondary metabolites of A. haussknechtii surrounding zinc oxide (ZnO) NPs can hinder P. aeruginosa by inactivating Pseudomonas elastase and exotoxin.


Subject(s)
Acetates , Acyclic Monoterpenes , Cyclohexane Monoterpenes , Monoterpenes , Mycobacterium tuberculosis , Octanols , Staphylococcal Infections , Humans , Thymol/chemistry , Staphylococcus aureus , Pseudomonas aeruginosa , Molecular Docking Simulation , Virulence Factors , Escherichia coli , Hemolysin Proteins , Enterotoxins , Exotoxins , Shiga Toxins , Pancreatic Elastase
17.
J Control Release ; 367: 167-183, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37562556

ABSTRACT

The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvß3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.


Subject(s)
Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Mice , Animals , Endothelial Cells , Exotoxins/genetics , Exotoxins/therapeutic use , Gene Expression Regulation , Transgenes , Cell Line, Tumor , Tumor Microenvironment , Nanoparticles/therapeutic use
18.
Clin Exp Immunol ; 215(1): 37-46, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37583293

ABSTRACT

Staphylococcus aureus (SA) and its exotoxins activate eosinophils (Eos) and mast cells (MCs) via CD48, a GPI-anchored receptor belonging to the signaling lymphocytes activation molecules (SLAM) family. 2B4 (CD244), an immuno-regulatory transmembrane receptor also belonging to the SLAM family, is the high-affinity ligand for CD48. 2B4 is expressed on several leukocytes including NK cells, T cells, basophils, monocytes, dendritic cells (DCs), and Eos. In the Eos and MCs crosstalk carried out by physical and soluble interactions (named the 'allergic effector unit', AEU), 2B4-CD48 binding plays a central role. As CD48 and 2B4 share some structural characteristics and SA colonization accompanies most of the allergic diseases, we hypothesized that SA exotoxins (e.g. Staphylococcus enterotoxin B, SEB) can also bind and activate 2B4 and thereby possibly further aggravate inflammation. To check our hypothesis, we used in vitro, in silico, and in vivo methods. By enzyme-linked immunosorbent assay (ELISA), flow cytometry (FC), fluorescence microscopy, and microscale thermophoresis, we have shown that SEB can bind specifically to 2B4. By Eos short- and long-term activation assays, we confirmed the functionality of the SEB-2B4 interaction. Using computational modeling, we identified possible SEB-binding sites on human and mouse 2B4. Finally, in vivo, in an SEB-induced peritonitis model, 2B4-KO mice showed a significant reduction of inflammatory features compared with WT mice. Altogether, the results of this study confirm that 2B4 is an important receptor in SEB-mediated inflammation, and therefore a role is suggested for 2B4 in SA associated inflammatory conditions.


Subject(s)
Hypersensitivity , Staphylococcus aureus , Animals , Humans , Mice , CD48 Antigen/metabolism , Exotoxins , Inflammation , Signaling Lymphocytic Activation Molecule Family , Staphylococcus aureus/metabolism
19.
J Leukoc Biol ; 115(2): 222-234, 2024 01 19.
Article in English | MEDLINE | ID: mdl-37943843

ABSTRACT

Staphylococcus aureus strains that produce the toxin Panton-Valentine leukocidin (PVL-SA) frequently cause recurrent skin and soft tissue infections. PVL binds to and kills human neutrophils, resulting in the formation of neutrophil extracellular traps (NETs), but the pathomechanism has not been extensively studied. Furthermore, it is unclear why some individuals colonized with PVL-SA experience recurring infections whereas others are asymptomatic. We thus aimed to (1) investigate how PVL exerts its pathogenicity on neutrophils and (2) identify factors that could help to explain the predisposition of patients with recurring infections. We provide genetic and pharmacological evidence that PVL-induced NET formation is independent of NADPH oxidase and reactive oxygen species production. Moreover, through NET proteome analysis we identified that the protein content of PVL-induced NETs is different from NETs induced by mitogen or the microbial toxin nigericin. The abundance of the proteins cathelicidin (CAMP), elastase (NE), and proteinase 3 (PRTN3) was lower on PVL-induced NETs, and as such they were unable to kill S. aureus. Furthermore, we found that neutrophils from affected patients express higher levels of CD45, one of the PVL receptors, and are more susceptible to be killed at a low PVL concentration than control neutrophils. Neutrophils from patients that experience recurring PVL-positive infections may thus be more sensitive to PVL-induced NET formation, which might impair their ability to combat the infection.


Subject(s)
Anti-Infective Agents , Bacterial Toxins , Extracellular Traps , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/metabolism , Extracellular Traps/metabolism , Exotoxins , Leukocidins , Recurrence , Anti-Infective Agents/metabolism
20.
Dermatologie (Heidelb) ; 75(1): 55-60, 2024 Jan.
Article in German | MEDLINE | ID: mdl-37982858

ABSTRACT

Panton-Valentine leukocidin (PVL) is a pore-forming exotoxin produced by certain Staphylococcus (S.) aureus strains, which is responsible for the increased virulence of the pathogen. Thus, infections caused by PVL-positive S. aureus tend to recur. Usually, the infection is a smear infection, which can cause folliculitis and purulent lid margin inflammation in addition to the classic mucocutaneous abscesses. Recently, recurrent genitoanal infections caused by PVL-positive S. aureus have also been described. In most cases, this is a sexually transmitted disease. Currently, it is assumed that most infections are imported from abroad. In addition to treatment of these infections, decolonization should be performed for prophylaxis of recurrence.


Subject(s)
Bacterial Toxins , Sexually Transmitted Diseases , Staphylococcal Infections , Humans , Staphylococcus aureus , Exotoxins , Staphylococcal Infections/diagnosis , Leukocidins , Reinfection
SELECTION OF CITATIONS
SEARCH DETAIL
...