Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.846
Filter
1.
Addict Biol ; 29(5): e13399, 2024 May.
Article in English | MEDLINE | ID: mdl-38711213

ABSTRACT

Excessive use of the internet, which is a typical scenario of self-control failure, could lead to potential consequences such as anxiety, depression, and diminished academic performance. However, the underlying neuropsychological mechanisms remain poorly understood. This study aims to investigate the structural basis of self-control and internet addiction. In a cohort of 96 internet gamers, we examined the relationships among grey matter volume and white matter integrity within the frontostriatal circuits and internet addiction severity, as well as self-control measures. The results showed a significant and negative correlation between dACC grey matter volume and internet addiction severity (p < 0.001), but not with self-control. Subsequent tractography from the dACC to the bilateral ventral striatum (VS) was conducted. The fractional anisotropy (FA) and radial diffusivity of dACC-right VS pathway was negatively (p = 0.011) and positively (p = 0.020) correlated with internet addiction severity, respectively, and the FA was also positively correlated with self-control (p = 0.036). These associations were not observed for the dACC-left VS pathway. Further mediation analysis demonstrated a significant complete mediation effect of self-control on the relationship between FA of the dACC-right VS pathway and internet addiction severity. Our findings suggest that the dACC-right VS pathway is a critical neural substrate for both internet addiction and self-control. Deficits in this pathway may lead to impaired self-regulation over internet usage, exacerbating the severity of internet addiction.


Subject(s)
Diffusion Tensor Imaging , Gray Matter , Internet Addiction Disorder , Self-Control , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Internet Addiction Disorder/diagnostic imaging , Internet Addiction Disorder/physiopathology , Female , Diffusion Tensor Imaging/methods , Adult , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiopathology , Ventral Striatum/pathology , Severity of Illness Index , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Internet , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Frontal Lobe/physiopathology
2.
J Affect Disord ; 356: 477-482, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38653159

ABSTRACT

BACKGROUND: The prevalence of depressive disorder is increasing due to a variety of factors, which brings a huge strain on individuals, families and society. This study aims to investigate whether there is Frontal Theta Asymmetry (FTA) in depressed patients, and whether FTAs are related to depression severity and cognitive function changes in depressed patients. METHODS: Participants who met the inclusion criteria were enrolled in this study. Socio-demographic data of each participant were recorded. Zung's self-rating Depression Scale was used to assess the depression status of participants. P300 was used to evaluate the cognitive function of participants. EEG data from participants were collected by the NeuroScan SynAmps RT EEG system. t-test, Wilcoxon rank-sum test and Chi-square test were used to detect the differences of different variables between the two groups. Multiple linear regression analysis and multiple logistic regression analysis were used to analyze relationships between FTAs in different regions and participants' depression status and cognitive function. RESULTS: A total of 66 depressed participants and 47 healthy control participants were included in this study. The theta spectral power of the left frontal lobe was slightly stronger than that of the right frontal lobe in the depression group, while the opposite was true in the healthy control group. The FTA in F3/F4 had certain effects on the emergence of depression in participants, the emergence of depression in participants and Changes in cognitive function. CONCLUSIONS: FTAs are helpful to assess the severity of depression and early identify cognitive impairment in patients with depression.


Subject(s)
Cognition , Electroencephalography , Frontal Lobe , Theta Rhythm , Humans , Male , Female , Theta Rhythm/physiology , Adult , Frontal Lobe/physiopathology , Cognition/physiology , Middle Aged , Severity of Illness Index , Depression/physiopathology , Depression/psychology , Psychiatric Status Rating Scales , Depressive Disorder/physiopathology , Event-Related Potentials, P300/physiology , Cognitive Dysfunction/physiopathology
3.
Ann Neurol ; 95(6): 1138-1148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38624073

ABSTRACT

OBJECTIVE: The objective was to analyze seizure semiology in pediatric frontal lobe epilepsy patients, considering age, to localize the seizure onset zone for surgical resection in focal epilepsy. METHODS: Fifty patients were identified retrospectively, who achieved seizure freedom after frontal lobe resective surgery at Great Ormond Street Hospital. Video-electroencephalography recordings of preoperative ictal seizure semiology were analyzed, stratifying the data based on resection region (mesial or lateral frontal lobe) and age at surgery (≤4 vs >4). RESULTS: Pediatric frontal lobe epilepsy is characterized by frequent, short, complex seizures, similar to adult cohorts. Children with mesial onset had higher occurrence of head deviation (either direction: 55.6% vs 17.4%; p = 0.02) and contralateral head deviation (22.2% vs 0.0%; p = 0.03), ictal body-turning (55.6% vs 13.0%; p = 0.006; ipsilateral: 55.6% vs 4.3%; p = 0.0003), and complex motor signs (88.9% vs 56.5%; p = 0.037). Both age groups (≤4 and >4 years) showed hyperkinetic features (21.1% vs 32.1%), contrary to previous reports. The very young group showed more myoclonic (36.8% vs 3.6%; p = 0.005) and hypomotor features (31.6% vs 0.0%; p = 0.003), and fewer behavioral features (36.8% vs 71.4%; p = 0.03) and reduced responsiveness (31.6% vs 78.6%; p = 0.002). INTERPRETATION: This study presents the most extensive semiological analysis of children with confirmed frontal lobe epilepsy. It identifies semiological features that aid in differentiating between mesial and lateral onset. Despite age-dependent differences, typical frontal lobe features, including hyperkinetic seizures, are observed even in very young children. A better understanding of pediatric seizure semiology may enhance the accuracy of onset identification, and enable earlier presurgical evaluation, improving postsurgical outcomes. ANN NEUROL 2024;95:1138-1148.


Subject(s)
Electroencephalography , Epilepsy, Frontal Lobe , Seizures , Humans , Child , Male , Female , Epilepsy, Frontal Lobe/surgery , Epilepsy, Frontal Lobe/physiopathology , Epilepsy, Frontal Lobe/diagnosis , Child, Preschool , Electroencephalography/methods , Retrospective Studies , Adolescent , Seizures/physiopathology , Seizures/surgery , Seizures/diagnosis , Infant , Frontal Lobe/physiopathology , Video Recording/methods
4.
Brain Cogn ; 177: 106164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670050

ABSTRACT

Recent work has found that the presence of transient, oscillatory burst-like events, particularly within the beta band (15-29 Hz), is more closely tied to disease state and behavior across species than traditional electroencephalography (EEG) power metrics. This study sought to examine whether features of beta events over frontoparietal electrodes were associated with early life stress (ELS) and the related clinical presentation. Eighteen adults with documented ELS (n = 18; ELS + ) and eighteen adults without documented ELS (n = 18; ELS-) completed eyes-closed resting state EEG as part of their participation in a larger childhood stress study. The rate, power, duration, and frequency span of transient oscillatory events were calculated within the beta band at five frontoparietal electrodes. ELS variables were positively associated with beta event rate at Fp2 and beta event duration at Pz, in that greater ELS was associated with higher resting rates and longer durations. These beta event characteristics were used to successfully distinguish between ELS + and ELS- groups. In an independent clinical dataset (n = 25), beta event power at Pz was positively correlated with ELS. Beta events deserve ongoing investigation as a potential disease marker of ELS and subsequent psychiatric treatment outcomes.


Subject(s)
Beta Rhythm , Electroencephalography , Stress, Psychological , Humans , Female , Adult , Male , Beta Rhythm/physiology , Stress, Psychological/physiopathology , Electroencephalography/methods , Frontal Lobe/physiopathology , Parietal Lobe/physiopathology , Young Adult , Middle Aged
5.
Schizophr Res ; 267: 130-137, 2024 May.
Article in English | MEDLINE | ID: mdl-38531160

ABSTRACT

BACKGROUND: Impaired cognitive reappraisal is a notable symptom of early psychosis, but its neurobiological basis remains underexplored. We aimed to identify the underlying neurobiological mechanism of this impairment by using resting-state functional connectivity (FC) analyses focused on brain regions related to cognitive reappraisal. METHODS: Resting-state functional magnetic resonance images were collected from 36 first-episode psychosis (FEP) patients, 32 clinical high-risk (CHR) individuals, and 48 healthy controls (HCs). Whole-brain FC maps using seed regions associated with cognitive reappraisal were generated and compared across the FEP, CHR and HC groups. We assessed the correlation between resting-state FC, reappraisal success ratio, positive symptom severity and social functioning controlling for covariates. RESULTS: FEP patients showed higher FC between the left superior parietal lobe and left inferior frontal gyrus than HCs. Higher FC between the left superior parietal lobe and left inferior frontal gyrus negatively correlated with the reappraisal success ratio in the FEP group after controlling for covariates. Lower FC correlated with lower positive symptom severity and improved global functioning in the FEP group. CONCLUSIONS: Alteration in left frontoparietal connectivity reflects impaired cognitive reappraisal in early psychosis, and such alteration correlates with increased positive symptoms and decreased global functioning. These findings offer a potential path for interventions targeting newly emerging symptoms in the early stages of psychosis.


Subject(s)
Frontal Lobe , Magnetic Resonance Imaging , Parietal Lobe , Psychotic Disorders , Humans , Psychotic Disorders/physiopathology , Psychotic Disorders/diagnostic imaging , Male , Female , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Young Adult , Adult , Frontal Lobe/physiopathology , Frontal Lobe/diagnostic imaging , Adolescent , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Connectome , Brain Mapping
6.
Ocul Surf ; 32: 139-144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458565

ABSTRACT

PURPOSE: To evaluate stress levels extracted from prefrontal electroencephalogram (EEG) signals and investigate their relationship with dry eye symptoms. METHODS: This prospective, cross-sectional, comparative study included 25 eyes of 25 patients with aqueous tear-deficient dry eye (low Schirmer group), 25 eyes of 25 patients with short tear breakup time dry eye (short breakup time group), and 24 eyes of 24 individuals without dry eye. An EEG test, the Japanese version of the Ocular Surface Disease Index (OSDI), and a stress questionnaire were administered. EEG-detected stress levels were assessed under three conditions: eyes closed, eyes open, and eyes open under ocular surface anesthesia. RESULTS: Stress levels were significantly lower when the eyes were closed than when they were open in all groups (all P < 0.05). Stress levels during eyes open under ocular surface anesthesia were significantly lower than those during eyes open without anesthesia only in the low Schirmer group; no differences were found between the short breakup time and control groups. OSDI scores were associated with EEG-detected stress levels (P = 0.06) and vital staining score (P < 0.05) in the low Schirmer group; they were not associated with EEG-detected stress (P > 0.05), but with subjective stress questionnaire scores and breakup time values in the short breakup time group (P < 0.05). CONCLUSIONS: In the low Schirmer group, peripheral nerve stimulation caused by ocular surface damage induced stress reactions in the frontal lobe, resulting in dry eye symptoms. Conversely, in the short breakup time group, the stress response in the frontal lobe was not related to symptom development.


Subject(s)
Dry Eye Syndromes , Electroencephalography , Frontal Lobe , Tears , Humans , Dry Eye Syndromes/physiopathology , Dry Eye Syndromes/metabolism , Male , Female , Prospective Studies , Cross-Sectional Studies , Middle Aged , Electroencephalography/methods , Tears/metabolism , Frontal Lobe/physiopathology , Surveys and Questionnaires , Adult , Aged , Stress, Psychological/physiopathology
7.
Cogn Affect Behav Neurosci ; 24(3): 552-566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38302819

ABSTRACT

Emotion regulation (ER) often is impaired in current or remitted major depression (MD), although the extent of the deficits is not fully understood. Recent studies suggest that frontal alpha asymmetry (FAA) could be a promising electrophysiological measure to investigate ER. The purpose of this study was to investigate ER differences between participants with lifetime major depression (lifetime MD) and healthy controls (HC) for the first time in an experimental task by using FAA. We compared lifetime MD (n = 34) and HC (n = 25) participants aged 18-24 years in (a) an active ER condition, in which participants were instructed to reappraise negative images and (b) a condition in which they attended to the images while an EEG was recorded. We also report FAA results from an independent sample of adolescents with current MD (n = 36) and HC adolescents (n = 38). In the main sample, both groups were able to decrease self-reported negative affect in response to negative images through ER, without significant group differences. We found no differences between groups or conditions in FAA, which was replicated within the independent adolescent sample. The lifetime MD group also reported less adaptive ER in daily life and higher difficulty of ER during the task. The lack of differences between in self-reported affect and FAA between lifetime MD and HC groups in the active ER task indicates that lifetime MD participants show no impairments when instructed to apply an adaptive ER strategy. Implications for interventional aspects are discussed.


Subject(s)
Alpha Rhythm , Depressive Disorder, Major , Emotional Regulation , Frontal Lobe , Humans , Depressive Disorder, Major/physiopathology , Male , Female , Young Adult , Adolescent , Alpha Rhythm/physiology , Emotional Regulation/physiology , Frontal Lobe/physiopathology , Adult , Electroencephalography , Functional Laterality/physiology , Emotions/physiology
8.
Hum Brain Mapp ; 44(15): 5002-5012, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37539805

ABSTRACT

To explore the functional changes of the frontal eye field (FEF) and relevant brain regions and its role in the pathogenesis of intermittent exotropia (IXT) children via functional magnetic resonance imaging (fMRI). Twenty-four IXT children (mean age, 11.83 ± 1.93 years) and 28 normal control (NC) subjects (mean age, 11.11 ± 1.50 years) were recruited. During fMRI scans, the IXT children and NCs were provided with static visual stimuli (to evoke sensory fusion) and dynamic visual stimuli (to evoke motor fusion and vergence eye movements) with binocular disparity. Brain activation in the relevant brain regions and clinical characteristics were evaluated. Group differences of brain activation and brain-behavior correlations were investigated. For dynamic and static visual disparity relative to no visual disparity, reduced brain activation in the right FEF and right inferior occipital gyrus (IOG), and increased brain activation in the left middle temporal gyrus complex (MT+) were found in the IXT children compared with NCs. Significant positive correlations between the fusional vergence amplitude and the brain activation values were found in the right FEF, right IPL, and left cerebellum in the NC group. Positive correlations between brain activation values and Newcastle Control Scores (NCS) were found in the left MT+ in the IXT group. For dynamic visual disparity relative to static visual disparity, reduced brain activation in the right middle occipital gyrus, left cerebellum, and bilateral IPL was found in the IXT children compared with NCs. Significant positive correlations between brain activation values and the fusional vergence amplitude were found in the right FEF and right cerebellum in the NC group. Negative correlations between brain activation values and NCS were found in the right middle occipital gyrus, right cerebellum, left IPL, and right FEF in the IXT group. These results suggest that the reduced brain activation in the right FEF, left IPL, and cerebellum may play an important role in the pathogenesis of IXT by influencing fusional vergence function. While the increased brain activation in the left MT+ may compensate for this dysfunction in IXT children.


Subject(s)
Exotropia , Frontal Lobe , Exotropia/diagnostic imaging , Exotropia/physiopathology , Humans , Child , Adolescent , Magnetic Resonance Imaging , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Brain Mapping
9.
J Neurol Sci ; 451: 120726, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37421883

ABSTRACT

INTRODUCTION: Pseudobulbar affect (PBA) is a distressing symptom of a multitude of neurological conditions affecting patients with a rage of neuroinflammatory, neurovascular and neurodegenerative conditions. It manifests in disproportionate emotional responses to minimal or no contextual stimulus. It has considerable quality of life implications and treatment can be challenging. METHODS: A prospective multimodal neuroimaging study was conducted to explore the neuroanatomical underpinnings of PBA in patients with primary lateral sclerosis (PLS). All participants underwent whole genome sequencing and screening for C9orf72 hexanucleotide repeat expansions, a comprehensive neurological assessment, neuropsychological screening (ECAS, HADS, FrSBe) and PBA was evaluated by the emotional lability questionnaire. Structural, diffusivity and functional MRI data were systematically evaluated in whole-brain (WB) data-driven and region of interest (ROI) hypothesis-driven analyses. In ROI analyses, functional and structural corticobulbar connectivity and cerebello-medullary connectivity alterations were evaluated separately. RESULTS: Our data-driven whole-brain analyses revealed associations between PBA and white matter degeneration in descending corticobulbar as well as in commissural tracts. In our hypothesis-driven analyses, PBA was associated with increased right corticobulbar tract RD (p = 0.006) and decreased FA (p = 0.026). The left-hemispheric corticobulbar tract, as well as functional connectivity, showed similar tendencies. While uncorrected p-maps revealed both voxelwise and ROI trends for associations between PBA and cerebellar measures, these did not reach significance to unequivocally support the "cerebellar hypothesis". CONCLUSIONS: Our data confirm associations between cortex-brainstem disconnection and the clinical severity of PBA. While our findings may be disease-specific, they are consistent with the classical cortico-medullary model of pseudobulbar affect.


Subject(s)
Cerebellum , Cerebral Cortex , Crying , Laughter , Models, Neurological , Motor Neuron Disease , Pyramidal Tracts , Radiology , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cerebellum/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Frontal Lobe/physiopathology , Magnetic Resonance Imaging , Medulla Oblongata/diagnostic imaging , Medulla Oblongata/pathology , Medulla Oblongata/physiopathology , Motor Cortex/diagnostic imaging , Motor Cortex/pathology , Motor Cortex/physiopathology , Motor Neuron Disease/complications , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/pathology , Motor Neuron Disease/physiopathology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Pyramidal Tracts/physiopathology , Quality of Life , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Temporal Lobe/physiopathology
10.
Neurobiol Dis ; 179: 106047, 2023 04.
Article in English | MEDLINE | ID: mdl-36841423

ABSTRACT

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Subject(s)
Alzheimer Disease , Brain , Connectome , Frontotemporal Dementia , Neural Pathways , Aged , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Electroencephalography , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/physiopathology , Magnetic Resonance Imaging , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiopathology , Reproducibility of Results , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology
11.
Neurocase ; 29(3): 81-86, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38678309

ABSTRACT

Numerous treatment options are being studied for Alzheimer's disease (AD) given the rising prevalence of this condition worldwide. Transcranial Magnetic Stimulation (TMS) is a promising option for regulating specific neurological abnormalities pertaining to this condition. This case presents a patient with AD and co-occurring major depressive disorder that received 36 sessions of Deep TMS to the frontal and temporal lobes. This patient experienced improved general cognitive functioning and memory, remission from depression, and reduced slow-frequency theta activity in frontal and temporal sites. Following 7 months of weekly maintenance, additional improvements occurred. This report suggests that Deep TMS may be effective in mitigating AD symptoms, and maintenance sessions are advisable.


Subject(s)
Alzheimer Disease , Depressive Disorder, Major , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Alzheimer Disease/therapy , Alzheimer Disease/physiopathology , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Electroencephalography , Aged , Cognition/physiology , Male , Temporal Lobe/physiopathology , Frontal Lobe/physiopathology , Memory/physiology , Female
12.
PLoS One ; 17(2): e0263558, 2022.
Article in English | MEDLINE | ID: mdl-35120184

ABSTRACT

BACKGROUND: Mal de Débarquement Syndrome (MdDS) is a medically refractory neurotological disorder characterized by persistent oscillating vertigo that follows a period of entrainment to oscillating motion such as experienced during sea or air travel. Fronto-occipital hypersynchrony may correlate with MdDS symptom severity. MATERIALS AND METHODS: Individuals with treatment refractory MdDS lasting at least 6 months received single administrations of three fronto-occipital transcranial alternating current stimulation (tACS) protocols in an "n-of-1" double-blind randomized design: alpha frequency anti-phase, alpha-frequency in-phase, and gamma frequency control. Baseline assessments were made on Day 1. The treatment protocol that led to the most acute reduction in symptoms during a test session on Day 2 was administered for 10-12 stacked sessions given on Days 3 through 5 (20-minutes at 2-4mA). Pre to post symptom changes were assessed on Day 1 and Day 5. Participants who could clearly choose a preferred protocol on Day 2 did better on Day 5 than those who could not make a short-term determination on Day 2 and either chose a protocol based on minimized side effects or were randomized to one of the three protocols. In addition, weekly symptom assessments were made for four baseline and seven post stimulation points for the Dizziness Handicap Inventory (DHI), MdDS Balance Rating Scale (MBRS), and Hospital Anxiety and Depression Scale (HADS). RESULTS: Of 24 participants, 13 chose anti-phase, 7 chose in-phase, and 4 chose control stimulation. Compared to baseline, 10/24 completers noted ≥ 25% reduction, 5/24 ≥50% reduction, and 2/24 ≥75% reduction in oscillating vertigo intensity from Day 1 to Day 5. Stimulating at a frequency slightly higher than the individual alpha frequency (IAF) was better than stimulating at exactly the IAF, and slightly better than stimulating with a strategy of standardized stimulation at 10Hz. A one-way repeated measures ANOVA of weekly DHI, MBRS, and HADS measurements showed significant reductions immediately after treatment with improvement increasing through post-treatment week 6. CONCLUSION: Fronto-occipital tACS may be effective in reducing the oscillating vertigo of MdDS and serve as a portable neuromodulation alternative for longer-term treatment. Stimulation frequency relative to the IAF may be important in determining the optimum treatment protocol [ClinicalTrials.gov study NCT02540616. https://clinicaltrials.gov/ct2/show/NCT02540616].


Subject(s)
Motion Sickness/therapy , Transcranial Direct Current Stimulation/methods , Travel-Related Illness , Adult , Aged , Double-Blind Method , Female , Frontal Lobe/physiopathology , Humans , Male , Middle Aged , Occipital Lobe/physiopathology , Oscillometry
13.
J Integr Neurosci ; 21(1): 20, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35164456

ABSTRACT

Stress has become a dangerous health problem in our life, especially in student education journey. Accordingly, previous methods have been conducted to detect mental stress based on biological and biochemical effects. Moreover, hormones, physiological effects, and skin temperature have been extensively used for stress detection. However, based on the recent literature, biological, biochemical, and physiological-based methods have shown inconsistent findings, which are initiated due to hormones' instability. Therefore, it is crucial to study stress using different mechanisms such as Electroencephalogram (EEG) signals. In this research study, the frontal lobes EEG spectrum analysis is applied to detect mental stress. Initially, we apply a Fast Fourier Transform (FFT) as a feature extraction stage to measure all bands' power density for the frontal lobe. After that, we used two type of classifications such as subject wise and mix (mental stress vs. control) using Support Vector Machine (SVM) and Naive Bayes (NB) machine learning classifiers. Our obtained results of the average subject wise classification showed that the proposed technique has better accuracy (98.21%). Moreover, this technique has low complexity, high accuracy, simple and easy to use, no over fitting, and it could be used as a real-time and continuous monitoring technique for medical applications.


Subject(s)
Electroencephalography/methods , Frontal Lobe/physiopathology , Machine Learning , Signal Processing, Computer-Assisted , Stress, Psychological/diagnosis , Stress, Psychological/physiopathology , Adult , Electroencephalography/standards , Female , Fourier Analysis , Humans , Male , Sensitivity and Specificity , Support Vector Machine , Young Adult
14.
Sci Rep ; 12(1): 176, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997117

ABSTRACT

The BDNF Val66Met gene polymorphism is a relevant factor explaining inter-individual differences to TMS responses in studies of the motor system. However, whether this variant also contributes to TMS-induced memory effects, as well as their underlying brain mechanisms, remains unexplored. In this investigation, we applied rTMS during encoding of a visual memory task either over the left frontal cortex (LFC; experimental condition) or the cranial vertex (control condition). Subsequently, individuals underwent a recognition memory phase during a functional MRI acquisition. We included 43 young volunteers and classified them as 19 Met allele carriers and 24 as Val/Val individuals. The results revealed that rTMS delivered over LFC compared to vertex stimulation resulted in reduced memory performance only amongst Val/Val allele carriers. This genetic group also exhibited greater fMRI brain activity during memory recognition, mainly over frontal regions, which was positively associated with cognitive performance. We concluded that BDNF Val66Met gene polymorphism, known to exert a significant effect on neuroplasticity, modulates the impact of rTMS both at the cognitive as well as at the associated brain networks expression levels. This data provides new insights on the brain mechanisms explaining cognitive inter-individual differences to TMS, and may inform future, more individually-tailored rTMS interventions.


Subject(s)
Brain Waves , Brain-Derived Neurotrophic Factor/genetics , Frontal Lobe/physiopathology , Memory Disorders/genetics , Memory , Polymorphism, Genetic , Transcranial Direct Current Stimulation/adverse effects , Adult , Brain Mapping , Cognition , France , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Memory Disorders/diagnosis , Memory Disorders/etiology , Memory Disorders/physiopathology , Neuronal Plasticity , Phenotype , Risk Factors , Spain , Young Adult
15.
Int J Med Sci ; 19(1): 105-111, 2022.
Article in English | MEDLINE | ID: mdl-34975304

ABSTRACT

Objective: The brain network in panic disorder (PD) is still an intriguing issue for research. In this study, we hoped to investigate the role of DC (degree centrality) for the pathophysiology of PD, especially for the fear network. Methods: We enrolled 60 patients with PD and 60 controls in the current study. The gender and age were matched for two groups. All participants received the resting-state functional magnetic resonance imaging to survey the baseline brain activity. Then the DC values of all participants were using REST toolbox. We also compared the DC values between PD and controls. The statistical threshold was set as FDR (false discovery rate) < 0.05. Results: The DC values were significantly lower in the right superior frontal gyrus of PD patients compared to controls (FDR < 0.05). In addition, a negative correlation between the DC values and panic severity was observed in the right superior frontal gyrus and left inferior frontal gyrus. However, there was no significant association between the DC values and illness duration. Conclusion: The DC seemed significantly altered in the frontal lobe of PD patients. The role of the frontal lobe might be more emphasized in the pathophysiology research for PD.


Subject(s)
Frontal Lobe/physiopathology , Panic Disorder/physiopathology , Adult , Case-Control Studies , Female , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Panic Disorder/diagnostic imaging
16.
Am J Otolaryngol ; 43(1): 103274, 2022.
Article in English | MEDLINE | ID: mdl-34715486

ABSTRACT

PURPOSE: Tinnitus network(s) consists of pathways in the auditory cortex, frontal cortex, and the limbic system. The cortical hyperactivity caused by tinnitus may be suppressed by neuromodulation techniques. Due to the lack of definitive treatment for tinnitus and limited usefulness of the individual methods, in this study, a combination of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) and tailor-made notched music training (TMNMT) was used. MATERIAL AND METHODS: In this descriptive-analytic study, 26 patients with chronic unilateral tinnitus of the right ear were randomly divided into the clinical trial group (CTG) and the control group (CG). In both groups, six sessions of tDCS with 2 mA intensity for 20 min, with anode on F4 and cathode on F3, were conducted. Simultaneous with tDCS sessions, and based on TMNMT, the participant was asked to listen passively for 120 min/day, to a CD containing her/his favorite music with a proper notch applied in its spectrum according to the individual's tinnitus The treatment outcome was measured by, psychoacoustic (loudness-matching), psychometric (awareness, loudness and annoyance Visual Analogue Scale (VAS) scores, and Tinnitus Handicap Inventory (THI)) scores, and cognitive assessments (randomized dichotic digits test (RDDT) and dichotic auditory-verbal memory test (DAVMT)). Repeated measurement test was used for statistical analyses. RESULTS: In the CTG, the tinnitus loudness and annoyance VAS scores, and THI were reduced significantly (p = 0.001). In addition, the DAVMT and RDDT scores were enhanced (p = 0.001). Such changes were not observed in the CG (p > 0.05). CONCLUSION: The combination of tDCS and TMNMT led to a reduction in the loudness, awareness, annoyance, and also disability induced by tinnitus in CTG. Furthermore, this method showed an improvement of cognitive functions (auditory divided attention, selective attention and working memory) in the CTG.


Subject(s)
Auditory Cortex/physiopathology , Cognition , Music Therapy/methods , Psychoacoustics , Psychometrics , Tinnitus/psychology , Tinnitus/therapy , Adult , Female , Frontal Lobe/physiopathology , Humans , Limbic System/physiopathology , Male , Middle Aged , Tinnitus/physiopathology , Transcranial Direct Current Stimulation/methods , Treatment Outcome
17.
Neurosci Lett ; 767: 136309, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34736723

ABSTRACT

BACKGROUND: It is known that increased impulsivity in schizophrenia patients causes poor treatment outcomes by increasing cost, stigma, hospitalization, treatment challenge, and physical harm. Dysfunction in the prefrontal cortex appears to be involved in the impulsivity associated with schizophrenia; nonetheless, there is a dearth of research on specific white matter alterations in the prefrontal cortex related to impulsivity. METHODS: We enrolled in the present study 119 first-episode schizophrenia patients. We measured their symptom severity at baseline and after eight weeks of treatment, using the positive and negative syndrome scale. We performed neuroimaging analysis using the Tract-Based Spatial Statistics program and by specifying the prefrontal white matter as a region of interest. RESULTS: In voxel-wise correlational analysis, we observed white matter regions showing significant positive correlations with poor impulse control scores, in both the right dorsolateral prefrontal cortex and the right frontal pole region. The fractional anisotropy values of these areas correlated positively with symptom severity at baseline. Moreover, after eight weeks, treatment non responders showed significantly higher fractional anisotropy values in the same areas. CONCLUSIONS: The results of the present study suggest that white matter tracts in the right dorsolateral prefrontal cortex and the right frontal pole may underlie dysfunctional impulse control and could be potential predictive markers for short-term treatment in patients with first-episode schizophrenia.


Subject(s)
Frontal Lobe/physiopathology , Impulsive Behavior , Schizophrenia/physiopathology , White Matter/physiopathology , Adult , Antipsychotic Agents/therapeutic use , Diffusion Tensor Imaging/methods , Female , Frontal Lobe/diagnostic imaging , Humans , Impulsive Behavior/drug effects , Male , Middle Aged , Neuroimaging/methods , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , White Matter/diagnostic imaging
18.
Neurobiol Aging ; 110: 37-46, 2022 02.
Article in English | MEDLINE | ID: mdl-34847523

ABSTRACT

Cortical network modularity underpins cognitive functions, so we hypothesized its progressive derangement along the course of frontotemporal (FTD) and Alzheimer's (AD) dementing diseases. EEG was recorded in 18 FTD, 18 AD, and 20 healthy controls (HC). In the FTD and AD patients, the EEG recordings were performed at the prodromal stage of dementia, at the onset of dementia, and three years after the onset of dementia. HC underwent three EEG recordings at 2-3-year time interval. Information flows underlying EEG activity recorded at electrode pairs were estimated by means of Mutual Information (MI) analysis. The functional organization of the cortical network was modelled by means of the Graph theory analysis on MI adjacency matrices. Graph theory analysis showed that the main hub of HC (Parietal area) was lost in FTD patients at onset of dementia, substituted by provincial hubs in frontal leads. No changes in global network organization were found in AD. Despite a progressive cognitive impairment during the FTD and AD progression, only the FTD patients showed a derangement in the cortical network modularity, possibly due to dysfunctions in frontal functional connectivity.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Cognition , Electroencephalography , Frontal Lobe/physiopathology , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/psychology , Aged , Aged, 80 and over , Disease Progression , Female , Humans , Male , Middle Aged , Time Factors
19.
Neuroimage ; 247: 118742, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34863962

ABSTRACT

The descending pain modulatory system in humans is commonly investigated using conditioned pain modulation (CPM). Whilst variability in CPM efficiency, i.e., inhibition and facilitation, is normal in healthy subjects, exploring the inter-relationship between brain structure, resting-state functional connectivity (rsFC) and CPM readouts will provide greater insight into the underlying CPM efficiency seen in healthy individuals. Thus, this study combined CPM testing, voxel-based morphometry (VBM) and rsFC to identify the neural correlates of CPM in a cohort of healthy subjects (n =40), displaying pain inhibition (n = 29), facilitation (n = 10) and no CPM effect (n = 1). Clusters identified in the VBM analysis were implemented in the rsFC analysis alongside key constituents of the endogenous pain modulatory system. Greater pain inhibition was related to higher volume of left frontal cortices and stronger rsFC between the motor cortex and periaqueductal grey. Conversely, weaker pain inhibition was related to higher volume of the right frontal cortex - coupled with stronger rsFC to the primary somatosensory cortex, and rsFC between the amygdala and posterior insula. Overall, healthy subjects showed higher volume and stronger rsFC of brain regions involved with descending modulation, while the lateral and medial pain systems were related to greater pain inhibition and facilitation during CPM, respectively. These findings reveal structural alignments and functional interactions between supraspinal areas involved in CPM efficiency. Ultimately understanding these underlying variations and how they may become affected in chronic pain conditions, will advance a more targeted subgrouping in pain patients for future cross-sectional studies investigating endogenous pain modulation.


Subject(s)
Inhibition, Psychological , Neural Pathways/physiopathology , Pain/physiopathology , Adolescent , Adult , Aged , Amygdala/physiopathology , Brain/physiopathology , Brain Mapping , Cross-Sectional Studies , Female , Frontal Lobe/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Periaqueductal Gray/physiopathology , Rest , Switzerland , Young Adult
20.
Sci Rep ; 11(1): 19746, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611294

ABSTRACT

Psychiatric diagnoses currently rely on a patient's presenting symptoms or signs, lacking much-needed theory-based biomarkers. Our neuropsychological theory of anxiety, recently supported by human imaging, is founded on a longstanding, reliable, rodent 'theta' brain rhythm model of human clinical anxiolytic drug action. We have now developed a human scalp EEG homolog-goal-conflict-specific rhythmicity (GCSR), i.e., EEG rhythmicity specific to a balanced conflict between goals (e.g., approach-avoidance). Critically, GCSR is consistently reduced by different classes of anxiolytic drug and correlates with clinically-relevant trait anxiety scores (STAI-T). Here we show elevated GCSR in student volunteers divided, after testing, on their STAI-T scores into low, medium, and high (typical of clinical anxiety) groups. We then tested anxiety disorder patients (meeting diagnostic criteria) and similar controls recruited separately from the community. The patient group had higher average GCSR than their controls-with a mixture of high and low GCSR that varied with, but cut across, conventional disorder diagnosis. Consequently, GCSR scores should provide the first theoretically-based biomarker that could help diagnose, and so redefine, a psychiatric disorder.


Subject(s)
Anxiety Disorders/diagnosis , Anxiety Disorders/psychology , Biomarkers , Electroencephalography , Frontal Lobe/physiopathology , Theta Rhythm , Aged , Analysis of Variance , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety Disorders/drug therapy , Anxiety Disorders/etiology , Conflict, Psychological , Disease Susceptibility , Electroencephalography/methods , Female , Humans , Male , Middle Aged , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...