Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Int J Med Mushrooms ; 26(5): 25-41, 2024.
Article in English | MEDLINE | ID: mdl-38780421

ABSTRACT

Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.


Subject(s)
Fermentation , Reishi , Triterpenes , Triterpenes/metabolism , Reishi/metabolism , Reishi/genetics , Reishi/chemistry , Genetic Engineering , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/chemistry , Mutagenesis , Mycelium/metabolism
2.
Sci Rep ; 14(1): 10097, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698154

ABSTRACT

To explore the impacts of continuous Ganoderma lucidum cultivation on soil physicochemical factors, soil enzyme activity, and the metabolome of Ganoderma lucidum fruiting bodies, this study conducted two consecutive years of cultivation on the same plot of land. Soil physicochemical factors and enzyme activity were assessed, alongside non-targeted metabolomic analysis of the Ganoderma lucidum fruiting bodies under continuous cultivation. The findings unveiled that in the surface soil layer (0-15 cm), there was a declining trend in organic matter, ammonium nitrogen, available phosphorus, available potassium, pH, polyphenol oxidase, peroxidase, alkaline phosphatase, and sucrase, whereas nitrate nitrogen, electrical conductivity (EC), and salt content exhibited an upward trend. Conversely, in the deeper soil layer (15-30 cm), organic matter, ammonium nitrogen, available potassium, alkaline phosphatase, and sucrase demonstrated a decreasing trend, while nitrate nitrogen, available phosphorus, pH, EC, salt content, polyphenol oxidase, and soil peroxidase showed an increasing trend. Metabolomic analysis of Ganoderma lucidum fruiting bodies distinguished 64 significantly different metabolites between the GCK and GT groups, with 39 components having markedly higher relative contents in GCK and 25 components having significantly lower relative contents in GCK compared to GT. Moreover, among these metabolites, there were more types with higher contents in the fruiting bodies harvested in the first year (GCK) compared to those harvested in the second year (GT), with pronounced differences. KEGG pathway analysis revealed that GCK exhibited more complex metabolic pathways compared to GT. The metabolites of Ganoderma lucidum fruiting bodies were predominantly influenced by soil physicochemical factors and soil enzyme activity. In the surface soil layer (0-15 cm), the metabolome was significantly affected by soil pH, soil organic matter, available phosphorus, and soil alkaline phosphatase, while in the deeper soil layer (15-30 cm), differences in the Ganoderma lucidum metabolome were more influenced by soil alkaline phosphatase, soil catalase, pH, nitrate nitrogen, and soil sucrase.


Subject(s)
Fruiting Bodies, Fungal , Reishi , Soil , Reishi/metabolism , Reishi/growth & development , Soil/chemistry , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/growth & development , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Nutrients/metabolism , Nutrients/analysis , Metabolome , Metabolomics/methods , Hydrogen-Ion Concentration
3.
Int J Biol Macromol ; 263(Pt 2): 130610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447851

ABSTRACT

Fruiting body development in macrofungi is an intensive research subject. In this study, high-quality genomes were assembled for two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain WX1, and variations in L. edodes genomes were analyzed. Specifically, differential gene expression and allele-specific expression (ASE) were analyzed using the two monokaryotic genomes and transcriptome data from four different stages of fruiting body development in WX1. Results revealed that after aeration, mycelia sensed cell wall stress, pheromones, and a decrease in CO2 concentration, leading to up-regulated expression in genes related to cell adhesion, cell wall remodeling, proteolysis, and lipid metabolism, which may promote primordium differentiation. Aquaporin genes and those related to proteolysis, mitosis, lipid, and carbohydrate metabolism may play important roles in primordium development, while genes related to tissue differentiation and sexual reproduction were active in fruiting body. Several essential genes for fruiting body development were allele-specifically expressed and the two nuclear types could synergistically regulate fruiting body development by dominantly expressing genes with different functions. ASE was probably induced by long terminal repeat-retrotransposons. Findings here contribute to the further understanding of the mechanism of fruiting body development in macrofungi.


Subject(s)
Shiitake Mushrooms , Gene Expression Profiling/methods , Transcriptome/genetics , Reproduction , Fruiting Bodies, Fungal/metabolism
4.
Mycologia ; 116(3): 464-474, 2024.
Article in English | MEDLINE | ID: mdl-38489159

ABSTRACT

Tremella fuciformis Berk. (TF), or the white jelly mushroom, is well known for its myriad of pharmacological properties, such as immunomodulatory, anti-inflammatory, antidiabetic, antitumor, and antioxidant activities, and hypocholesterolemic and hepatoprotective effects that boost human health. Most of the studies of TF are concentrated on its polysaccharide (glucuronoxylomannan) composition, which is responsible for its pharmacological as well as rheological properties. It is well established that mushrooms are a great source of dietary vitamin D due to the presence of ergosterol in their cell membrane. There is a lack of published data on TF as a source of vitamin D2. Therefore, this study aimed to evaluate the vitamin D2 composition of the fruiting bodies of TF using triple quadrupole liquid chromatography-mass spectrometry (LC-MS/QQQ). The results showed highest vitamin D2 content (292.02 µg/g dry weight) in the sample irradiated with ultraviolet B (UVB; 310 nm) for 180 min as compared with the control group (52.47 µg/g dry weight) (P ≤ 0.001). The results showed higher accumulation potential of vitamin D2 in TF as compared with published data available for other extensively studied culinary mushrooms, such as Agaricus bisporus, Lentinula edodes, Pleurotus ostreatus, Cordiceps militaris, and Calocybe indica. Moreover, the impact of UV treatment on antioxidant capacities and total polyphenol content of TF was also studied. The accumulation potential of vitamin D in TF reveals a novel commercial source for this nutrient.


Subject(s)
Antioxidants , Ergocalciferols , Polyphenols , Ergocalciferols/metabolism , Ergocalciferols/analysis , Polyphenols/metabolism , Polyphenols/analysis , Antioxidants/metabolism , Antioxidants/analysis , Chromatography, Liquid , Basidiomycota/metabolism , Basidiomycota/chemistry , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Agaricales/chemistry , Agaricales/metabolism , Mass Spectrometry , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry
5.
Sci Rep ; 14(1): 2231, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278834

ABSTRACT

Phenotypic degeneration in Cordyceps militaris poses a significant concern for producers, yet the mechanisms underlying this phenomenon remain elusive. To address this concern, we isolated two strains that differ in their abilities to form fruiting bodies. Our observations revealed that the degenerated strain lost the capacity to develop fruiting bodies, exhibited limited radial expansion, increased spore density, and elevated intracellular glycerol levels. Transcriptome reanalysis uncovered dysregulation of genes involved in the MAPK signaling pathway in the degenerate strain. Our RT-qPCR results demonstrated reduced expression of sexual development genes, along with upregulation of genes involved in asexual sporulation, glycerol synthesis, and MAPK regulation, when compared to the wild-type strain. Additionally, we discovered that osmotic stress reduced radial growth but increased conidia sporulation and glycerol accumulation in all strains. Furthermore, hyperosmotic stress inhibited fruiting body formation in all neutralized strains. These findings indicate dysregulation of the MAPK signaling pathway, the possibility of the activation of the high-osmolarity glycerol and spore formation modules, as well as the downregulation of the pheromone response and filamentous growth cascades in the degenerate strain. Overall, our study sheds light on the mechanisms underlying Cordyceps militaris degeneration and identifies potential targets for improving cultivation practices.


Subject(s)
Cordyceps , Transcriptome , Osmotic Pressure , Glycerol/metabolism , Spores, Fungal/genetics , Fruiting Bodies, Fungal/metabolism
6.
Int J Med Mushrooms ; 25(7): 45-54, 2023.
Article in English | MEDLINE | ID: mdl-37585315

ABSTRACT

To provide a scientific reference for improving the sawdust cultivation of Sanghuangporus baumii, comparative studies were conducted on the contents of nutritional components and active components and the antioxidant activity of the fruiting bodies of S. baumii cultivated with sawdust and cut logs. The results indicate that, first, cultivation methods had little effect on the contents of crude fat and the measured 16 kinds of amino acids [including total essential amino acids (EAA), total nonessential amino acids (NEAA), EAA/NEAA, and EAA/total amino acid (TAA)], but had a great influence on the contents of crude protein, crude fiber and TAA. These results suggest that the nutritional content under sawdust cultivation was significantly higher than that under cut-log cultivation. Second, the cultivation methods had little effect on the content of triterpenoids but had a great effect on the contents of polysaccharides, total flavonoids and total phenols, which showed that cut-log cultivation was significantly higher than sawdust cultivation. Third, the cultivation methods had a great effect on the antioxidant activities (ABTS and FRAP), which showed that cut-log cultivation was significantly higher than sawdust cultivation. The contents of polysaccharides, total flavonoids, and total phenols and the ABTS and FRAP activities using sawdust cultivation were lower than those using cut-log cultivation, which may be related to the mushroom strains, cultivation medium formula and cultivation technology. The results provide a solid basis for the improvement and promotion of new cultivation technologies for S. baumii.


Subject(s)
Antioxidants , Ascomycota , Antioxidants/pharmacology , Phenols/metabolism , Ascomycota/metabolism , Polysaccharides/metabolism , Fruiting Bodies, Fungal/metabolism , Flavonoids/metabolism , Amino Acids/metabolism
7.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902017

ABSTRACT

A deep understanding of the mechanism of fruiting body development is important for mushroom breeding and cultivation. Hydrophobins, small proteins exclusively secreted by fungi, have been proven to regulate the fruiting body development in many macro fungi. In this study, the hydrophobin gene Cmhyd4 was revealed to negatively regulate the fruiting body development in Cordyceps militaris, a famous edible and medicinal mushroom. Neither the overexpression nor the deletion of Cmhyd4 affected the mycelial growth rate, the hydrophobicity of the mycelia and conidia, or the conidial virulence on silkworm pupae. There was also no difference between the micromorphology of the hyphae and conidia in WT and ΔCmhyd4 strains observed by SEM. However, the ΔCmhyd4 strain showed thicker aerial mycelia in darkness and quicker growth rates under abiotic stress than the WT strain. The deletion of Cmhyd4 could promote conidia production and increase the contents of carotenoid and adenosine. The biological efficiency of the fruiting body was remarkably increased in the ΔCmhyd4 strain compared with the WT strain by improving the fruiting body density, not the height. It was indicated that Cmhyd4 played a negative role in fruiting body development. These results revealed that the diverse negative roles and regulatory effects of Cmhyd4 were totally different from those of Cmhyd1 in C. militaris and provided insights into the developmental regulatory mechanism of C. militaris and candidate genes for C. militaris strain breeding.


Subject(s)
Cordyceps , Fruiting Bodies, Fungal , Fruiting Bodies, Fungal/metabolism , Cordyceps/metabolism , Plant Breeding , Spores, Fungal/metabolism , Adenosine/metabolism
8.
Adv Biochem Eng Biotechnol ; 184: 29-76, 2023.
Article in English | MEDLINE | ID: mdl-35364694

ABSTRACT

Since most of the medicinal mushrooms are rare in nature, production of fungal fruiting bodies is hardly covering the food market and the production of pharmaceutically active products, so artificial cultivation of fruiting bodies in a form of farming has been intensively established during the last 40 years. Various cultivation technologies are presented, including traditional farming of fruiting bodies on wood logs and beds, and also on other substrate-based media, such as cultivation in bags, bottles, and others. The advantage of farming is a cheap but time-consuming large-scale production. Agriculture, wood, and food industry wastes represent the main substrates that are in this process delignified and enriched in proteins and highly valuable pharmaceutically active compounds. The present article presents an overview of achievements in artificial cultivation of fruiting bodies, including the most relevant medicinal mushroom species, such as Ganoderma lucidum, Grifola frondosa, Pleurotus ostreatus, Agaricus brasiliensis, and Lentinula edodes.


Subject(s)
Fruiting Bodies, Fungal , Pleurotus , Agriculture , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Industrial Waste/analysis , Pleurotus/chemistry , Pleurotus/metabolism , Wood
9.
Microbiol Mol Biol Rev ; 86(4): e0010422, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36409109

ABSTRACT

Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.


Subject(s)
Ascomycota , Chromatin , Chromatin/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Ascomycota/genetics , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/metabolism
10.
Microb Cell Fact ; 21(1): 169, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35999536

ABSTRACT

BACKGROUND: Cordyceps militaris is a traditional medicinal fungus contains a variety of functional ingredients and has been developed as an important mushroom food recently. Ergothioneine, one of the antioxidative compounds in C. militaris, is benefits on aging-related diseases and therefore became a novel functional food nutritive fortifier. Currently, the main diet source of ergothioneine is mushroom food. However, the mushroom farming faces the problems such as rather low ingredient yield and spontaneous degeneration associated fruiting body that restricts large scale production of ergothioneine. RESULTS: In this study, we excavated the ergothioneine synthetases in mushroom and modified the genes in C. militaris to construct a new ergothioneine synthesis pathway. By further introducing this pathway into C. militaris genome, we succeeded to increase the ingredients' production of engineering strain, the highest amount of ergothioneine and cordycepin were up to 2.5 g/kg dry weight and 2 g/L, respectively. Additionally, the expression of ergothioneine synthetase genes in the shape-mutated degenerative C. militaris could recover the ability of degenerative strain to produce high amount of ingredients, suggesting the metabolic regulation of ergothioneine might release the symptom of mushroom degeneration. CONCLUSION: This study reveals a new pathway to fulfill the market needs of functional mushroom food and food fortifier ergothioneine. It implied the mycelium of C. militaris could be engineered as a novel medicinal mushroom food which could produce higher amount of valuable ingredients.


Subject(s)
Agaricales , Cordyceps , Ergothioneine , Cordyceps/genetics , Fruiting Bodies, Fungal/metabolism , Metabolic Networks and Pathways , Mycelium/metabolism
11.
Arch Microbiol ; 204(9): 564, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35982255

ABSTRACT

Sanghuangporus sp., a medicinal and edible homologous macrofungus known as 'forest gold', which has good effects on antitumor, hypolipidemia and the treatment of gynecological diseases. However, the natural resources of fruiting body are on the verge of depletion due to its long growth cycle and over exploitation. The growth and metabolism of macrofungi are known to depend on the diverse bacterial community. Here, we characterized the diversity and potential function of bacteria inhabiting in the fruiting body of the most widely applied S. vaninii using a combination method of high-throughput sequencing with pure culturing for the first time, and tested the biological activities of bacterial isolates, of which Illumina NovaSeq provided a more comprehensive results on the bacterial community structure. Total 33 phyla, 82 classes, 195 orders, 355 families, 601 genera and 679 species were identified in the fruiting body, and our results revealed that the community was predominated by the common Proteobacteria, Gammaproteobacteria, Burkholderiales, Methylophilaceae (partly consistent with pure-culturing findings), and was dominated by the genera of distinctive Methylotenera and Methylomonas (yet-uncultured taxa). Simultaneously, the functional analysis showed that companion bacteria were involved in the pathways of carbohydrate transport and metabolism, metabolism of terpenoids and polyketides, cell wall/membrane/envelope biogenesis, etc. Hence, it was inferred that bacteria associated with fruiting body may have the potential to adjust the growth, development and active metabolite production of host S. vaninii combined with the tested results of indole-3-acetic acid and total antioxidant capacity. Altogether, this report first provided new findings which can be inspiring for further in-depth studies to exploit bioactive microbial resources for increased production of Sanghuangporus, as well as to explore the relationship between medicinal macrofungi and their associated endophytes.


Subject(s)
Ascomycota , Basidiomycota , Ascomycota/metabolism , Bacteria , Fruiting Bodies, Fungal/metabolism , Humans
12.
Phytochemistry ; 200: 113182, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427650

ABSTRACT

Inonotus obliquus, an edible and medicinal mushroom parasitic on birches, has been used in human diet and for traditional therapies in the high latitude regions of Europe and Asia for a long time. Our phytochemical study of this fungus led to the identification of fourteen triterpenoids including four undescribed ones, and two pairs of undescribed phenolic enantiomers. The undescribed compounds were elucidated by extensive spectroscopic analysis including 1D and 2D NMR and HRESIMS, quantum chemical NMR and ECD calculations, as well as single-crystal X-ray diffraction analysis. Bioassays revealed that eight compounds showed dual inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) with IC50 values ranging from 2.40 ± 0.05 to 28.72 ± 0.46 µM, while 3ß-hydroxy-lanosra-8,24-dien-21-al and trametenolic acid only presented BuChE inhibitory activities with IC50 values of 22.21 ± 1.01 and 7.68 ± 0.13 µM, respectively. In the kinetic studies, the most active three compounds acted as non-competitive inhibitors for both cholinesterases. Furthermore, molecular docking simulations revealed that three compounds demonstrated dual-sites bounding to AChE/BuChE. These triterpenoids emerged as bivalent and dual inhibitors of AChE/BuChE and could be effective drug candidates to prevent and treat Alzheimer's disease in the future.


Subject(s)
Butyrylcholinesterase , Triterpenes , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Fruiting Bodies, Fungal/metabolism , Inonotus , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/pharmacology
13.
Elife ; 112022 02 14.
Article in English | MEDLINE | ID: mdl-35156613

ABSTRACT

Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a 'developmental hourglass,' act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.


Subject(s)
Agaricales , Ascomycota , Basidiomycota , Agaricales/genetics , Agaricales/metabolism , Ascomycota/metabolism , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal
14.
Int J Biol Macromol ; 191: 996-1005, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34597698

ABSTRACT

In the present study, effects of maturity stage on structural characteristics and biosynthesis/hydrolysis-associated genes expression of glucans from Volvariella volvacea fruit body were well investigated. Elongation and pileus expansion stages decreased total soluble carbohydrate and protein contents to 17.09 mg/g and 8.33 mg/g, and significantly accumulated the total amino acids contents to 32.37 mg/g. Yields of crude polysaccharides significantly increased to 8.12% at egg stage and decreased to 3.72% at pileus expansion stage. Purified VVP I-a and VVP I-b were proved to be α-glucans. The maturity process affected the monosaccharide compositions, decreased the molecular weights of VVP I-a and VVP I-b with decreased transcription levels of glucan biosynthesis-associated enzyme genes vvugp and vvgls and increased glucan hydrolysis-associated glucanase gene vvexg2 expression with no significant effects on backbone structures including glycosidic linkages and configurations. The findings would benefit for understanding change patterns of V. volvacea glucan structures and their biosynthesis/hydrolysis-associated genes expression at maturity stages.


Subject(s)
Agaricales/genetics , Fungal Proteins/metabolism , Glucans/metabolism , Glucosidases/metabolism , Agaricales/enzymology , Agaricales/growth & development , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Fungal , Glucosidases/chemistry , Glucosidases/genetics
15.
Molecules ; 26(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070878

ABSTRACT

Extracts from Hericium erinaceus can cause neural cells to produce nerve growth factor (NGF) and protect against neuron death. The objective of this study was to evaluate the effects of ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product on the brain cells of zebrafish embryos in both pre-dosing protection mode and post-dosing repair mode. The results showed that 1% ethanol could effectively promote zebrafish embryo brain cell death. Both 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product protected brain cells and significantly reduced the death of brain cells caused by 1% ethanol treatment in zebrafish. Moreover, the zebrafish embryos were immersed in 1% ethanol for 4 h to cause brain cell damage and were then transferred and soaked in the 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product to restore the brain cells damaged by the 1% ethanol. However, the 200 ppm extracts from the unfermented wheat medium had no protective and repairing effects. Moreover, 200 ppm of ethanol and water extracts from H. erinaceus fruiting body had less significant protective and restorative effects on the brain cells of zebrafish embryos. Both the ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product could protect and repair the brain cells of zebrafish embryos damaged by 1% ethanol. Therefore, it has great potential as a raw material for neuroprotective health product.


Subject(s)
Culture Media, Conditioned/pharmacology , Hericium/metabolism , Animals , Brain , Cell Death , Ethanol/adverse effects , Fermentation , Fruiting Bodies, Fungal/metabolism , Hericium/pathogenicity , Nerve Growth Factor/drug effects , Nerve Growth Factor/metabolism , Neurons/drug effects , Triticum/metabolism , Triticum/microbiology , Water/chemistry , Zebrafish/embryology , Zebrafish/metabolism
16.
Sci Rep ; 11(1): 8736, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888795

ABSTRACT

The permeability of intact fungal fruit body skins (pileipelles) with respect to water and oxygen was determined for the first time. Methods that have been successfully applied to plant surfaces were used to study isolated pileipelles. Mechanically isolated skins from five genera of Basidiomycota (species of Amanita, Russula, Stropharia, Tapinella, and Tricholomopsis) were mounted between two compartments simulating the inner (fruit body) and the outer (aerial) space. Fluxes of water and oxygen across the skins were measured. Water loss via intact skins differed markedly from evaporation of water from a water surface. The skins reduced water loss by factors of 10 to 30, with permeability ranging from 2.8 to 9.8 × 10-4 ms-1. Oxygen permeability was much lower and ranged from 0.8 to 6.0 × 10-6 ms-1. Chloroform-extractable substances play a minor, but significant role as transport barrier during water permeance. Water and oxygen permeability were dependent on the humidity in the aerial compartment. Higher humidity in the air increased permeability and the hydration/water content of the skins. The ecological implications include impacts to fungal growth, sporulation and spore release.


Subject(s)
Basidiomycota/physiology , Fruiting Bodies, Fungal/physiology , Water/metabolism , Basidiomycota/metabolism , Fruiting Bodies, Fungal/metabolism , Permeability , Species Specificity
17.
Appl Environ Microbiol ; 87(13): e0053321, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33893114

ABSTRACT

To systemically understand the biosynthetic pathways of bioactive substances, including triterpenoids and polysaccharides, in Ganoderma lucidum, the correlation between substrate degradation and carbohydrate and triterpenoid metabolism during growth was analyzed by combining changes in metabolite content and changes in related enzyme expression in G. lucidum over 5 growth phases. Changes in low-polarity triterpenoid content were correlated with changes in glucose and mannitol contents in fruiting bodies. Additionally, changes in medium-polarity triterpenoid content were correlated with changes in the lignocellulose content of the substrate and with the glucose, trehalose, and mannitol contents of fruiting bodies. Weighted gene coexpression network analysis (WGCNA) indicated that changes in trehalose and polyol contents were related to carbohydrate catabolism and polysaccharide synthesis. Changes in triterpenoid content were related to expression of the carbohydrate catabolic enzymes laccase, cellulase, hemicellulase, and polysaccharide synthase and to the expression of several cytochrome P450 monooxygenases (CYPs). It was concluded that the products of cellulose and hemicellulose degradation participate in polyol, trehalose, and polysaccharide synthesis during initial fruiting body formation. These carbohydrates accumulate in the early phase of fruiting body formation and are utilized when the fruiting bodies mature and a large number of spores are ejected. An increase in carbohydrate metabolism provides additional precursors for the synthesis of triterpenoids. IMPORTANCE Most studies of G. lucidum have focused on its medicinal function and on the mechanism of its activity, whereas the physiological metabolism and synthesis of bioactive substances during the growth of this species have been less studied. Therefore, theoretical guidance for cultivation methods to increase the production of bioactive compounds remains lacking. This study integrated changes in the lignocellulose, carbohydrate, and triterpenoid contents of G. lucidum with enzyme expression from transcriptomics data using WGCNA. The findings helped us better understand the connections between substrate utilization and the synthesis of polysaccharides and triterpenoids during the cultivation cycle of G. lucidum. The results of WGCNA suggest that the synthesis of triterpenoids can be enhanced not only through regulating the expression of enzymes in the triterpenoid pathway, but also through regulating carbohydrate metabolism and substrate degradation. This study provides a potential approach and identifies enzymes that can be targeted to regulate lignocellulose degradation and accelerate the accumulation of bioactive substances by regulating substrate degradation in G. lucidum.


Subject(s)
Carbohydrate Metabolism , Lignin/metabolism , Reishi , Triterpenes/metabolism , Fruiting Bodies, Fungal/metabolism , Gene Expression Regulation, Fungal , Reishi/genetics , Reishi/growth & development , Reishi/metabolism , Transcriptome
18.
Int J Biol Macromol ; 183: 145-157, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33878360

ABSTRACT

Two novel glucans named MIPB50-W and MIPB50-S-1 were obtained from edible Morchella importuna with molecular weights (Mw) of 939.2 kDa and 444.5 kDa, respectively. MIPB50-W has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1→. Moreover, MIPB50-S-1 has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1 → 6)-α-d-Glcp-(1→. This is the first report about glucan found in Morchella mushrooms. Furthermore, MIPB50-W and MIPB50-S-1 strengthened the phagocytosis function and the promoted secretion of interleukins (IL)-6/tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO), which induced the activation of Toll-like receptor 2 (TLR2), TLR4 as well as mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. Interestingly, MIPB50-S-1 performed the better immunomodulatory activity than that of MIPB50-W in almost all tests. Therefore, MIPB50-W and MIPB50-S-1 are potential immune-enhancing components of functional foods.


Subject(s)
Ascomycota/metabolism , Fruiting Bodies, Fungal/metabolism , Glucans/pharmacology , Immunologic Factors/pharmacology , Macrophages/drug effects , Animals , Glucans/chemistry , Glucans/isolation & purification , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Interleukin-6/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , Molecular Structure , NF-kappa B/metabolism , Nitric Oxide/metabolism , Phagocytosis/drug effects , RAW 264.7 Cells , Signal Transduction , Structure-Activity Relationship , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Int J Med Mushrooms ; 23(4): 23-37, 2021.
Article in English | MEDLINE | ID: mdl-33822505

ABSTRACT

White rot mushroom Fomes fomentarius is a medicinal fungus with great potential to be explored. This work focused on the chemical composition of a basic aqueous extract from F. fomentarius fruiting bodies. The extract was mostly composed of phenolics, carbohydrates, minerals, and crude fat with a low amount of proteins and chitin. One-third of the total carbohydrates were in the form of beta-glucans with minor amounts of alpha-glucans. The most valuable essential part of the extract was composed of an acid-resistant ultraviolet (UV)-absorbing mixture of phenolic compounds such as melanins, lignins, and humic acids. These compounds, also referred to as melanin-like pigments, provided for the high antioxidant activity of the extract measured in vitro. Moderate sun-protective capacity was observed with regard to UVB rays and also expected in the UVA range. Quantification of melanin-like pigments in the F. fomentarius extract was possible either gravimetrically as acid-insoluble residue or spectrophotometrically in the UV region. Melanin estimation, based on nitrogen measurements, offered misleading results due to the presence of nitrogen-free melanins along with other nitrogen-containing compounds such as proteins and chitin. F. fomentarius water-soluble basic extract, containing beta-glucans and rich in melanin-like substances, could be used, for example, for topical skin application to prevent cell damage caused by excessive UV exposure or cytotoxic free radicals. The bioactive potential, safety, and further applications of the F. fomentarius extract are currently being investigated.


Subject(s)
Coriolaceae/chemistry , Fruiting Bodies, Fungal/chemistry , Ultraviolet Rays , Alkalies , Carbohydrates/analysis , Coriolaceae/metabolism , Fats/analysis , Fruiting Bodies, Fungal/metabolism , Fungal Proteins/analysis , Minerals/analysis , Oxygen Radical Absorbance Capacity , Phenols/analysis , Sunscreening Agents/chemistry
20.
Int J Biol Macromol ; 172: 408-417, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33465360

ABSTRACT

Mushrooms are renewable natural gift for humankind, furnished with unique taste, flavor and medicinal properties. For the last few decades study of mushroom polysaccharides has become a matter of great interest to the researchers for their immunomodulating, antimicrobial, antioxidant, anticancer, and antitumor properties. Molecular mass, branching configuration, conformation of polysaccharides and chemical modification are the major factors influencing their biological activities. The mechanism of action of mushroom polysaccharides is to stimulate T-cells, B-cells, natural killer cells, and macrophage dependent immune responses via binding to receptors like the toll-like receptor-2, dectin-1. The present review offers summarized and significant information about the structural and biological properties of mushroom polysaccharides, and their potential for development of therapeutic materials.


Subject(s)
Agaricales/chemistry , Antineoplastic Agents/pharmacology , Communicable Diseases/drug therapy , Fruiting Bodies, Fungal/chemistry , Fungal Polysaccharides/pharmacology , Immunologic Factors/pharmacology , Neoplasms/drug therapy , Agaricales/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Carbohydrate Sequence , Communicable Diseases/immunology , Communicable Diseases/pathology , Fruiting Bodies, Fungal/metabolism , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Gene Expression , Humans , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Macrophages/drug effects , Macrophages/immunology , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...