Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 875
Filter
1.
Inflamm Res ; 73(5): 771-792, 2024 May.
Article in English | MEDLINE | ID: mdl-38592458

ABSTRACT

INTRODUCTION: Macrophages (Mφs) are functionally dynamic immune cells that bridge innate and adaptive immune responses; however, the underlying epigenetic mechanisms that control Mφ plasticity and innate immune functions are not well elucidated. OBJECTIVE: To identify novel functions of macrophage-enriched lncRNAs in regulating polarization and innate immune responses. METHODS: Total RNA isolated from differentiating monocyte-derived M1 and M2 Mφs was profiled for lncRNAs expression using RNAseq. Impact of LRRC75A-AS1, GAPLINC and AL139099.5 knockdown was examined on macrophage differentiation, polarization markers, phagocytosis, and antigen processing by flow cytometry and florescence microscopy. Cytokine profiles were examined by multiplex bead array and cytoskeletal signaling pathway genes were quantified by PCR-based array. Gingival biopsies were collected from periodontally healthy and diseased subjects to examine lncRNAs, M1/M2 marker expression. RESULTS: Transcriptome profiling of M1 and M2 Mφs identified thousands of differentially expressed known and novel lncRNAs. We characterized three Mφ-enriched lncRNAs LRRC75A-AS1, GAPLINC and AL139099.5 in polarization and innate immunity. Knockdown of LRRC75A-AS1 and GAPLINC downregulated the Mφ differentiation markers and skewed Mφ polarization by decreasing M1 markers without a significant impact on M2 markers. LRRC75A-AS1 and GAPLINC knockdown also attenuated bacterial phagocytosis, antigen processing and inflammatory cytokine secretion in Mφs, supporting their functional role in potentiating innate immune functions. Mechanistically, LRRC75A-AS1 and GAPLINC knockdown impaired Mφ migration by downregulating the expression of multiple cytoskeletal signaling pathways suggesting their critical role in regulating Mφ migration. Finally, we showed that LRRC75A-AS1 and GAPLINC were upregulated in periodontitis and their expression correlates with higher M1 markers suggesting their role in macrophage polarization in vivo. CONCLUSION: Our results show that polarized Mφs acquire a unique lncRNA repertoire and identified many previously unknown lncRNA sequences. LRRC75A-AS1 and GAPLINC, which are induced in periodontitis, regulate Mφ polarization and innate immune functions supporting their critical role in inflammation.


Subject(s)
Immunity, Innate , Macrophages , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Macrophages/immunology , Cell Differentiation , Phagocytosis , Cytokines/metabolism , Gingiva/immunology , Cells, Cultured , Periodontitis/immunology , Periodontitis/genetics
2.
Mol Oral Microbiol ; 37(3): 109-121, 2022 06.
Article in English | MEDLINE | ID: mdl-35576119

ABSTRACT

Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.


Subject(s)
Interleukin-8 , Interleukins/immunology , Macrophages/immunology , Porphyromonas gingivalis , Bacteroidaceae Infections/immunology , Gingiva/immunology , Gingiva/microbiology , Gingival Diseases/immunology , Humans , NF-kappa B/metabolism , NF-kappa B/pharmacology , Porphyromonas gingivalis/metabolism
3.
Science ; 374(6575): eabl5450, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34941394

ABSTRACT

Tissue-specific cues are critical for homeostasis at mucosal barriers. Here, we report that the clotting factor fibrin is a critical regulator of neutrophil function at the oral mucosal barrier. We demonstrate that commensal microbiota trigger extravascular fibrin deposition in the oral mucosa. Fibrin engages neutrophils through the αMß2 integrin receptor and activates effector functions, including the production of reactive oxygen species and neutrophil extracellular trap formation. These immune-protective neutrophil functions become tissue damaging in the context of impaired plasmin-mediated fibrinolysis in mice and humans. Concordantly, genetic polymorphisms in PLG, encoding plasminogen, are associated with common forms of periodontal disease. Thus, fibrin is a critical regulator of neutrophil effector function, and fibrin-neutrophil engagement may be a pathogenic instigator for a prevalent mucosal disease.


Subject(s)
Fibrin/metabolism , Mouth Mucosa/immunology , Mouth Mucosa/metabolism , Neutrophil Activation , Neutrophils/immunology , Periodontitis/genetics , Plasminogen/genetics , Alveolar Bone Loss , Animals , Extracellular Traps/metabolism , Female , Fibrin/chemistry , Fibrinogen/metabolism , Fibrinolysin/metabolism , Fibrinolysis , Gastrointestinal Microbiome/physiology , Gingiva/immunology , Humans , Immunity, Mucosal , Macrophage-1 Antigen/metabolism , Male , Mice , Mouth Mucosa/microbiology , Periodontitis/immunology , Plasminogen/deficiency , Plasminogen/metabolism , Polymorphism, Single Nucleotide , RNA-Seq , Reactive Oxygen Species/metabolism
4.
Front Immunol ; 12: 788766, 2021.
Article in English | MEDLINE | ID: mdl-34899756

ABSTRACT

The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc. These findings relativise the aetiological role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated immunity, yet point to the crucial role of dysregulated immunity and neutrophils in particular. Furthermore, patients with neutropenia and neutrophil defects inevitably develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS) alone causes an exaggerated neutrophil response sufficient to precipitate experimental periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is blameable for damage of gingival barrier, its penetration by bacteria and pathogen-associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in further neutrophil activation. This identifies the dysregulated immunity as the main contributor to periodontal disease.


Subject(s)
Bacteria/immunology , Extracellular Traps/immunology , Gingiva/immunology , Neutrophil Activation , Neutrophils/immunology , Periodontal Pocket/immunology , Periodontitis/immunology , Animals , Bacteria/growth & development , Bacteria/pathogenicity , Biofilms/growth & development , Dysbiosis , Extracellular Traps/metabolism , Extracellular Traps/microbiology , Gingiva/metabolism , Gingiva/microbiology , Gingiva/pathology , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Neutrophils/metabolism , Neutrophils/microbiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Periodontal Pocket/metabolism , Periodontal Pocket/microbiology , Periodontal Pocket/pathology , Periodontitis/metabolism , Periodontitis/microbiology , Periodontitis/pathology , Signal Transduction
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34921113

ABSTRACT

Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.


Subject(s)
Gingiva/immunology , Host-Pathogen Interactions/immunology , Interferons/metabolism , Interleukins/metabolism , Microbiota , Porphyromonas gingivalis/physiology , Animals , Cell Line , Gingiva/metabolism , Humans , Mice , Primary Cell Culture
6.
Front Immunol ; 12: 763026, 2021.
Article in English | MEDLINE | ID: mdl-34795673

ABSTRACT

Hereditary gingival fibromatosis [HGF, (MIM 135300)], a rare benign oral condition, has several adverse consequences such as aesthetic changes, malocclusion, speech impediments, and abnormal dentition. However, relatively few studies have addressed the beneficial effects of thick gingival tissues in resisting external stimuli. In this report, we present a unique case of a family affected by HGF that manifests as a 'healthy' gingiva. Human ß-defensins (hBDs) are known to play a pivotal role in the clearance and killing of various microbes, and contribute to maintaining a healthy oral environment, which is currently emerging research area. However, the expression pattern and localisation of hBDs in patients with HGF have not yet been reported. hBD-2 and hBD-3 in the pedigree we collected had relatively elevated expression. High hBD levels in the gingival tissue of patients from the family may be beneficial in protecting oral tissue from external stimuli and promoting periodontal regeneration, but their role and the mechanisms underlying HGF need to be clarified.


Subject(s)
Fibromatosis, Gingival/immunology , Gingiva/immunology , beta-Defensins/analysis , Adult , Epithelium/immunology , Female , Humans
7.
Int Immunopharmacol ; 101(Pt A): 108269, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34688137

ABSTRACT

Activated-mast cells (MCs) within gingival-tissue of chronic-periodontitis (CP) patients, release various inflammatory-factors. Bradykinin is a nine-amino-acid peptide and pro-inflammatory mediator, produced through factor-XII-cascade or tryptase-cascade. The ability of MC-chymase in bradykinin generation has not been discussed yet. This study investigated the salivary levels of MC-chymase, high molecular weight kininogen (HMWK) and bradykinin of CP patients; examined the potential of MC-proteases in bradykinin production using biochemistry-models; and explored the effects of bradykinin on gingival fibroblasts (GFs). Saliva-samples were collected; MC-protease activities were detected; HMWK cleavage was assessed by western-blot and SDS-PAGE; bradykinin levels were measured using immunoassay. Primary GFs were extracted and cultured with or without bradykinin; cell-viability, gelatine-zymography and flow-cytometry were applied. Immunocytochemistry and western-blot were used to detect intracellular protein expressions of bradykinin-stimulated GFs. The data showed that the salivary-levels of MC-proteases, bradykinin, HMWK, and lactoferrin of CP-patients were increased. HMWK was cleaved by MC-chymase in-vitro, resulting in bradykinin generation. Bradykinin promoted cell proliferation, cell cycle and matrix-metalloproteinase-2(MMP-2) activity, and increased intracellular expressions of nuclear-factor-kappa-B(NF-κB), focal-adhesion-kinase(FAK), transforming-growth-factor-ß(TGF-ß), P38, P53 of GFs. MC-chymase promotes bradykinin production to stimulate GFs and to continue inflammation during CP development. A new BK-generation cascade found in this study provides a new basis for the pathogenesis of CP and the mechanism of continuous inflammation. The activation of MC-chymase/bradykinin-generation cascade depends on HMWK level and MC-chymase activity under inflammatory condition. MC-chymase contributes to bradykinin production, mediating the cross-talks between MCs and GFs. MC-chymase can be used as a therapeutic target and a salivary biomarker in this case.


Subject(s)
Bradykinin/biosynthesis , Chronic Periodontitis/immunology , Chymases/metabolism , Saliva/chemistry , Adult , Case-Control Studies , Cell Communication/immunology , Cell Cycle/immunology , Cell Proliferation , Chronic Periodontitis/pathology , Chymases/analysis , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Gingiva/cytology , Gingiva/immunology , Gingiva/pathology , Healthy Volunteers , Humans , Kininogen, High-Molecular-Weight/analysis , Lactoferrin/analysis , Male , Mast Cells/enzymology , Mast Cells/immunology , Middle Aged , Saliva/immunology
8.
Front Immunol ; 12: 711337, 2021.
Article in English | MEDLINE | ID: mdl-34566966

ABSTRACT

Periodontitis is a highly prevalent chronic inflammatory disease leading to periodontal tissue breakdown and subsequent tooth loss, in which excessive host immune response accounts for most of the tissue damage and disease progression. Despite of the imperative need to develop host modulation therapy, the inflammatory responses and cell population dynamics which are finely tuned by the pathological microenvironment in periodontitis remained unclear. To investigate the local microenvironment of the inflammatory response in periodontitis, 10 periodontitis patients and 10 healthy volunteers were involved in this study. Single-cell transcriptomic profilings of gingival tissues from two patients and two healthy donors were performed. Histology, immunohistochemistry, and flow cytometry analysis were performed to further validate the identified cell subtypes and their involvement in periodontitis. Based on our single-cell resolution analysis, we identified HLA-DR-expressing endothelial cells and CXCL13+ fibroblasts which are highly associated with immune regulation. We also revealed the involvement of the proinflammatory NLRP3+ macrophages in periodontitis. We further showed the increased cell-cell communication between macrophage and T/B cells in the inflammatory periodontal tissues. Our data generated an intriguing catalog of cell types and interaction networks in the human gingiva and identified new inflammation-promoting cell subtypes involved in chronic periodontitis, which will be helpful in advancing host modulation therapy.


Subject(s)
Chronic Periodontitis/immunology , Inflammation/etiology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Cell Communication , Endothelial Cells/immunology , Fibroblasts/immunology , Gingiva/immunology , Humans
9.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360848

ABSTRACT

Titanium is often used in the medical field and in dental implants due to its biocompatibility, but it has a high rate of leading to peri-implantitis, which progresses faster than periodontitis. Therefore, in the present study, the expression of cytokines from gingival epithelial cells by nanotitania was investigated, which is derived from titanium in the oral cavity, and the additional effect of Porphyromonasgingivalis (periodontopathic bacteria) lipopolysaccharide (PgLPS) was investigated. Ca9-22 cells were used as a gingival epithelial cell model and were cultured with nanotitania alone or with PgLPS. Cytokine expression was examined by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, cellular uptake of nanotitania was observed in scanning electron microscopy images. The expression of interleukin (IL)-6 and IL-8 significantly increased in Ca9-22 cells by nanotitania treatment alone, and the expression was further increased by the presence of PgLPS. Nanotitania was observed to phagocytose Ca9-22 cells in a dose- and time-dependent manner. Furthermore, when the expression of IL-11, related to bone resorption, was investigated, a significant increase was confirmed by stimulation with nanotitania alone. Therefore, nanotitania could be associated with the onset and exacerbation of peri-implantitis, and the presence of periodontal pathogens may worsen the condition. Further clinical reports are needed to confirm these preliminary results.


Subject(s)
Bacteroidaceae Infections/immunology , Epithelial Cells/immunology , Gingiva/immunology , Nanocomposites/adverse effects , Peri-Implantitis/immunology , Titanium/adverse effects , Cell Line , Cytokines/immunology , Epithelial Cells/cytology , Gingiva/cytology , Humans , Lipopolysaccharides/immunology , Peri-Implantitis/pathology , Porphyromonas gingivalis/immunology
10.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166217, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34273529

ABSTRACT

Peri-implantitis could lead to progressive bone loss and implant failure; however, the mechanism of peri-implantitis remains unclear. Based on emerging evidence, pyroptosis, a novel proinflammatory programmed death, contributes to different oral infectious diseases. In the present study, we investigated the involvement of cleaved caspase-3 and gasdermin E (GSDME) in peri-implantitis and established a pyroptosis model in vitro. By collecting and examining the inflamed biopsies around peri-implantitis, we found that the pyroptosis-related markers (caspase-3, GSDME, and IL-1ß) were enhanced relative to levels in control individuals. Furthermore, human gingival epithelium cells (HGECs) induced by tumor necrosis factor-α (TNF-α) exhibited pyroptosis morphological changes (cell swelling and balloon-shaped bubbles) and upregulated expression of pyroptosis-related markers. Pretreated with Ac-DEVD-CHO (a caspase-3 inhibitor) or GSDME small interference RNA (siRNA) were found to attenuate pyroptosis in HGECs. In conclusion, our findings revealed a high expression of caspase-3 and GSDME in the inflamed biopsies of peri-implantitis and confirmed that the caspase-3/GSDME pathway mediates TNF-α-triggered pyroptosis in human gingival epithelium cells, which provides a new target for peri-implantitis treatment.


Subject(s)
Caspase 3/metabolism , Gingiva/pathology , Mouth Mucosa/pathology , Peri-Implantitis/immunology , Receptors, Estrogen/metabolism , Biopsy , Case-Control Studies , Caspase 3/analysis , Cell Line , Epithelial Cells , Gingiva/immunology , Healthy Volunteers , Humans , Mouth Mucosa/immunology , Peri-Implantitis/pathology , Pyroptosis/immunology , Receptors, Estrogen/analysis
11.
Int Immunopharmacol ; 98: 107885, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153669

ABSTRACT

OBJECTIVE: The purpose of this study was to observe the effect of hyperocclusion on the remodeling of gingival tissues and detect the related signaling pathways. DESIGN: Hyperocclusion models were established by tooth extraction in mice. The mice were sacrificed at 3, 7, 14, 28, or 56 days after the surgery, and the left mandibular first molars with gingival tissues were isolated and examinations were focused on the gingival tissues. Apoptotic cells were examined using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technology. Proliferating cells, p65, inflammatory cytokines, and ß-catenin were detected using immunohistochemical methods. RESULTS: A series of apoptosis and proliferation responses were triggered in stressed gingival tissues. It was observed that the levels of p65, proinflammatory factors including interleukin-1ß and tumor necrosis factor-α in extraction group were higher compared with those from mice with intact dentition, and peaked on days 14, 14 and 7 respectively. The expression of ß-catenin was increased under hyperocclusion situations, peaked on day 14, and declined to the initial levels over time. CONCLUSIONS: The results of this study suggest that hyperocclusion causes remodeling of the gingival tissues by activating a series of adaptive responses. Both nuclear factor kappa B and Wnt/ß-catenin signaling pathways may be responsible for those adaptive responses though the exact mechanism is not clear.


Subject(s)
Bite Force , Gingiva/pathology , Animals , Cell Proliferation , Gingiva/immunology , Male , Mice , Models, Animal , Stress, Mechanical , Tooth Extraction , Wnt Signaling Pathway/immunology
12.
Int J Med Sci ; 18(12): 2666-2672, 2021.
Article in English | MEDLINE | ID: mdl-34104099

ABSTRACT

Bacterial biofilm (dental plaque) plays a key role in caries etiopathogenesis and chronic periodontitis in humans. Dental plaque formation is determined by exopolysaccharides (EPSs) produced by cariogenic and periopathogenic bacteria. The most frequent cariogenic bacteria include oral streptococci (in particular S. mutans) and lactobacilli (most frequently L. acidophilus). In turn, the dominant periopathogen in periodontitis is Porphyromonas gingivalis. Development of dental caries is often accompanied with gingivitis constituting the mildest form of periodontal disease. Basic cellular components of the gingiva tissue are fibroblasts the damage of which determines the progression of chronic periodontitis. Due to insufficient knowledge of the direct effect of dental plaque on metabolic activity of the fibroblasts, this work analyses the effect of EPSs produced by S. mutans and L. acidophilus strains (H2O2-producing and H2O2-not producing) on ATP levels in human gingival fibroblasts (HGF-1) and their viability. EPSs produced in 48-hours bacterial cultures were isolated by precipitation method and quantitatively determined by phenol - sulphuric acid assay. ATP levels in HGF-1 were evaluated using a luminescence test, and cell viability was estimated using fluorescence test. The tests have proven that EPS from S. mutans did not affect the levels of ATP in HGF-1. Whereas EPS derived from L. acidophilus strains, irrespective of the tested strain, significantly increased ATP levels in HGF-1. The analysed EPSs did not affect the viability of cells. The tests presented in this work show that EPSs from cariogenic bacteria have no cytotoxic effect on HGF-1. At the same time, the results provide new data indicating that EPSs from selected oral lactobacilli may have stimulating effect on the synthesis of ATP in gingival fibroblasts which increases their energetic potential and takes a protective effect.


Subject(s)
Adenosine Triphosphate/metabolism , Dental Caries/microbiology , Fibroblasts/immunology , Gingivitis/immunology , Polysaccharides, Bacterial/immunology , Adenosine Triphosphate/analysis , Biofilms , Cell Line , Dental Caries/immunology , Fibroblasts/metabolism , Gingiva/cytology , Gingiva/immunology , Gingiva/microbiology , Gingivitis/microbiology , Humans , Lactobacillus acidophilus/immunology , Lactobacillus acidophilus/metabolism , Polysaccharides, Bacterial/metabolism , Streptococcus mutans/immunology , Streptococcus mutans/metabolism
13.
Sci Rep ; 11(1): 10770, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031466

ABSTRACT

In periodontitis, gingival fibroblasts (GFs) interact with and respond to oral pathogens, significantly contributing to perpetuation of chronic inflammation and tissue destruction. The aim of this study was to determine the usefulness of the recently released hTERT-immortalized GF (TIGF) cell line for studies of host-pathogen interactions. We show that TIGFs are unable to upregulate expression and production of interleukin (IL)-6, IL-8 and prostaglandin E2 upon infection with Porphyromonas gingivalis despite being susceptible to adhesion and invasion by this oral pathogen. In contrast, induction of inflammatory mediators in TNFα- or IL-1ß-stimulated TIGFs is comparable to that observed in primary GFs. The inability of TIGFs to respond directly to P. gingivalis is caused by a specific defect in Toll-like receptor-2 (TLR2) expression, which is likely driven by TLR2 promoter hypermethylation. Consistently, TIGFs fail to upregulate inflammatory genes in response to the TLR2 agonists Pam2CSK4 and Pam3CSK4. These results identify important limitations of using TIGFs to study GF interaction with oral pathogens, though these cells may be useful for studies of TLR2-independent processes. Our observations also emphasize the importance of direct comparisons between immortalized and primary cells prior to using cell lines as models in studies of any biological processes.


Subject(s)
Bacteroidaceae Infections/immunology , Gingiva/cytology , Interleukin-1beta/genetics , Porphyromonas gingivalis/pathogenicity , Telomerase/genetics , Tumor Necrosis Factor-alpha/genetics , Bacterial Adhesion/drug effects , Bacteroidaceae Infections/genetics , Cells, Cultured , DNA Methylation , Dinoprostone/genetics , Dinoprostone/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/immunology , Fibroblasts/metabolism , Gingiva/drug effects , Gingiva/immunology , Gingiva/metabolism , Humans , Interleukin-1beta/metabolism , Lipopeptides/pharmacology , Oligopeptides/pharmacology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 9/agonists , Tumor Necrosis Factor-alpha/metabolism
14.
Front Immunol ; 12: 591236, 2021.
Article in English | MEDLINE | ID: mdl-33841392

ABSTRACT

Systemic lupus erythematosus (SLE) is a complex chronic autoimmune disease characterized by tissue damage and widespread inflammation in response to environmental challenges. Deposition of immune complexes in kidneys glomeruli are associated with lupus nephritis, determining SLE diagnosis. Periodontitis is a chronic inflammatory disease characterized by clinical attachment and bone loss, caused by a microbial challenge - host response interaction. Deposition of immune complex at gingival tissues is a common finding in the course of the disease. Considering that, the primary aim of this study is to investigate the deposition of immune complexes at gingival tissues of SLE patients compared to systemically healthy ones, correlating it to periodontal and systemic parameters. Twenty-five women diagnosed with SLE (SLE+) and 25 age-matched systemically healthy (SLE-) women were included in the study. Detailed information on overall patient's health were obtained from file records. Participants were screened for probing depth (PD), clinical attachment loss (CAL), gingival recession (REC), full-mouth bleeding score (FMBS) and plaque scores (FMPS). Bone loss was determined at panoramic X-ray images as the distance from cementenamel junction to alveolar crest (CEJ-AC). Gingival biopsies were obtained from the first 15 patients submitted to surgical periodontal therapy of each group, and were analyzed by optical microscopy and direct immunofluorescence to investigate the deposition of antigen-antibody complexes. Eleven (44%) patients were diagnosed with active SLE (SLE-A) and 14 (56%) with inactive SLE (LES-I). Mean PD, CAL and FMBS were significantly lower in SLE+ than SLE-(p < 0.05; Mann Whitney). The chronic use of low doses of immunosuppressants was associated with lower prevalence of CAL >3 mm. Immunofluorescence staining of markers of lupus nephritis and/or proteinuria was significantly increased in SLE+ compared to SLE-, even in the presence of periodontitis. These findings suggest that immunomodulatory drugs in SLE improves periodontal parameters. The greater deposition of antigen-antibody complexes in the gingival tissues of patients diagnosed with SLE may be a marker of disease activity, possibly complementing their diagnosis.


Subject(s)
Antigen-Antibody Complex/immunology , Disease Susceptibility , Gingiva/immunology , Lupus Erythematosus, Systemic/etiology , Periodontitis/etiology , Adult , Antigen-Antibody Complex/metabolism , Biomarkers , Comorbidity , Disease Management , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/metabolism , Male , Middle Aged , Periodontitis/diagnosis , Periodontitis/epidemiology , Periodontitis/metabolism , Risk Factors , Severity of Illness Index , Young Adult
15.
J Immunoassay Immunochem ; 42(4): 424-443, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-33724901

ABSTRACT

This study reports the influence of peste des petits ruminants (PPR) vaccination on the clinico-pathological outcomes of PPR in the face of an outbreak. Twenty-two West African dwarf goats procured for a different study started showing early signs of PPR during acclimatization. In response, PPR vaccine was administered either intranasally with phytogenic mucoadhesive gum (Group A; n = 6) or without gum (Group B; n = 6); subcutaneously (Group C; n = 6) or not vaccinated (Group D; n = 4) and studied for 21 days. The clinical scores, hematology, serology and pathology scores were evaluated. Clinical signs of PPR were present in all groups, presenting a percentage mortality of 33%; 33%; 64% and 100% for Groups A, B, C, and D, respectively. Polycythemia and mild leukopenia were observed in all groups, and all animals were seropositive by day 7 post-vaccination. The lung consolidation scores were low in Groups A and B, compared to Group C. Histopathological lesions consistent with PPR was observed in the lymphoid organs, gastrointestinal tract, and lungs with the presence of PPR antigen as detected by immunohistochemistry. The findings suggest that intranasal vaccination with or without mucoadhesive gum may influence the outcome of PPR infection more than the subcutaneous route in the face of an outbreak.


Subject(s)
Drug Delivery Systems , Peste-des-Petits-Ruminants/immunology , Viral Vaccines/immunology , Administration, Intranasal , Animals , Gingiva/immunology , Goats , Injections, Subcutaneous , Male , Peste-des-petits-ruminants virus/immunology , Polymers/administration & dosage , Treatment Outcome , Viral Vaccines/administration & dosage
16.
Medicine (Baltimore) ; 100(10): e24924, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33725852

ABSTRACT

ABSTRACT: Orthodontic treatment can lead to microbial-induced gingival inflammation and aseptic periodontal inflammations. The aim of this study was to investigate the relationship between salivary pro-inflammatory cytokines levels with gingival health status and oral microbe loads among patients undergoing orthodontic treatment.The present investigation was a cross-sectional study among a sample of 111 consecutive orthodontic patients (mean age 18.4 ±â€Š4.4 years). Clinical examinations were conducted to assess the gingival health status employing the Modified Gingival Index, Gingival Bleeding Index, and Plaque Index. Salivary microbiological assessments of total aerobic and anaerobic bacteria count, streptococci count, and lactobacilli count were undertaken. Saliva immunological assessments included Interleukin-1Beta (IL-1ß) and macrophage migration inhibitory factor (MIF) ELISA assays.The mean ±â€Šstandard deviation of salivary IL-1ß was 83.52 ±â€Š85.62 pg/ml and MIF was 4.12 ±â€Š0.96 ng/ml. Moderate positive correlations were found between salivary IL-1ß levels and total aerobic and anaerobic bacteria count, streptococci count, and lactobacilli count (r = 0.380-0.446, P < .001), and weak positive correlations between salivary MIF levels and total salivary aerobic and anaerobic bacteria counts (r = 0.249-0.306, P < .01) were observed. A positive correlation was found between salivary IL-1ß levels and Bleeding Index (r = 0.216, P < .05).The level of salivary IL-1ß positively correlates with oral bacterial load among orthodontic patients; the relationship between inflammatory cytokines and oral microflora deserved further study.


Subject(s)
Gingivitis/diagnosis , Interleukin-1beta/analysis , Orthodontic Appliances/adverse effects , Saliva/chemistry , Adolescent , Bacterial Load , Cross-Sectional Studies , Female , Gingiva/immunology , Gingiva/microbiology , Gingivitis/immunology , Gingivitis/microbiology , Gingivitis/prevention & control , Humans , Interleukin-1beta/immunology , Intramolecular Oxidoreductases/analysis , Intramolecular Oxidoreductases/immunology , Macrophage Migration-Inhibitory Factors/analysis , Macrophage Migration-Inhibitory Factors/immunology , Male , Microbiota/immunology , Mouthwashes/administration & dosage , Young Adult
17.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33635312

ABSTRACT

Hematopoietic stem cells reside in the bone marrow, where they generate the effector cells that drive immune responses. However, in response to inflammation, some hematopoietic stem and progenitor cells (HSPCs) are recruited to tissue sites and undergo extramedullary hematopoiesis. Contrasting with this paradigm, here we show residence and differentiation of HSPCs in healthy gingiva, a key oral barrier in the absence of overt inflammation. We initially defined a population of gingiva monocytes that could be locally maintained; we subsequently identified not only monocyte progenitors but also diverse HSPCs within the gingiva that could give rise to multiple myeloid lineages. Gingiva HSPCs possessed similar differentiation potentials, reconstitution capabilities, and heterogeneity to bone marrow HSPCs. However, gingival HSPCs responded differently to inflammatory insults, responding to oral but not systemic inflammation. Combined, we highlight a novel pathway of myeloid cell development at a healthy barrier, defining a gingiva-specific HSPC network that supports generation of a proportion of the innate immune cells that police this barrier.


Subject(s)
Gingiva/cytology , Gingiva/immunology , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/immunology , Animals , Bone Marrow/metabolism , Female , Hematopoiesis , Male , Mice , Mice, Inbred C57BL , Mouth Mucosa/cytology , Mouth Mucosa/immunology , RNA-Seq/methods , Single-Cell Analysis/methods
18.
FASEB J ; 35(3): e21375, 2021 03.
Article in English | MEDLINE | ID: mdl-33559200

ABSTRACT

Host-pathogen interactions play an important role in defining the outcome of a disease. Recent studies have shown that the bacterial quorum sensing molecules (QSM) can interact with host cell membrane proteins, mainly G protein-coupled receptors (GPCRs), and induce innate immune responses. However, few studies have examined QSM-GPCR interactions and their influence on oral innate immune responses. In this study, we examined the role of bitter taste receptor T2R14 in sensing competence stimulating peptides (CSPs) secreted by cariogenic bacterium Streptococcus mutans and in mediating innate immune responses in gingival epithelial cells (GECs). Transcriptomic and western blot analyses identify T2R14 to be highly expressed in GECs. Our data show that only CSP-1 from S. mutans induces robust intracellular calcium mobilization compared to CSP-2 and CSP-3. By using CRISPR-Cas9, we demonstrate that CSP-1 induced calcium signaling and secretion of cytokines CXCL-8/IL-8, TNF-α, and IL-6 is mediated through T2R14 in GECs. Interestingly, the NF-kB signaling activated by CSP-1 in GECs was independent of T2R14. CSP-1-primed GECs attracted differentiated HL-60 immune cells (dHL-60) and this effect was abolished in T2R14 knock down GECs and also in cells primed with T2R14 antagonist 6-Methoxyflavone (6-MF). Our findings identify S. mutans CSP-1 as a peptide ligand for the T2R family. Our study establishes a novel host-pathogen interaction between cariogenic S. mutans CSP-1 and T2R14 in GECs leading to an innate immune response. Collectively, these findings suggest T2Rs as potential therapeutic targets to modulate innate immune responses upon oral bacterial infections.


Subject(s)
Bacterial Proteins/physiology , Gingiva/immunology , Host-Pathogen Interactions , Quorum Sensing/physiology , Receptors, G-Protein-Coupled/physiology , Streptococcus mutans/physiology , Calcium/metabolism , Cell Line , Cell Movement , Cytokines/biosynthesis , Epithelial Cells/immunology , Gingiva/cytology , Humans , Immunity, Innate , NF-kappa B/physiology , Phospholipase C beta/physiology
19.
Clin Exp Immunol ; 204(3): 373-395, 2021 06.
Article in English | MEDLINE | ID: mdl-33565609

ABSTRACT

Follicular helper T cells (Tfh) cells have been identified in the circulation and in tertiary lymphoid structures in chronic inflammation. Gingival tissues with periodontitis reflect chronic inflammation, so genomic footprints of Tfh cells should occur in these tissues and may differ related to aging effects. Macaca mulatta were used in a ligature-induced periodontitis model [adult group (aged 12-23 years); young group (aged 3-7 years)]. Gingival tissue and subgingival microbiome samples were obtained at matched healthy ligature-induced disease and clinical resolution sites. Microarray analysis examined Tfh genes (n = 54) related to microbiome characteristics documented using 16S MiSeq. An increase in the major transcription factor of Tfh cells, BCL6, was found with disease in both adult and young animals, while master transcription markers of other T cell subsets were either decreased or showed minimal change. Multiple Tfh-related genes, including surface receptors and transcription factors, were also significantly increased during disease. Specific microbiome patterns were significantly associated with profiles indicative of an increased presence/function of Tfh cells. Importantly, unique microbial complexes showed distinctive patterns of interaction with Tfh genes differing in health and disease and with the age of the animals. An increase in Tfh cell responsiveness occurred in the progression of periodontitis, affected by age and related to specific microbial complexes in the oral microbiome. The capacity of gingival Tfh cells to contribute to localized B cell activation and active antibody responses, including affinity maturation, may be critical for controlling periodontal lesions and contributing to limiting and/or resolving the lesions.


Subject(s)
Gingiva/immunology , Periodontitis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcriptome/immunology , Aging/immunology , Animals , Antibody Formation/immunology , Female , Gene Expression Regulation/immunology , Gingiva/microbiology , Inflammation/immunology , Inflammation/microbiology , Lymphocyte Activation/immunology , Macaca mulatta , Male , Microbiota/immunology , Periodontitis/microbiology
20.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165991, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33080346

ABSTRACT

Our previous study demonstrated that IL-10 secreting B (B10) cells alleviate inflammation and bone loss in experimental periodontitis. The purpose of this study is to determine whether antigen-specificity is required for the local infiltration of B10 cells. Experimental periodontitis was induced in the recipient mice by placement of silk ligature with or without the presence of live Porphyromonas gingivalis (P. gingivalis). Donor mice were pre-immunized by intraperitoneal (IP) injection of formalin-fixed P. gingivalis, or PBS as non-immunized control. Spleen B cells were purified and treated with LPS and CpG for 48 h to expand the B10 population in vitro. Fluorescence-labelled B10 cells were transferred into the recipient mice by tail vein injection and were tracked on day 0, 3, 5 and 10 using IVIS Spectrum in vivo imaging system. The number of B10 cells and P. gingivalis-binding B cells were significantly increased after in vitro treatment of LPS and CpG. On day 5, the fluorescence intensity in gingival tissues was the highest in mice transferred with B10 cells from pre-immunized donor mice. Gingival expression of IL-6, TNF-α, RANKL/OPG ratio and periodontal bone loss in recipient mice were significantly reduced, and the expression of IL-10 and the number of CD19+ B cells were significantly increased after pre-immunized B10 cell transfer in the presence of antigen, compared to those with non-immunized B10 cell transfer or no antigen presence. This study suggests that antigen specificity dictate the local infiltration of B10 cells into periodontal tissue and these antigen-specific B10 cells promote anti-inflammatory responses.


Subject(s)
Antigens, Bacterial/immunology , B-Lymphocytes, Regulatory/immunology , Bacteroidaceae Infections , Gingiva , Periodontitis , Porphyromonas gingivalis/immunology , Animals , Bacteroidaceae Infections/diagnostic imaging , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Cytokines/immunology , Diagnostic Imaging , Gingiva/diagnostic imaging , Gingiva/immunology , Gingiva/microbiology , Mice , Periodontitis/diagnostic imaging , Periodontitis/immunology , Periodontitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...