Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.408
Filter
1.
BMJ Case Rep ; 17(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38719269

ABSTRACT

A middle-aged male patient presented with a central corneal perforation in a deep stromal infiltrate in his left eye. An emergency therapeutic penetrating keratoplasty was performed. Microbiological evaluation of the corneal scraping specimen revealed septate fungal filaments on stains. However, culture reports after 24 hours from the scraping sample and the excised half corneal button showed growth of gram-negative bacilli. This pathogen was identified as an aerobic, non-fermentative, gram-negative, bacillus by conventional microbiology and confirmed as Myroides species by the VITEK 2 Compact system (bioMérieux, Marcy l'Etoile, France). Susceptibility to chloramphenicol was noted based on which the patient was treated with topical chloramphenicol 0.5%. No recurrence of the infection was noted. This is the first reported case of corneal infection with the Myroides species of bacteria which, heretofore, have been known to cause endocarditis and urinary tract infections.


Subject(s)
Eye Infections, Fungal , Keratitis , Humans , Male , Middle Aged , Keratitis/microbiology , Keratitis/diagnosis , Keratitis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/drug therapy , Anti-Bacterial Agents/therapeutic use , Keratoplasty, Penetrating , Chloramphenicol/therapeutic use , Chloramphenicol/administration & dosage , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/drug therapy , Corneal Perforation/microbiology , Corneal Perforation/diagnosis
2.
Mycoses ; 67(5): e13728, 2024 May.
Article in English | MEDLINE | ID: mdl-38695201

ABSTRACT

BACKGROUND: Fungal keratitis is a severe eye infection that can result in blindness and visual impairment, particularly in developing countries. Fusarium spp. are the primary causative agents of this condition. Diagnosis of Fusarium keratitis (FK) is challenging, and delayed treatment can lead to serious complications. However, there is limited epidemiological data on FK, especially in tropical areas. OBJECTIVES: This study aimed to describe the clinical, laboratorial and epidemiological characteristics of FK in a tropical semi-arid region of Brazil. PATIENTS/METHODS: Adult patients with laboratory-confirmed FK diagnosed between October 2019 and March 2022 were evaluated. Fusarium isolates were characterized at molecular level and evaluated regarding antifungal susceptibility. RESULTS: A total of 226 clinical samples from patients suspected of keratitis were evaluated; fungal growth was detected in 50 samples (22.12%); out of which 42 were suggestive of Fusarium spp. (84%). Molecular analysis of a randomly selected set of 27 isolates identified F. solani species complex (n = 14); F. fujikuroi sensu lato (n = 6) and F. dimerum sensu lato (n = 7); a total of 10 haplotypes were identified among the strains. All but one Fusarium strains were inhibited by amphotericin B, natamycin and fluconazole. Most patients were male (71.42%; 30 out of 42), aged from 27 to 73 years old. Trauma was the most important risk factor for FK (40.47%; 17 out of 42). Patients were treated with antifungals, corticoids and antibiotics; keratoplasty and eye enucleation were also performed. CONCLUSIONS: The study provided insights into the characteristics of FK in tropical regions and emphasized the importance of enhanced surveillance and management strategies.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Fusariosis , Fusarium , Keratitis , Microbial Sensitivity Tests , Humans , Brazil/epidemiology , Fusarium/genetics , Fusarium/drug effects , Fusarium/isolation & purification , Fusarium/classification , Male , Female , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Adult , Keratitis/microbiology , Keratitis/epidemiology , Keratitis/drug therapy , Middle Aged , Fusariosis/microbiology , Fusariosis/epidemiology , Fusariosis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/drug therapy , Aged , Young Adult , Adolescent , Tropical Climate , Aged, 80 and over , Amphotericin B/pharmacology , Amphotericin B/therapeutic use
3.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739119

ABSTRACT

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Disease Models, Animal , Keratitis , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Anti-Bacterial Agents/pharmacology , Swine , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Biofilms/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Meropenem/pharmacology
4.
BMJ Case Rep ; 17(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38749526

ABSTRACT

We report the case of a female patient in her late 20s who visited the clinic with concerns about poor vision, redness, watering and a burning sensation in her left eye 2 weeks after undergoing a small incision lenticule extraction. She had no history of systemic illness or immunosuppressed status. On slit lamp examination, she was found to have corneal stromal infiltrates in the interface at multiple locations. Given the clinical diagnosis of microbial keratitis, corneal scraping of the interface infiltrate was performed and sent for microbiological examination revealing gram-positive, thin, beaded filaments that were acid-fast positive and later identified by growth in culture media as Nocardia species. This case was managed successfully with the use of topical amikacin and systemic trimethoprim-sulfamethoxazole with complete resolution of infection.


Subject(s)
Anti-Bacterial Agents , Eye Infections, Bacterial , Keratitis , Nocardia Infections , Humans , Female , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/diagnosis , Keratitis/surgery , Anti-Bacterial Agents/therapeutic use , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/drug therapy , Amikacin/therapeutic use , Amikacin/administration & dosage , Adult , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Nocardia/isolation & purification , Surgical Wound Infection/microbiology , Surgical Wound Infection/drug therapy , Surgical Wound Infection/diagnosis
5.
Sci Rep ; 14(1): 8024, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580798

ABSTRACT

Diabetes mellitus is recognized as a major predisposing factor for Moraxella keratitis. However, how diabetes mellitus contributes to Moraxella keratitis remains unclear. In this study, we examined Moraxella keratitis; based on the findings, we investigated the impact of advanced glycation end products (AGEs) deposition in the cornea of individuals with diabetic mellitus on the adhesion of Moraxella isolates to the cornea. A retrospective analysis of 27 culture-proven cases of Moraxella keratitis at Ehime University Hospital (March 2006 to February 2022) was performed. Moraxella isolates were identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the patients, 30.4% had diabetes mellitus and 22.2% had the predominant ocular condition of using steroid eye drops. The species identified were Moraxella nonliquefaciens in 59.3% and Moraxella lacunata in 40.7% of patients. To investigate the underlying mechanisms, we assessed the effects of M. nonliquefaciens adherence to simian virus 40-immortalized human corneal epithelial cells (HCECs) with or without AGEs. The results demonstrated the number of M. nonliquefaciens adhering to HCECs was significantly increased by adding AGEs compared with that in controls (p < 0.01). Furthermore, in the corneas of streptozotocin-induced diabetic C57BL/6 mice treated with or without pyridoxamine, an AGE inhibitor, the number of M. nonliquefaciens adhering to the corneas of diabetic mice was significantly reduced by pyridoxamine treatment (p < 0.05). In conclusion, the development of Moraxella keratitis may be significantly influenced by the deposition of AGEs on the corneal epithelium of patients with diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Keratitis , Humans , Animals , Mice , Retrospective Studies , Pyridoxamine , Mice, Inbred C57BL , Keratitis/drug therapy , Moraxella , Cornea , Glycation End Products, Advanced
6.
Cytokine ; 179: 156626, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678810

ABSTRACT

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Subject(s)
Anti-Inflammatory Agents , Aspergillus fumigatus , Keratitis , Lectins, C-Type , Neuroprotective Agents , Resveratrol , p38 Mitogen-Activated Protein Kinases , Aspergillus fumigatus/drug effects , Lectins, C-Type/metabolism , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Resveratrol/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Neuroprotective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice , Aspergillosis/drug therapy , Aspergillosis/metabolism , Antifungal Agents/pharmacology , Male , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects , Cornea/drug effects , Cornea/metabolism
7.
BMJ Case Rep ; 17(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688575

ABSTRACT

A woman in her late 50s presented to the ophthalmology clinic having bilateral eye pain and discharge for the last month. Her medical history was significant for lung adenocarcinoma, for which she was being treated with nivolumab. Filamentary keratitis was evident at the slit-lamp examination. Regardless of ophthalmic reasons, nivolumab was suspended. Prednisolone ointment was started, with a complete remission. We present a case of steroid-responsive filamentary keratitis triggered by nivolumab. We aim to highlight the importance of prompt ophthalmology referral and the use of therapies targeting ocular surface inflammation in immune checkpoint inhibition therapy.


Subject(s)
Keratitis , Nivolumab , Humans , Nivolumab/adverse effects , Female , Middle Aged , Keratitis/drug therapy , Keratitis/chemically induced , Keratitis/diagnosis , Antineoplastic Agents, Immunological/adverse effects , Prednisolone/therapeutic use , Prednisolone/administration & dosage , Lung Neoplasms/drug therapy , Immune Checkpoint Inhibitors/adverse effects , Adenocarcinoma of Lung/drug therapy
8.
Int Immunopharmacol ; 132: 112046, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593508

ABSTRACT

PURPOSE: To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS: The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS: In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1ß. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1ß, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION: FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.


Subject(s)
Anti-Inflammatory Agents , Aspergillosis , Aspergillus fumigatus , Isoflavones , Keratitis , Animals , Aspergillus fumigatus/drug effects , Keratitis/drug therapy , Keratitis/microbiology , Keratitis/immunology , Aspergillosis/drug therapy , Aspergillosis/immunology , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Mice , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Neutrophils/immunology , Neutrophils/drug effects , Disease Models, Animal , Reactive Oxygen Species/metabolism , Female , Macrophages/drug effects , Macrophages/immunology , Biofilms/drug effects , Mice, Inbred C57BL , Cornea/pathology , Cornea/drug effects , Cornea/microbiology
9.
BMJ Open Ophthalmol ; 9(1)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653537

ABSTRACT

OBJECTIVE: Microbial keratitis (MK) is a significant cause of blindness in sub-Saharan Africa. We investigated the feasibility of using a novel corneal impression membrane (CIM) for obtaining and processing samples by culture, PCR and whole-genome sequencing (WGS) in patients presenting with suspected MK in Malawi. METHODS AND ANALYSIS: Samples were collected from patients presenting with suspected MK using a 12 mm diameter polytetrafluoroethylene CIM disc. Samples were processed using culture and PCR for Acanthamoeba, herpes simplex virus type 1 (HSV-1) and the bacterial 16S rRNA gene. Minimum inhibitory concentrations of isolates to eight antimicrobials were measured using susceptibility strips. WGS was used to characterise Staphylococcus aureus isolates. RESULTS: 71 eyes of 71 patients were included. The overall CIM isolation rate was 81.7% (58 positive samples from 71 participants). 69 (81.2%) of isolates were Gram-positive cocci. Coagulase-negative Staphylococcus 31.8% and Streptococcus species 14.1% were the most isolated bacteria. Seven (9.9%) participants were positive for HSV-1. Fungi and Acanthamoeba were not detected. Moxifloxacin and chloramphenicol offered the best coverage for both Gram-positive and Gram-negative isolates when susceptibility was determined using known antimicrobial first quartile concentrations and European Committee on Antimicrobial Susceptibility Testing breakpoints, respectively. WGS identified known virulence genes associated with S. aureus keratitis. CONCLUSIONS: In a resource-poor setting, a CIM can be used to safely sample the cornea in patients presenting with suspected MK, enabling identification of causative microorganisms by culture and PCR. Although the microbiological spectrum found was limited to the dry season, these preliminary results could be used to guide empirical treatment.


Subject(s)
Eye Infections, Bacterial , Humans , Pilot Projects , Malawi/epidemiology , Male , Female , Adult , Middle Aged , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/epidemiology , Eye Infections, Bacterial/drug therapy , Young Adult , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Microbial Sensitivity Tests , Cornea/microbiology , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged , Polymerase Chain Reaction , Adolescent , Acanthamoeba/isolation & purification , Acanthamoeba/genetics , Acanthamoeba/drug effects , RNA, Ribosomal, 16S/genetics
10.
Int J Pharm ; 656: 124118, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615806

ABSTRACT

Fungal infections of cornea are important causes of blindness especially in developing nations with tropical climate. However, the challenges associated with current treatments are responsible for poor outcome. Natamycin is the only FDA-approved antifungal drug to treat fungal keratitis, but unfortunately due to its poor water solubility, it is available as suspension. The marketed suspension (5% Natamycin) has rapid precorneal clearance, poor corneal permeability, a higher frequency of administration, and corneal irritation due to undissolved suspended drug particles. In our study, we developed clear and stable natamycin-loaded nanomicelles (1% Natcel) to overcome the above challenges. We demonstrated that 1% Natcel could permeate the cornea better than 5% suspension. The developed 1% Natcel was able to provide sustained release for up to 24 h. Further, it was found to be biocompatible and also improved the mean residence time (MRT) than 5% suspension in tears. Therefore, the developed 1% Natcel could be a potential alternative treatment for fungal keratitis.


Subject(s)
Antifungal Agents , Cornea , Drug Liberation , Eye Infections, Fungal , Keratitis , Micelles , Nanoparticles , Natamycin , Natamycin/administration & dosage , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Keratitis/drug therapy , Keratitis/microbiology , Animals , Cornea/microbiology , Cornea/metabolism , Cornea/drug effects , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Rabbits , Solubility , Delayed-Action Preparations , Tears/metabolism
11.
Biomaterials ; 308: 122565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603823

ABSTRACT

As bacterial keratitis progresses rapidly, prompt intervention is necessary. Current diagnostic processes are time-consuming and invasive, leading to improper antibiotics for treatment. Therefore, innovative strategies for diagnosing and treating bacterial keratitis are urgently needed. In this study, Cu2-xSe@BSA@NTRP nanoparticles were developed by loading nitroreductase-responsive probes (NTRPs) onto Cu2-xSe@BSA. These nanoparticles exhibited integrated fluorescence imaging and antibacterial capabilities. In vitro and in vivo experiments showed that the nanoparticles produced responsive fluorescence signals in bacteria within 30 min due to an interaction between the released NTRP and bacterial endogenous nitroreductase (NTR). When combined with low-temperature photothermal therapy (PTT), the nanoparticles effectively eliminated E. coli and S. aureus, achieved antibacterial efficacy above 95% and facilitated the re-epithelialization process at the corneal wound site in vivo. Overall, the Cu2-xSe@BSA@NTRP nanoparticles demonstrated potential for rapid, noninvasive in situ diagnosis, treatment, and visualization assessment of therapy effectiveness in bacterial keratitis.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Keratitis , Nanoparticles , Nitroreductases , Animals , Nitroreductases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Nanoparticles/chemistry , Keratitis/drug therapy , Keratitis/microbiology , Escherichia coli/drug effects , Optical Imaging/methods , Staphylococcus aureus/drug effects , Mice , Photothermal Therapy/methods , Humans , Copper/chemistry
12.
Nano Lett ; 24(13): 4044-4053, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517749

ABSTRACT

Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.


Subject(s)
Corneal Ulcer , Eye Infections, Fungal , Keratitis , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Keratitis/drug therapy , Keratitis/microbiology , Corneal Ulcer/drug therapy , Corneal Ulcer/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Cornea/microbiology
13.
J Control Release ; 368: 483-497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458571

ABSTRACT

Fungal keratitis is a refractory eye disease that is prone to causing blindness. Fungal virulence and inflammatory responses are two major factors that accelerate the course of fungal keratitis. However, the current antifungal drugs used for treatment usually possess transient residence time on the ocular surface and low bioavailability deficiencies, which limit their therapeutic efficacy. In this work, natamycin (NATA)-loaded mesoporous zinc oxide (Meso-ZnO) was synthesized for treating Aspergillus fumigatus keratitis with excellent drug-loading and sustained drug release capacities. In addition to being a carrier for drug delivery, Meso-ZnO could restrict fungal growth in a concentration-dependent manner, and the transcriptome analysis of fungal hyphae indicated that it inhibited the mycotoxin biosynthesis, oxidoreductase activity and fungal cell wall formation. Meso-ZnO also promoted cell migration and exhibited anti-inflammatory role during fungal infection by promoting the activation of autophagy. In mouse models of fungal keratitis, Meso-ZnO/NATA greatly reduced corneal fungal survival, alleviated tissue inflammatory damage, and reduced neutrophils accumulation and cytokines expression. This study suggests that Meso-ZnO/NATA can be a novel and effective treatment strategy for fungal keratitis.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Keratitis , Zinc Oxide , Animals , Mice , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Zinc Oxide/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/microbiology , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Natamycin/therapeutic use , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/metabolism , Eye Infections, Fungal/microbiology , Drug Delivery Systems , Mice, Inbred C57BL
14.
Int J Biol Macromol ; 264(Pt 1): 130457, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432265

ABSTRACT

A mucoadhesive polyelectrolyte complex (PEC) nanoparticles were developed for ocular moxifloxacin (Mox) delivery in Bacterial Keratitis (BK). Moxifloxacin-loaded G/CG-Alg NPs were prepared by an amalgamation of cationic polymers (gelatin (G)/cationized gelatin (CG)), and anionic polymer (sodium alginate (Alg)) along with Mox respectively. Mox@CG-Alg NPs were characterized for physicochemical parameters such as particle size (DLS technique), morphology (SEM analysis), DSC, XRD, encapsulation efficiency, drug loading, mucoadhesive study (by texture analyzer), mucin turbidity, and viscosity assessment. The NPs uptake and toxicity of the formulation were analyzed in the Human Corneal Epithelial (HCE) cell line and an ocular irritation study was performed on the HET-CAM. The results indicated that the CG-Alg NPs, with optimal size (217.2 ± 4 nm) and polydispersity (0.22 ± 0.05), have shown high cellular uptake in monolayer and spheroids of HCE. The drug-loaded formulation displayed mucoadhesiveness, trans-corneal permeation, and sustained the release of the Mox. The anti-bacterial efficacy studied on planktonic bacteria/biofilms of P. aeruginosa and S. aureus (in vitro) indicated that the Mox@CG-Alg NPs displayed low MIC, higher zone of bacterial growth inhibition, and cell death compared to free Mox. A significant reduction of bacterial load was observed in the BK-induced mouse model.


Subject(s)
Dieldrin/analogs & derivatives , Eye Infections, Bacterial , Keratitis , Nanoparticles , Mice , Animals , Humans , Moxifloxacin/pharmacology , Gelatin/chemistry , Polyelectrolytes , Alginates/chemistry , Staphylococcus aureus , Ophthalmic Solutions , Nanoparticles/chemistry , Keratitis/drug therapy
15.
Indian J Med Microbiol ; 48: 100558, 2024.
Article in English | MEDLINE | ID: mdl-38458337

ABSTRACT

Lasiodiplodia theobromae is a dematiaceous fungus which rarely causes keratitis and is mostly resistant to the commonly used antifungal drugs. Here, we report three cases of keratitis caused by L.theobromae from Assam. All the cases were successfully treated with 1% voriconazole and surgical debridement. To the best of our knowledge and literature search, this is the first case series of keratitis caused by L.theobromae reported from eastern India.


Subject(s)
Antifungal Agents , Ascomycota , Keratitis , Voriconazole , Humans , Voriconazole/therapeutic use , Antifungal Agents/therapeutic use , Keratitis/drug therapy , Keratitis/microbiology , India , Male , Ascomycota/isolation & purification , Ascomycota/drug effects , Female , Adult , Middle Aged , Treatment Outcome , Mycoses/drug therapy , Mycoses/microbiology , Debridement
16.
Int Ophthalmol ; 44(1): 140, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491335

ABSTRACT

Keratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.


Subject(s)
Contact Lenses , Corneal Diseases , Keratitis , Photochemotherapy , Humans , Keratitis/drug therapy , Keratitis/etiology , Cornea , Corneal Diseases/complications , Photochemotherapy/adverse effects
17.
Front Cell Infect Microbiol ; 14: 1363437, 2024.
Article in English | MEDLINE | ID: mdl-38529473

ABSTRACT

Purpose: The objective of this study was to investigate the epidemiological characteristics, distribution of isolates, prevailing patterns, and antibiotic susceptibility of bacterial keratitis (BK) in a Tertiary Referral Hospital located in Southwest China. Methods: A retrospective analysis was conducted on 660 cases of bacterial keratitis occurring between January 2015 and December 2022. The demographic data, predisposing factors, microbial findings, and antibiotic sensitivity profiles were examined. Results: Corneal trauma emerged as the most prevalent predisposing factor, accounting for 37.1% of cases. Among these cases, bacterial culture results were positive in 318 cases, 68 species of bacteria were identified. The most common Gram-Positive bacteria isolated overall was the staphylococcus epidermis and the most common Gram-Negative bacteria isolated was Pseudomonas aeruginosa. Methicillin-Resistant Staphylococci accounted for 18.1% of all Gram-Positive bacteria. The detection rate of P. aeruginosa showed an increasing trend over time (Rs=0.738, P=0.037). There was a significant decrease in the percentage of Gram-Negative microorganisms over time (Rs=0.743, P=0.035). The sensitivity of Gram-Positive bacteria to linezolid, vancomycin, tigecycline, quinupristin/dalfopristin, and rifampicin was over 98%. The sensitivity rates of Gram-Negative bacteria to amikacin, meropenem, piperacillin/tazobactam, cefoperazone sodium/sulbactam, ceftazidime, and cefepime were all above 85%. In patients with a history of vegetative trauma, the possibility of BK should be taken into account in addition to the focus on fungal keratitis. Conclusion: The microbial composition primarily consists of Gram-Positive cocci and Gram-Negative bacilli. Among the Gram-Positive bacteria, S. epidermidis and Streptococcus pneumoniae are the most frequently encountered, while P. aeruginosa is the predominant Gram-Negative bacteria. To combat Gram-Positive bacteria, vancomycin, linezolid, and rifampicin are considered excellent antimicrobial agents. When targeting Gram-Negative pathogens, third-generation cephalosporins exhibit superior sensitivity compared to first and second-generation counterparts. As an initial empirical treatment for severe cases of bacterial keratitis and those unresponsive to fourth-generation fluoroquinolones in community settings, the combination therapy of vancomycin and tobramycin is a justifiable approach. Bacterial keratitis can be better managed by understanding the local etiology and antibacterial drug susceptibility patterns.


Subject(s)
Eye Infections, Bacterial , Keratitis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Linezolid/therapeutic use , Vancomycin , Rifampin , Retrospective Studies , Tertiary Care Centers , Drug Resistance, Bacterial , Cefoperazone/therapeutic use , Eye Infections, Bacterial/drug therapy , Eye Infections, Bacterial/epidemiology , Sulbactam/therapeutic use , Gram-Positive Bacteria , Staphylococcus , Gram-Negative Bacteria , Keratitis/drug therapy , Keratitis/epidemiology , Keratitis/microbiology , Microbial Sensitivity Tests
18.
J Ocul Pharmacol Ther ; 40(3): 160-172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394222

ABSTRACT

Fungal keratitis (FK) is a dangerous corneal infection that is common in tropical and subtropical areas. Its incidence is extremely high, and ocular trauma and contact lenses can lead to FK, but its common treatment such as using topical antifungal eye drop instillation is often less effective because of several drawbacks of the drugs typically used, including limited ocular penetration, high frequency of dosing, poor biocompatibility, and the potential for severe drug reactions. Therefore, the development of novel drug delivery devices for the treatment of FK is urgent. The urgent need for novel drug delivery devices to treat FK has led to the development of several techniques, including nanoparticles (NPs), in situ forming hydrogels, contact lenses, and microneedles (MNs). However, it is important to note that the main mechanisms differ between these techniques. NPs can transport large amounts of drugs and be taken up by cells owing to their large surface area and small size. In situ forming hydrogels can significantly extend the residence time of drugs because of their strong adhesive properties. Contact lenses, with their comfortable shape and drug-carrying capacity, can also act as drug delivery devices. MNs can create channels in the cornea, bypassing its barrier and enhancing drug bioavailability. This article will go over novel medication delivery techniques for treating FK and make a conclusion about their advantages and limitations in anticipation to serve the best option for the individual therapy of FK.


Subject(s)
Corneal Ulcer , Eye Infections, Fungal , Keratitis , Humans , Corneal Ulcer/drug therapy , Drug Delivery Systems/methods , Keratitis/drug therapy , Keratitis/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Hydrogels
19.
J Ocul Pharmacol Ther ; 40(1): 89-99, 2024.
Article in English | MEDLINE | ID: mdl-38346287

ABSTRACT

Purpose: To characterize the efficiency of glabridin alone and in combination with clinical antifungals in Aspergillus fumigatus keratitis. Methods: The broth microdilution method was performed to investigate whether glabridin exerted an antifungal role on planktonic cells and immature and mature biofilm. Antifungal mechanism was evaluated by Sorbitol and Ergosterol Assays. The synergistic effect of glabridin and antifungals was assessed through the checkerboard microdilution method and time-killing test. Regarding anti-inflammatory role, inflammatory substances induced by A. fumigatus were assessed by real-time quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Drug toxicity was assessed by Draize test in vivo. Macrophage phenotypes were examined by flow cytometry. Results: Regarding antifungal activity, glabridin destroyed fungal cell wall and membrane on planktonic cells and suppressed immature and mature biofilm formation. After combining with natamycin or amphotericin B, glabridin possessed a potent synergistic effect against A. fumigatus. Regarding anti-inflammatory aspects, Dectin-1, toll­like receptor (TLR)-2 and TLR-4 expression of human corneal epithelial cells were significantly elevated after A. fumigatus challenge and reduced by glabridin. The elevated expression of interleukin-1ß and tumor necrosis factor-alpha induced by A. fumigatus or corresponding agonists were reversed by glabridin, equivalent to the effect of corresponding inhibitors. Glabridin could also contribute to anti-inflammation by downregulating inflammatory mediator expression to suppress macrophage infiltration. Conclusions: Glabridin contributed to fungal clearance by destroying fungal cell wall and membrane, and disrupting biofilm. Combining glabridin with clinical antifungals was superior in reducing A. fumigatus growth. Glabridin exerted an anti-inflammatory effect by downregulating proinflammatory substance expression and inhibiting macrophage infiltration, which provide a potential agent and treatment strategies for fungal keratitis.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Isoflavones , Keratitis , Phenols , Humans , Animals , Mice , Aspergillus fumigatus/physiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Keratitis/drug therapy , Keratitis/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
20.
Carbohydr Polym ; 330: 121818, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368100

ABSTRACT

Mono or dual chitosan oligosaccharide lactate (COL)-conjugated pluronic F127 polymers, FCOL1 and FCOL2 were prepared, self-assembled to form micelles, and loaded with gatifloxacin. The Gati@FCOL1/Gati@FCOL2 micelles preparation process was optimized by QbD analysis. Micelles were characterized thoroughly for size, CMC, drug compatibility, and viscosity by GPC, DLS, SEM, IR, DSC, and XRD. The micelles exhibited good cellular uptake in both monolayers and spheroids of HCEC. The antibacterial and anti-biofilm activities of the micelles were evaluated on P. aeruginosa and S. aureus. The anti-quorum sensing activity was explored in P. aeruginosa by analyzing micelles' ability to produce virulence factors, including AHLs, pyocyanin, and the motility behavior of the organism. Gati@FCOL2 Ms was mucoadhesive, cornea-penetrant, antibacterial, and inhibited the biofilm formation by P. aeruginosa and S. aureus significantly more than Gati@FCOL1. A significant reduction in bacterial load in mice cornea was observed after Gati@FCOL2 Ms-treatment to the P. aeruginosa-induced bacterial keratitis-infected mice.


Subject(s)
Chitosan , Keratitis , Lactates , Mice , Animals , Micelles , Poloxamer , Chitosan/pharmacology , Staphylococcus aureus , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lactic Acid/pharmacology , Keratitis/drug therapy , Pseudomonas aeruginosa
SELECTION OF CITATIONS
SEARCH DETAIL
...