Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Med Oncol ; 41(6): 158, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761317

ABSTRACT

Nimbolide, one of the main ingredients constituent of Azadirachta indica (neem) leaf extract, has garnered attention for its potential as an anticancer agent. Its efficacy against various cancers and chemopreventive action has been demonstrated through numerous in vivo and in vitro studies. This updated review aims to comprehensively explore the chemopreventive and anticancer properties of nimbolide, emphasizing its molecular mechanisms of action and potential therapeutic applications in oncology. The review synthesizes evidence from various studies that examine nimbolide's roles in apoptosis induction, anti-proliferation, cell death, metastasis inhibition, angiogenesis suppression, and modulation of carcinogen-metabolizing enzymes. Nimbolide exhibits multifaceted anticancer activities, including the modulation of multiple cell signaling pathways related to inflammation, invasion, survival, growth, metastasis, and angiogenesis. However, its pharmacological development is still in the early stages, mainly due to limited pharmacokinetic and comprehensive long-term toxicological studies. Nimbolide shows promising anticancer and chemopreventive properties, but there is need for systematic preclinical pharmacokinetic and toxicological research. Such studies are essential for establishing safe dosage ranges for first-in-human clinical trials and further advancing nimbolide's development as a therapeutic agent against various cancers. The review highlights the potential of nimbolide in cancer treatment and underscores the importance of rigorous preclinical evaluation to realize its full therapeutic potential.


Subject(s)
Limonins , Neoplasms , Humans , Limonins/pharmacology , Limonins/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Azadirachta/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects
2.
Appl Biochem Biotechnol ; 196(1): 182-202, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37103738

ABSTRACT

The non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. It is usually diagnosed at an advanced stage with poor prognosis. Nimbolide (NB), a terpenoid limonoid isolated from the flowers and leaves of neem tree, possesses anticancer properties in various cancer cell lines. However, the underlying mechanism of its anticancer effect on human NSCLC cells remains unclear. In the present study, we investigated the effect of NB on A549 human NSCLC cells. We found that NB treatment inhibits A549 cells colony formation in a dose-dependent manner. Mechanistically, NB treatment increases cellular reactive oxygen species (ROS) level, leading to endoplasmic reticulum (ER) stress, DNA damage, and eventually induction of apoptosis in NSCLC cells. Furthermore, all these effects of NB were blocked by pretreatment with antioxidant glutathione (GSH), the specific ROS inhibitor. We further knockdown CHOP protein by siRNA markedly reduced NB-induced apoptosis in A549 cells. Taken together, our findings reveal that NB is an inducer of ER stress and ROS; these findings may contribute to increasing the therapeutic efficiency of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Limonins , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Limonins/pharmacology , Limonins/therapeutic use , Reactive Oxygen Species/metabolism , Apoptosis , DNA Damage , Endoplasmic Reticulum Stress/genetics , Cell Line, Tumor
3.
Crit Rev Immunol ; 43(5): 11-23, 2023.
Article in English | MEDLINE | ID: mdl-37831520

ABSTRACT

BACKGROUND: Limonin shows promise in alleviating non-alcoholic fatty liver disease. We investigated the mechanisms of limonin against non-alcoholic steatohepatitis (NASH) using network pharmacology and molecular docking. METHODS: Public databases provided NASH- and limonin-associated targets. VennDiagram identified potential limonin targets for NASH. Enrichment analysis explored the limonin-NASH relationship. PPI network analysis, CytoHubba models, and bioinformatics identified hub genes for NASH treatment. Molecular docking assessed limonin's binding ability to hub targets. RESULTS: We found 37 potential limonin targets in NASH, involved in oxidative stress, inflammation, and signaling pathways. PPI network analysis revealed seven hub genes (STAT3, NFKBIA, MTOR, TLR4, CASP8, PTGS2, NFKB1) as NASH treatment targets. Molecular docking confirmed limonin's binding to STAT3, CASP8, and PTGS2. Animal experiments on high-fat diet mice showed limonin reduced hepatic steatosis, lipid accumulation, and expression of p-STAT3/STAT3, CASP8, and PTGS2. CONCLUSION: Limonin's therapeutic effects in NASH may stem from its antioxidant and anti-inflammatory properties. STAT3, CASP8, and PTGS2 are potential key targets for NASH treatment, warranting further investigation.


Subject(s)
Limonins , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Network Pharmacology , Cyclooxygenase 2/therapeutic use , Limonins/pharmacology , Limonins/therapeutic use , Molecular Docking Simulation
4.
Int Immunopharmacol ; 122: 110678, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481848

ABSTRACT

AMP-activated protein kinase (AMPK) activation plays crucial roles in the treatment of many oxidative stress- and inflammation-induced diseases, including acute lung injury (ALI). Limonin is a naturally occurring tetracyclic triterpenoid extracted from the plants of Rutaceae and Meliaceae. Limonin also serves as an AMPK activator with anti-inflammatory and anti-oxidation effects. However, the potential beneficial effects of limonin on ALI and the possible mechanisms have never been disclosed till now. Here, the effects of limonin on lipopolysaccharide (LPS)-induced ALI in C57 BL/6 mice, plus bone marrow-derived macrophages (BMDM) stimulated with LPS to induce in vitro ALI model were investigated. Limonin significantly improved pulmonary function and alleviated lung pathological injury in LPS-induced mice. Meanwhile, limonin also markedly decreased inflammation and oxidative stress in lung tissues from LPS-treated mice. In vitro experiments also unveiled that limonin could decrease inflammation and oxidative stress in LPS-induced BMDM in a concentration-dependent manner. Mechanically, limonin could promote the activation of AMPKα and upregulate the expression of nuclear factor erythroid 2-related factor 2 (NRF2) in lung tissues and BMDM. Pharmacological inhibition of AMPKα by Compound C or AMPKα knockout could abolish the pulmonary protection from limonin during ALI. In conclusion, limonin mediates the activation of AMPKα/NRF2 pathway, providing an attractive therapeutic target for ALI in the future.


Subject(s)
Acute Lung Injury , Limonins , Animals , Mice , Lipopolysaccharides/pharmacology , AMP-Activated Protein Kinases/metabolism , Limonins/pharmacology , Limonins/therapeutic use , NF-E2-Related Factor 2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/pathology , Inflammation/pathology , Mice, Inbred C57BL
5.
Biofactors ; 49(6): 1189-1204, 2023.
Article in English | MEDLINE | ID: mdl-37401768

ABSTRACT

Nonalcoholic steatohepatitis (NASH) and hepatic fibrosis are leading causes of cirrhosis with rising morbidity and mortality worldwide. Currently, there is no appropriate treatment for NASH and hepatic fibrosis. Many studies have shown that oxidative stress is a main factor inducing NASH. Nomilin (NML) and obacunone (OBA) are limonoid compounds naturally occurring in citrus fruits with various biological properties. However, whether OBA and NML have beneficial effects on NASH remains unclear. Here, we demonstrated that OBA and NML inhibited hepatic tissue necrosis, inflammatory infiltration and liver fibrosis progression in methionine and choline-deficient (MCD) diet, carbon tetrachloride (CCl4 )-treated and bile duct ligation (BDL) NASH and hepatic fibrosis mouse models. Mechanistic studies showed that NML and OBA enhanced anti-oxidative effects, including reduction of malondialdehyde (MDA) level, increase of catalase (CAT) activity and the gene expression of glutathione S-transferases (GSTs) and Nrf2-keap1 signaling. Additional, NML and OBA inhibited the expression of inflammatory gene interleukin 6 (Il-6), and regulated the bile acid metabolism genes Cyp3a11, Cyp7a1, multidrug resistance-associated protein 3 (Mrp3). Overall, these findings indicate that NML and OBA may alleviate NASH and liver fibrosis in mice via enhancing antioxidant and anti-inflammation capacity. Our study proposed that NML and OBA may be potential strategies for NASH treatment.


Subject(s)
Limonins , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Antioxidants/metabolism , Limonins/pharmacology , Limonins/metabolism , Limonins/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Methionine , Diet , Mice, Inbred C57BL , Liver
6.
Int J Biol Sci ; 19(9): 2860-2878, 2023.
Article in English | MEDLINE | ID: mdl-37324945

ABSTRACT

Acute kidney injury (AKI) is a refractory clinical syndrome with limited effective treatments. Amid AKI, activation of the extracellular signal-regulated kinase (ERK) cascade plays a critical role in promoting kidney repair and regeneration. However, a mature ERK agonist in treating kidney disease remains lacking. This study identified limonin, a member of the class of compounds known as furanolactones, as a natural ERK2 activator. Employing a multidisciplinary approach, we systemically dissected how limonin mitigates AKI. Compared to vehicles, pretreatment of limonin significantly preserved kidney functions after ischemic AKI. We revealed that ERK2 is a significant protein linked to the limonin's active binding sites through structural analysis. The molecular docking study showed a high binding affinity between limonin and ERK2, which was confirmed by the cellular thermal shift assay and microscale thermophoresis. Mechanistically, we further validated that limonin promoted tubular cell proliferation and reduced cell apoptosis after AKI by activating ERK signaling pathway in vivo. In vitro and ex vivo, blockade of ERK abolished limonin's capacity of preventing tubular cell death under hypoxia stress. Our results indicated that limonin is a novel ERK2 activator with strong translational potential in preventing or mitigating AKI.


Subject(s)
Acute Kidney Injury , Limonins , Humans , Limonins/pharmacology , Limonins/therapeutic use , Molecular Docking Simulation , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Kidney/metabolism , Apoptosis , Extracellular Signal-Regulated MAP Kinases
7.
J Pharm Pharmacol ; 75(5): 612-624, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36856818

ABSTRACT

OBJECTIVES: Limonin has received significant attention due to its multiple biological effects, intervertebral disc degeneration (IDD) is also of interest due to the high prevalence of this disease. In this study, we determined the effects of limonin on IDD and the underlying mechanism of action to find novel ways to treat IDD. METHODS: An IL-1ß-induced cell inflammation model and a lumbar instability model inducing IDD were established to assess the progression of IDD with or without limonin treatment. We further evaluated MAPK/NF-κB and necroptosis pathways and alterations in the extracellular matrix specific within the disc. KEY FINDINGS: Limonin suppresses inflammation in the nucleus pulposus in vitro by reducing the production of pro-inflammatory markers such as iNOS and COX-2. Limonin reduced the activation of the MAPK/NF-κB signalling pathway and the RIP1/RIP3/MLKL necroptosis pathway in the NP cells. Moreover, limonin delays the IDD progression in the lumbar instability model. CONCLUSIONS: Limonin could potentially delay IDD by inhibiting NP cell necroptosis and modulating peripheral matrix proteins within the intervertebral disc and is a potential pharmacological research direction for the therapy in patients with IDD.


Subject(s)
Intervertebral Disc Degeneration , Limonins , Inflammation , Intervertebral Disc Degeneration/drug therapy , Limonins/pharmacology , Limonins/therapeutic use , Necroptosis , NF-kappa B/metabolism , Animals , Rats
8.
Inflammation ; 46(1): 190-201, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35986873

ABSTRACT

A potential new limonoid derivative, (12S,12aS)-6,6,8a,12a-tetramethyl-12-(5-(4-(piperidin-1-yl)butanoyl)furan-3-yl)decahydro-1H,3H-oxireno[2,3-d]pyrano[4',3':3,3a]isobenzofuro[5,4-f]isochromene-3,8,10(6H,9aH)-trione (I-C-1), has been screened for its anti-inflammatory activity. This study aimed to demonstrate the anti-inflammatory activities of I-C-1 and to further explore the underlying mechanisms of these activities in RAW264.7 macrophages. We verified the anti-inflammatory activity of I-C-1 in vivo by a carrageenan-induced paw edema model in rats and cotton pellet-induced granuloma in mice. Further, we found that I-C-1 significantly inhibited levels of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-induced RAW264.7 cells. I-C-1 demonstrated strong inhibition of the NF-κB activation through repression of the IKKα and IKKß phosphorylations, as well as a significant suppression of the phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt) pathway, an upstream of the NF-κB pathway. Additionally, we verified the inhibitory effect of I-C-1 on PI3K phosphorylation by immunofluorescence assay and compared the effects of I-C-1 with the PI3K inhibitor LY294002 in IL-1ß, IL-6, and TNF-α levels. The data indicated that I-C-1 likely acts as an inhibitor of PI3K, exerting anti-inflammatory effects by inhibiting the PI3K/AKT/NF-κB signaling pathway. Based on these findings, we believe that I-C-1 has the potential to be further developed as a potential therapeutic agent for inflammatory-related diseases.


Subject(s)
Limonins , NF-kappa B , Mice , Rats , Animals , NF-kappa B/metabolism , Limonins/pharmacology , Limonins/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Interleukin-6 , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Phosphatidylinositol 3-Kinase/metabolism , Protein Serine-Threonine Kinases , Tumor Necrosis Factor-alpha , Lipopolysaccharides/pharmacology
9.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144523

ABSTRACT

Toona sinensis (A. Juss.) Roem is an edible medicinal plant that belongs to the genus Toona within the Meliaceae family. It has been confirmed to display a wide variety of biological activities. During our continuous search for active constituents from the seeds of T. sinensis, two new acyclic diterpenoids (1-2), together with five known limonoid-type triterpenoids (3-7), five known apotirucallane-type triterpenoids (8-12), and three known cycloartane-type triterpenoids (13-15), were isolated and characterized. Their structures were identified based on extensive spectroscopic experiments, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectra (HR-ESI-MS), and electronic circular dichroism (ECD), as well as the comparison with those reported in the literature. We compared these findings to those reported in the literature. Compounds 5, 8, and 13-14 were isolated from the genus Toona, and compounds 11 and 15 were obtained from T. sinensis for the first time. The antidiabetic nephropathy effects of isolated compounds against high glucose-induced oxidative stress and inflammation in rat glomerular mesangial cells (GMCs) were assessed in vitro. The results showed that new compounds 1 and 2 could significantly increase the levels of Nrf-2/HO-1 and reduce the levels of NF-κB, TNF-α, and IL-6 at concentrations of 30 µM. These results suggest that compounds 1 and 2 might prevent the occurrence and development of diabetic nephropathy (DN) and facilitate the research and development of new antioxidant and anti-inflammatory drugs suitable for the prevention and treatment of DN.


Subject(s)
Diabetic Nephropathies , Limonins , Triterpenes , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetic Nephropathies/drug therapy , Glucose/pharmacology , Hypoglycemic Agents/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Interleukin-6/pharmacology , Limonins/pharmacology , Limonins/therapeutic use , Mesangial Cells , NF-kappa B/pharmacology , Oxidative Stress , Rats , Seeds , Terpenes/pharmacology , Terpenes/therapeutic use , Toona , Triterpenes/chemistry , Tumor Necrosis Factor-alpha/pharmacology
10.
J Environ Pathol Toxicol Oncol ; 41(2): 69-88, 2022.
Article in English | MEDLINE | ID: mdl-35695653

ABSTRACT

Cancer is a major cause of death worldwide with an increasing incidence rate and is considered a major public health problem. Distance metastasis to other tissues, high toxicity, and drug resistance of cancer cells to chemotherapy demand novel therapeutic approaches to treat cancer. Natural compounds from medicinal plants have been studied for therapeutic use in various malignancies. Nimbolide is an active principal compound from Azadirachta indica, which is an Asian traditional medicinal plant utilized historically as a remedy for a variety of diseases due to its antioxidant, anti-inflammatory, anti-cancer, and antimicrobial properties. It is a limonoid triterpene possessing potent anti-cancer effects in various types of cancers. It has been reported to induce multiple cytotoxic effects in tumor cells by modulating the cell proliferation, cell cycle, apoptosis, and metastasis by altering the various molecular signaling pathways. In the present review, we summarized all the in vitro and in vivo studies reporting the molecular targets of nimbolide for the therapeutic approaches in different types of cancer cells. We analyzed research publications up to September 2021 on the effect of nimbolide in various malignancies and the molecular mechanism of action. Nimbolide targets different signaling pathways including epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), insulin like growth factor (IGF), Wingless and INT-1 (Wnt)/ß-catenin, mitogen-activated protein kinases (MAPK)/c-Jun N-terminal kinases (JNK), phosphoinositide 3-kinase (PI3K)/AKT, tumor necrosis factor-α (TNF-α)/nuclear factor kappa B (NF-κß), and death receptor 5 (DR5) in several cancer cells. Nimbolide's widespread availability and absence of side effects, as well as understanding the molecular mechanism of nimbolide's action, will be useful to develop a therapeutic agent against cancer.


Subject(s)
Limonins , Apoptosis , Cell Line, Tumor , Limonins/pharmacology , Limonins/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Vascular Endothelial Growth Factor A/pharmacology
11.
Environ Toxicol ; 37(6): 1445-1457, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35199915

ABSTRACT

Nimbolide is reported as one of the potential anticancer candidates of the neem tree (Azadirachta indica A. Juss). The cytotoxic action of nimbolide has been well reported against a wide number of malignancies, including breast, prostate, lung, liver, and cervix cancers. Interestingly, only a few in vivo studies conducted on B cell lymphoma, glioblastoma, pancreatic cancer, and buccal pouch carcinoma have shown the in vivo antitumor efficacy of nimbolide. Therefore, it is highly needed to examine the in vivo antineoplastic activity of nimbolide on a wide variety of cancers to establish nimbolide as a promising anticancer drug. In the present study, we investigated the tumor retarding action of nimbolide in a murine model of T cell lymphoma. We noticed significantly augmented apoptosis in nimbolide- administered tumor-bearing mice, possibly due to down-regulated expression of Bcl2 and up-regulated expression of p53, cleaved caspase-3, Cyt c, and ROS. The nimbolide treatment-induced ROS production by suppressing the expression of antioxidant regulatory enzymes, namely superoxide dismutase and catalase. In addition, nimbolide administration impaired glycolysis and pH homeostasis with concomitant inhibition of crucial glycolysis and pH regulatory molecules such as GLUT3, LDHA, MCT1, and V-ATPase, CAIX and NHE1, respectively. Taken together, the present investigation provides novel insights into molecular mechanisms of nimbolide inhibited T cell lymphoma progression and directs the utility of nimbolide as a potential anticancer therapeutic drug for the treatment of T cell lymphoma.


Subject(s)
Antineoplastic Agents , Limonins , Lymphoma, T-Cell , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Female , Glucose/metabolism , Homeostasis , Hydrogen-Ion Concentration , Limonins/pharmacology , Limonins/therapeutic use , Lymphoma, T-Cell/drug therapy , Lymphoma, T-Cell/metabolism , Male , Mice , Reactive Oxygen Species/metabolism
12.
Life Sci ; 285: 119949, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34543640

ABSTRACT

AIMS: Swietenia macrophylla have been considered for the treatment of various diseases, including anticancer activity. This study aimed to investigate the anticancer activity of S. macrophylla leaves extract and its isolated compound towards human colorectal cancer cell line. MAIN METHODS: Hexanic extract of S. macrophylla leaves demonstrated relevant cytotoxicity only against colon cancer cell line HCT116. KEY FINDINGS: Our results showed significant DNA damage and apoptosis after treatment with the hexanic extract of S. macrophylla. Moreover, no toxicity was noticed for the animal model. The isolated compound limonoid L1 showed potent cytotoxicity against cancer cell lines with IC50 at 55.87 µg mL-1. Limonoid L1 did not trigger any cell membrane rupture in the mice erythrocytes suggesting no toxicity. The antiproliferative effect of L1 was confirmed in colorectal cancer cells by clonogenic assay, inducing G2/M arrest, apoptosis, and DNA damage in cancer-type cells. SIGNIFICANCE: L1 reduced BCL2 and increased ATM, CHK2, TP53, ARF, CDK1, CDKN1A, and CASP3 in the colorectal cancer cell line. These findings suggest that limonoid L1 isolated from S. macrophylla can be a promising anticancer agent in managing colorectal cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/pathology , DNA Damage , Limonins/pharmacology , Meliaceae/chemistry , Animals , Colorectal Neoplasms/metabolism , Erythrocytes/drug effects , Female , G2 Phase Cell Cycle Checkpoints/drug effects , HCT116 Cells , Hemolysis , Humans , Limonins/isolation & purification , Limonins/therapeutic use , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology
13.
Biomed Pharmacother ; 139: 111576, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33862494

ABSTRACT

Diabetes mellitus or type-2 diabetes, commonly referred as diabetes, is a metabolic disorder that results in high blood sugar level. Despite the availability of several antidiabetic drugs in the market, they still do not adequately regulate blood sugar levels. Thus, in general people prefer to use herbal supplements/medicines along with antidiabetic drugs to control blood sugar levels. One of such herbal medicine is Swietenia macrophylla seeds. It is widely used in Asia for controlling blood sugar levels. One of the major bioactive compounds, Swietenine, is reported to be responsible for controlling blood glucose levels. However, there were no studies on its efficacy in controlling the blood glucose in diabetic rats. In this study, we evaluated the antihyperglycemic activity of Swietenine and its pharmacodynamic interaction with Metformin in Streptozotocin induced diabetes in rats. The activity of Swietenine was investigated at three different doses: 10, 20 and 40 mg/kg body weight (bw). Metformin (50 mg/kg bw) was used as a standard drug. Swietenine (20 and 40 mg/kg bw) and Metformin (50 mg/kg bw) showed significant effect in reducing the glucose, cholesterol, triglycerides, low-density lipoprotein, urea, creatinine, alanine transaminase, alkaline phosphatase, aspartate transaminase, alanine transaminase, and malondialdehyde level in serum while it had increased the high-density lipoprotein, glutathione, and total antioxidant capacity level. In addition, Swietenine (20 and 40 mg/kg) had shown significant synergistic effect with Metformin. Administration of Swietenine at 10 mg/kg bw neither showed activity nor influenced Metformin's activity. The results from this study confirmed the beneficial effects of Swietenine and its synergistic action with Metformin in controlling the dysregulated serum parameters in Streptozotocin induced diabetes in rats.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Hyperglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Limonins/pharmacology , Metformin/pharmacology , Animals , Antioxidants/therapeutic use , Blood Glucose/metabolism , Cholesterol/blood , Dose-Response Relationship, Drug , Drug Synergism , Female , Hyperglycemia/blood , Hypoglycemic Agents/therapeutic use , Limonins/therapeutic use , Lipids/blood , Male , Meliaceae/chemistry , Metformin/therapeutic use , Rats , Rats, Wistar , Seeds/chemistry
14.
Cell Chem Biol ; 28(10): 1407-1419.e6, 2021 10 21.
Article in English | MEDLINE | ID: mdl-33794192

ABSTRACT

Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.


Subject(s)
Cholestanetriol 26-Monooxygenase/metabolism , Limonins/pharmacology , Mitochondria/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cholestanetriol 26-Monooxygenase/antagonists & inhibitors , Cholestanetriol 26-Monooxygenase/genetics , Humans , Limonins/chemistry , Limonins/metabolism , Limonins/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA Interference , RNA, Small Interfering/metabolism
15.
J Med Chem ; 64(7): 3560-3577, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33739088

ABSTRACT

Nimbolide, a major limonoid constituent of Azadirachta indica, commonly known as neem, has attracted increasing research attention owing to its wide spectrum of pharmacological properties, predominantly anticancer activity. Nimbolide is reported to exert potent antiproliferative effects on a myriad cancer cell lines and chemotherapeutic efficacy in preclinical animal tumor models. The potentiality of nimbolide to circumvent multidrug resistance and aid in targeted protein degradation broaden its utility in enhancing therapeutic modalities and outcome. Accumulating evidence indicates that nimbolide prevents the acquisition of cancer hallmarks such as sustained proliferation, apoptosis evasion, invasion, angiogenesis, metastasis, and inflammation by modulating kinase-driven oncogenic signaling networks. Nimbolide has been demonstrated to abrogate aberrant activation of cellular signaling by influencing the subcellular localization of transcription factors and phosphorylation of kinases in addition to influencing the epigenome. Nimbolide, with its ever-expanding repertoire of molecular targets, is a valuable addition to the anticancer drug arsenal.


Subject(s)
Antineoplastic Agents/therapeutic use , Limonins/therapeutic use , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Limonins/pharmacokinetics , Limonins/pharmacology , Signal Transduction/drug effects
16.
Aging (Albany NY) ; 13(8): 11010-11025, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33535179

ABSTRACT

Ultra-violet (UV) radiation (UVR) causes significant oxidative injury to retinal pigment epithelium (RPE) cells. Obacunone is a highly oxygenated triterpenoid limonoid compound with various pharmacological properties. Its potential effect in RPE cells has not been studied thus far. Here in ARPE-19 cells and primary murine RPE cells, obacunone potently inhibited UVR-induced reactive oxygen species accumulation, mitochondrial depolarization, lipid peroxidation and single strand DNA accumulation. UVR-induced RPE cell death and apoptosis were largely alleviated by obacunone. Obacunone activated Nrf2 signaling cascade in RPE cells, causing Keap1-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation. It promoted transcription and expression of antioxidant responsive element-dependent genes. Nrf2 silencing or CRISPR/Cas9-induced Nrf2 knockout almost reversed obacunone-induced RPE cytoprotection against UVR. Forced activation of Nrf2 cascade, by Keap1 knockout, similarly protected RPE cells from UVR. Importantly, obacunone failed to offer further RPE cytoprotection against UVR in Keap1-knockout cells. In vivo, intravitreal injection of obacunone largely inhibited light-induced retinal damage. Collectively, obacunone protects RPE cells from UVR-induced oxidative injury through activation of Nrf2 signaling cascade.


Subject(s)
Benzoxepins/pharmacology , Limonins/pharmacology , Macular Degeneration/drug therapy , Oxidative Stress/drug effects , Retinal Pigment Epithelium/drug effects , Ultraviolet Rays/adverse effects , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Benzoxepins/therapeutic use , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , DNA, Single-Stranded/drug effects , DNA, Single-Stranded/radiation effects , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Humans , Intravitreal Injections , Kelch-Like ECH-Associated Protein 1/metabolism , Limonins/therapeutic use , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Macular Degeneration/etiology , Macular Degeneration/pathology , Mice , Mitochondrial Membranes/drug effects , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Oxidative Stress/radiation effects , Primary Cell Culture , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/radiation effects , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/radiation effects
17.
J Food Biochem ; 45(4): e13674, 2021 04.
Article in English | MEDLINE | ID: mdl-33634871

ABSTRACT

Curcuma longa and Azadirachta indica are traditionally used in Indian cuisine and Ayurvedic medicine as nutraceuticals against diabetes. The crude C. longa isopropanol extract, bisdemethoxycurcumin (BDMC), the purified bioactive component from C. longa, and limonoids azadiradione, gedunin from A. indica, are able to inhibit in vitro the antidiabetic target human pancreatic α-amylase independently. However, no reports on their in vivo efficacy in animal models exist. Thus, the antidiabetic effect of these orally administered human pancreatic α-amylase inhibitors was performed on streptozotocin-induced Sprague-Dawley rats. Initially, the normal rats were treated with test compounds (10-100 mg/kg of body weight) in corn oil (5 ml/kg), and as no lethality was observed in these doses, further studies were carried out with lowest concentration of 10 mg/kg of body weight. A reduction in area under curve (AUC) suggested glucose-lowering effect of these compounds in starch fed diabetic rats. The efficacy study showed a significant improvement in body weight, blood glucose levels, serum amylase, and fructosamine levels as well in other serum parameters associated with diabetes with respect to liver and renal functions. Hence, under in vivo conditions, inhibition of α-amylase activity by BDMC and limonoids affirms it as one of the mechanisms of action resulting in reduction of blood glucose levels. PRACTICAL APPLICATIONS: Bisdemethoxycurcumin from C. longa and limonoids, namely, azadiradione and gedunin, from A. indica are potent inhibitors of the antidiabetic target human pancreatic α-amylase. Oral Starch Tolerance Test (OSTT) and 28-day efficacy study to check the effect of these orally administered inhibitors in diabetic rat models showed significant improvements in serum blood glucose and amylase levels as well as in other diabetes related serum parameters, namely, bilirubin, lipids, lactate dehydrogenase, alkaline phosphatase, and urea. The study contributes to understanding the action and efficacy of these pancreatic α-amylase inhibitors and suggests a potential role for them as nutraceuticals/therapeutics in management of post-prandial hyperglycemia.


Subject(s)
Azadirachta , Diabetes Mellitus, Experimental , Limonins , Administration, Oral , Amylases/therapeutic use , Animals , Blood Glucose , Curcuma , Diabetes Mellitus, Experimental/drug therapy , Diarylheptanoids , Limonins/pharmacology , Limonins/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Sprague-Dawley
18.
Nanomedicine ; 33: 102351, 2021 04.
Article in English | MEDLINE | ID: mdl-33418136

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a deadly respiratory illness associated with refractory hypoxemia and pulmonary edema. The recent pandemic outbreak of COVID-19 is associated with severe pneumonia and inflammatory cytokine storm in the lungs. The anti-inflammatory phytomedicine nimbolide (NIM) may not be feasible for clinical translation due to poor pharmacokinetic properties and lack of suitable delivery systems. To overcome these barriers, we have developed nimbolide liposomes conjugated with iRGD peptide (iRGD-NIMLip) for targeting lung inflammation. It was observed that iRGD-NIMLip treatment significantly inhibited oxidative stress and cytokine storm compared to nimbolide free-drug (f-NIM), nimbolide liposomes (NIMLip), and exhibited superior activity compared to dexamethasone (DEX). iRGD-NIMLip abrogated the LPS induced p65 NF-κB, Akt, MAPK, Integrin ß3 and ß5, STAT3, and DNMT1 expression. Collectively, our results demonstrate that iRGD-NIMLip could be a promising novel drug delivery system to target severe pathological consequences observed in ARDS and COVID-19 associated cytokine storm.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Limonins/administration & dosage , Liposomes/chemistry , Oligopeptides/chemistry , Respiratory Distress Syndrome/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cell Line , Drug Delivery Systems , Endotoxins , Humans , Limonins/chemistry , Limonins/therapeutic use , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/pathology
19.
Int Immunopharmacol ; 90: 107246, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310297

ABSTRACT

Acute pancreatitis (AP) is a potential gastrointestinal problem most commonly associated with pancreatic inflammation and acinar cells injury. Nimbolide (NB), isolated from the tree Azadirachta indica, possesses antioxidant and anti-inflammatory effects. Here, we aimed to investigate the pancreatic protective effects of NB in ameliorating cerulein-induced pancreatic inflammation and apoptosis in AP model and evaluate the potential mechanism of action. AP was induced in Swiss albino mice by six-hourly intraperitoneal exposures of cerulein (50 µg/kg/hr) and pre-treatment of NB (0.3 and 1 mg/kg) 7 days prior to the cerulein exposure. Various parameters associated with AP in plasma and pancreatic tissues were evaluated. Severity of AP was effectively ameliorated by NB as shown by reducing pancreatic edema, plasma amylase and lipase levels, MPO levels and in cerulein-induced histological damage. Further, the antioxidant effect of NB was associated with a significant inhibition of oxidative-nitrosative stress in Raw 264.7 cells and cerulein-induced AP mice. Moreover, NB suppressed proinflammatory cytokines, iNOS and nitrotyrosine expression. In addition, NB inhibited NF-κB activation and increased SIRT1 expression in cerulein challenged mice. Furthermore, NB also inhibited pancreatic apoptosis by downregulating cleaved caspase 3 and Bax while upregulating Bcl2 expression in cerulein-treated mice. Inhibition of pancreatic inflammation and apoptosis resulted in attenuation of cerulein-induced AP. These results suggest that NB exerts strong anti-pancreatitis effects against cerulein-induced AP by combating inflammatory and apoptosis signaling via SIRT1 activation.


Subject(s)
Apoptosis/drug effects , Limonins/therapeutic use , NF-kappa B , Pancreatitis/drug therapy , Signal Transduction/drug effects , Sirtuin 1 , Animals , Ceruletide/pharmacology , Edema/pathology , Edema/prevention & control , Injections, Intraperitoneal , Limonins/pharmacology , Male , Mice , Oxidative Stress/drug effects , Pancreas/pathology , Pancreatitis/pathology , RAW 264.7 Cells , alpha-Amylases/metabolism
20.
Int Immunopharmacol ; 90: 107161, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33168409

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammation regulated by intricate mechanisms. Limonin, a natural tetracyclic triterpenoid compound, possesses multiple bioactivities including anti-inflammation, anti-cancer and so on. However, the therapeutic potential and the underlying mechanism of limonin on IBD remain unclear. Here, we probe into the effect of limonin on chronic colitis induced by dextran sulfate sodium (DSS) and illustrated the potential mechanisms. We found that limonin relieved the risk and severity of DSS-induced chronic colitis in mice through various aspects including increasing body weight and colon length, decreasing the mortality rate, inhibiting MPO activity and improving colon pathology. Limonin also decreased the production of proinflammatory cytokines TNF-α, IL-1ß, IL-6 and the expression of inflammatory proteins COX-2, iNOS in colon tissues from DSS-induced colitis mice. Moreover, limonin attenuated DSS-induced chronic colitis by inhibiting PERK-ATF4-CHOP pathway of endoplasmic reticulum (ER) stress and NF-κB signaling. In vitro, limonin not only decreased LPS-induced higher production of pro-inflammatory cytokines and inflammatory proteins mentioned above by inhibiting NF-κB signaling in macrophage cells RAW264.7, but also suppressed PERK-ATF4-CHOP pathway of ER stress. In summary, our study demonstrated that limonin mitigated DSS-induced chronic colitis via inhibiting PERK-ATF4-CHOP pathway of ER stress and NF-κB signaling. All of this study provides the possibility for limonin as an effective drug for chronic colitis of IBD in the future.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , Endoplasmic Reticulum Stress/drug effects , Inflammation/drug therapy , Limonins/therapeutic use , Signal Transduction/drug effects , Activating Transcription Factor 4/metabolism , Animals , Colitis/chemically induced , Cytokines/drug effects , Cytokines/metabolism , Dextran Sulfate/pharmacology , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , RAW 264.7 Cells , Transcription Factor CHOP/metabolism , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL