Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 435
Filter
1.
Gen Physiol Biophys ; 43(3): 263-271, 2024 May.
Article in English | MEDLINE | ID: mdl-38774925

ABSTRACT

Lithium (Li) is a mood-stabilizing drug. Although one of the potential mechanisms underlying the neuroprotective effects of lithium is related to its antioxidative effect, its mechanisms of action are not fully understood. Herein we aimed to investigate the impact of varied dosages of long-term lithium therapy on oxidative stress parameters in the brains of healthy rats, and on anxiety-like behaviors, and whether any changes in behavior can be attributed to modifications in oxidative stress levels within the brain. Thirty-two adult Wistar albino male rats were randomly assigned to four treatment groups. While the control (C) group was fed with a standard diet, low Li (1.4 g/kg/diet), moderate Li (1.8 g/kg/diet), and high Li (2.2 g/kg/diet) groups were fed with lithium bicarbonate (Li2CO3) for 30 days. Malondialdehyde increased, while superoxide dismutase and catalase levels decreased in the brains of the high Li group animals. In addition, anxiety-like behaviors of animals increased in the high Li group considering fewer entries to and less time spent in the open arms of the elevated plus maze test. Our findings underscore the potential adverse effects of prolonged lithium treatment, especially at doses approaching the upper therapeutic range. The induction of toxicity, manifested through heightened oxidative stress, appears to be a key mechanism contributing to the observed increase in anxiety-like behaviors. Consequently, caution is warranted when considering extended lithium therapy at higher doses, emphasizing the need for further research to delineate the precise mechanisms underlying these effects and to inform safer therapeutic practices.


Subject(s)
Anxiety , Brain , Dose-Response Relationship, Drug , Oxidative Stress , Rats, Wistar , Animals , Oxidative Stress/drug effects , Male , Rats , Anxiety/chemically induced , Anxiety/drug therapy , Brain/drug effects , Brain/metabolism , Lithium/pharmacology , Lithium/administration & dosage , Behavior, Animal/drug effects , Drug Administration Schedule , Lithium Compounds/pharmacology , Lithium Compounds/administration & dosage
2.
Pharmacol Rev ; 76(3): 323-357, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697859

ABSTRACT

Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.


Subject(s)
Lithium Compounds , Humans , Animals , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Neuronal Plasticity/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors
4.
J Affect Disord ; 355: 86-94, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38521135

ABSTRACT

BACKGROUND: Immune imbalances are associated with the pathogenesis and pharmacological efficacy of bipolar disorder (BD). The underlying mechanisms remain largely obscure but may involve immunometabolic dysfunctions of T-lymphocytes. METHODS: We investigated if inflammatory cytokines and the immunometabolic function of T-lymphocytes, including frequencies of subsets, mitochondrial mass (MM), and low mitochondrial membrane potential (MMPLow) differed between BD patients (n = 47) and healthy controls (HC, n = 43). During lithium treatment of hospitalized patients (n = 33), the association between weekly T-lymphocyte immune metabolism and clinical symptoms was analyzed, and preliminary explorations on possible mechanisms were conducted. RESULTS: In comparison to HC, BD patients predominantly showed a trend toward CD4+ naïve T (Tn) activation and exhibited mitochondrial metabolic disturbances such as decreased MM and increased MMPLow. Lower CD4+ Tn-MM correlated with elevated IL-6, IL-8, and decreased IL-17 A in BD patients. With lithium treatment effective, MM of CD4+ T/Tn was negatively correlated with depression score HAMD. When lithium intolerance was present, MM of CD4+ T/Tn was positively correlated with depression score HAMD and mania score BRMS. Lithium does not mediate through the inositol depletion hypothesis, but the mRNA level of IMPA2 in peripheral blood is associated with mitochondrial function in CD8+ T cells. LIMITATIONS: The cross-sectional design and short-term follow-up meant that we could not directly examine the causality of BD and immune dysregulation. CONCLUSION: The altered metabolism of CD4+ Tn was strongly associated with remodeling of the inflammatory landscape in BD patients and can also be used to reflect the short-term therapeutic effects of lithium.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/genetics , Lithium/pharmacology , Lithium/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , Cross-Sectional Studies , Mitochondria/metabolism , Lithium Compounds/therapeutic use , Lithium Compounds/pharmacology
5.
Ageing Res Rev ; 95: 102231, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364914

ABSTRACT

The role of lithium as a possible therapeutic strategy for neurodegenerative diseases has generated scientific interest. We systematically reviewed and meta-analyzed pre-clinical and clinical studies that evidenced the neuroprotective effects of lithium in Alzheimer's (AD) and Parkinson's disease (PD). We followed the PRISMA guidelines and performed the systematic literature search using PubMed, EMBASE, Web of Science, and Cochrane Library. A total of 32 articles were identified. Twenty-nine studies were performed in animal models and 3 studies were performed on human samples of AD. A total of 17 preclinical studies were included in the meta-analysis. Our analysis showed that lithium treatment has neuroprotective effects in diseases. Lithium treatment reduced amyloid-ß and tau levels and significantly improved cognitive behavior in animal models of AD. Lithium increased the tyrosine hydroxylase levels and improved motor behavior in the PD model. Despite fewer clinical studies on these aspects, we evidenced the positive effects of lithium in AD patients. This study lends further support to the idea of lithium's therapeutic potential in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Parkinson Disease/drug therapy , Lithium/pharmacology , Lithium/therapeutic use , Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use
6.
World J Biol Psychiatry ; 25(1): 54-64, 2024.
Article in English | MEDLINE | ID: mdl-37722808

ABSTRACT

OBJECTIVES: We have postulated that common changes in gene expression after treatment with different therapeutic classes of psychotropic drugs contribute to their common therapeutic mechanisms of action. METHODS: To test this hypothesis, we measured levels of cortical coding and non-coding RNA using GeneChip® Rat Exon 1.0 ST Array after treatment with vehicle (chow only), chow containing 1.8 g lithium carbonate/kg (n = 10) or chow containing 12 g sodium valproate/kg (n = 10) for 28 days. Differences in levels of RNA were identified using JMP Genomics 13 and the Panther Gene Ontology Classification System was used to identify potential consequences of RNA. RESULTS: Compared to vehicle treatment, levels of cortical RNA for 543 and 583 coding and non-coding RNAs were different after treatment with valproate and lithium, respectively. Moreover, levels of 323 coding and non-coding RNAs were altered in a highly correlated way by treatment with valproate and lithium, changes that would impact on cholinergic, glutamatergic, serotonergic and dopaminergic neurotransmission as well as on voltage gated ion channels. CONCLUSIONS: Our study suggests that treating with mood stabilisers cause many common changes in levels of RNA which will impact on CNS function, particularly affecting post-synaptic muscarinic receptor functioning and the release of multiple neurotransmitters.


Subject(s)
Lithium , Valproic Acid , Rats , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Lithium/pharmacology , Lithium/therapeutic use , Lithium Compounds/pharmacology , Gene Expression , RNA , Neurotransmitter Agents , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use
7.
Psychopharmacology (Berl) ; 241(4): 727-738, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38036661

ABSTRACT

RATIONALE: In bipolar disorder (BD), immunological factors play a role in the pathogenesis and treatment of the illness. Studies showed the potential link between Abelson Helper Integration Site 1 (AHI1) protein, behavioural changes and innate immunity regulation. An immunomodulatory effect was suggested for lithium, a mood stabilizer used in BD treatment. OBJECTIVES: We hypothesized that AHI1 may be an important mediator of lithium treatment response. Our study aimed to investigate whether the AHI1 haplotypes and expression associates with lithium treatment response in BD patients. We also examined whether AHI1 expression and lithium treatment correlate with innate inflammatory response genes. RESULTS: We genotyped seven AHI1 single nucleotide polymorphisms in 97 euthymic BD patients and found that TG haplotype (rs7739635, rs9494332) was significantly associated with lithium response. We also showed significantly increased AHI1 expression in the blood of lithium responders compared to non-responders and BD patients compared to healthy controls (HC). We analyzed the expression of genes involved in the innate immune response and inflammatory response regulation (TLR4, CASP4, CASP5, NLRP3, IL1A, IL1B, IL6, IL10, IL18) in 21 lithium-treated BD patients, 20 BD patients treated with other mood stabilizer and 19 HC. We found significantly altered expression between BD patients and HC, but not between BD patients treated with different mood stabilizers. CONCLUSIONS: Our study suggests the involvement of AHI1 in the lithium mode of action. Moreover, mood-stabilizing treatment associated with the innate immunity-related gene expression in BD patients and only the lithium-treated BD patients showed significantly elevated expression of anti-inflammatory IL10, suggesting lithium's immunomodulatory potential.


Subject(s)
Bipolar Disorder , Lithium , Humans , Lithium/pharmacology , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Haplotypes , Interleukin-10 , Antimanic Agents/therapeutic use , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use
8.
Sci Rep ; 13(1): 19861, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37963948

ABSTRACT

Lithium has been considered a potential acaricidal agent against the honey bee (Apis mellifera) parasite Varroa. It is known that lithium suppresses elevated activity and regulates circadian rhythms and light response when administered to humans as a primary therapeutic chemical for bipolar disorder and to other bipolar syndrome model organisms, given the crucial role of timing in the bee's foraging activity and the alternating sunlight vs dark colony environment bees are exposed, we explored the influence of lithium on locomotor activity (LMA) and circadian rhythm of honey bees. We conducted acute and chronic lithium administration experiments, altering light conditions and lithium doses to assess LMA and circadian rhythm changes. We fed bees one time 10 µl sucrose solution with 0, 50, 150, and 450 mM LiCl in the acute application experiment and 0, 1, 5, and 10 mmol/kg LiCl ad libitum in bee candy in the chronic application experiment. Both acute and chronic lithium treatments significantly decreased the induced LMA under constant light. Chronic lithium treatment disrupted circadian rhythmicity in constant darkness. The circadian period was lengthened by lithium treatment under constant light. We discuss the results in the context of Varroa control and lithium's effect on bipolar disorder.


Subject(s)
Bipolar Disorder , Varroidae , Humans , Bees , Animals , Lithium/pharmacology , Circadian Rhythm , Locomotion , Lithium Compounds/pharmacology
9.
J Headache Pain ; 24(1): 121, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667192

ABSTRACT

AIM: Treatment for cluster headache is currently based on a trial-and-error approach. The available preventive treatment is unspecific and based on few and small studies not adhering to modern standards. Therefore, the authors collaborated to discuss acute and preventive treatment in cluster headache, addressing the unmet need of safe and tolerable preventive medication from the perspectives of people with cluster headache and society, headache specialist and cardiologist. FINDINGS: The impact of cluster headache on personal life is substantial. Mean annual direct and indirect costs of cluster headache are more than 11,000 Euros per patient. For acute treatment, the main problems are treatment response, availability, costs and, for triptans, contraindications and the maximum use allowed. Intermediate treatment with steroids and greater occipital nerve blocks are effective but cannot be used continuously. Preventive treatment is sparsely studied and overall limited by relatively low efficacy and side effects. Neurostimulation is a relevant option for treatment-refractory chronic patients. From a cardiologist's perspective use of verapamil and triptans may be worrisome and regular follow-up is essential when using verapamil and lithium. CONCLUSION: We find that there is a great and unmet need to pursue novel and targeted preventive modalities to suppress the horrific pain attacks for people with cluster headache.


Subject(s)
Cluster Headache , Consensus , Preventive Medicine , Humans , Cluster Headache/drug therapy , Cluster Headache/prevention & control , Cluster Headache/therapy , Europe , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Lysergic Acid Diethylamide/therapeutic use , Oxygen/therapeutic use , Patients/psychology , Physicians , Prednisone/therapeutic use , Preventive Medicine/methods , Preventive Medicine/trends , Psilocybin/pharmacology , Psilocybin/therapeutic use , Topiramate/pharmacology , Topiramate/therapeutic use , Tryptamines/administration & dosage , Tryptamines/therapeutic use , Verapamil/pharmacology , Verapamil/therapeutic use
10.
Transl Psychiatry ; 13(1): 258, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443041

ABSTRACT

Central nervous system (CNS) tumors account for almost a third of pediatric cancers and are the largest contributor to cancer-related death in children. Cranial radiation therapy (CRT) is, often in combination with chemotherapy and surgery, effective in the treatment of high-grade childhood brain cancers, but it has been associated with late complications in 50-90% of survivors, such as decline in cognition and mood, decreased social competence, and fatigue. A leading hypothesis to explain the decline in cognition, at least partially, is injury to the neural stem and progenitor cells (NSPCs), which leads to apoptosis and altered fate choice, favoring gliogenesis over neurogenesis. Hence, treatments harnessing neurogenesis are of great relevance in this context. Lithium, a well-known mood stabilizer, has neuroprotective and antitumor effects and has been found to reverse irradiation-induced damage in rodents, at least in part by regulating the expression of the glutamate decarboxylase 2 gene (Gad2) via promoter demethylation in rat NSPCs. Additionally, lithium was shown to rescue irradiation-induced cognitive defects in mice. Here, we show that irradiation (IR) alone or in combination with lithium chloride (LiCl) caused major changes in gene expression and global DNA methylation in iPSC-derived human NSPCs (hNSPCs) compared to untreated cells, as well as LiCl-only-treated cells. The pattern of DNA methylation changes after IR-treatment alone was stochastic and observed across many different gene groups, whereas differences in DNA methylation after LiCl-treatment of irradiated cells were more directed to specific promoters of genes, including genes associated with neurogenesis, for example GAD2. Interestingly, IR and IR + LiCl treatment affected the promoter methylation and expression of several genes encoding factors involved in BMP signaling, including the BMP antagonist gremlin1. We propose that lithium in addition to promoting neuronal differentiation, also represses glial differentiation in hNSPCs with DNA methylation regulation being a key mechanism of action.


Subject(s)
DNA Methylation , Lithium , Child , Humans , Rats , Mice , Animals , Lithium/pharmacology , Neurogenesis , Gene Expression , Lithium Compounds/pharmacology
11.
Mol Psychiatry ; 28(10): 4280-4293, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37488168

ABSTRACT

Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.


Subject(s)
Bipolar Disorder , Lithium , Humans , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/diagnosis , Genes, Immunoglobulin , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Cell Line
12.
Neuropharmacology ; 226: 109410, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36608815

ABSTRACT

Bipolar disorder (BD) is characterized by manic and depressive mood episodes and loss of brain gray matter. Lithium has antimanic and neuroprotective properties, but only 30% BD patients respond to lithium pharmacotherapy. Dopamine signaling has been implicated in BD and may contribute to lithium response. Methamphetamine (METH) stimulates dopamine release and models the clinical features of mania but has never been used to study cell death in BD patient neurons. We used BD patient derived neuronal progenitor cells (NPCs) to determine whether the vulnerability to cell death differed in samples from lithium responder (Li-R) and non-responder (Li-NR) BD patients and healthy controls following METH exposure in vitro. We hypothesized that NPCs from Li-R and Li-NR would differ in vulnerability to METH, dopamine signaling and neuroprotection from lithium. Following METH, NPCs from controls and Li-NR showed significantly greater cell loss compared to Li-R. Pre-treatment of NPCs with the D1 dopamine receptor antagonist SCH 23390 reversed the neurotoxic effects of METH. In Li-R NPCs, expression of phosho-ERK1/2 was significantly increased. In Li-NR NPCs, phospho-AKT, D1 and D2 dopamine receptor proteins were significantly increased. Pre-treatment of NPCs with lithium before METH reversed the neurotoxic effects of METH in control NPCs, whereas Li-NR showed less protective benefit. Li-R cells showed decreased levels of cell death after METH and comparatively high viability, and lithium treatment did not increase viability any further. This novel NPC model of mania reveals differences in cell death that could help identify mechanisms of lithium response in BD.


Subject(s)
Bipolar Disorder , Methamphetamine , Neural Stem Cells , Humans , Lithium/pharmacology , Bipolar Disorder/drug therapy , Lithium Compounds/pharmacology , Mania/drug therapy , Methamphetamine/pharmacology , Dopamine/pharmacology , Antimanic Agents/pharmacology
13.
Chem Biol Interact ; 370: 110314, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36535311

ABSTRACT

Epidemiological studies have shown that low doses of lithium in the environment can have beneficial effects on mental health. Autism spectrum disorder, a neurodevelopmental disorder in which patients exhibit abnormal behaviors, pharmacological interventions usually relied on a range of psychotropic medications. However, such medications often produce severe side effects or are ineffective in symptoms. Finding alternative ways to improve abnormal behaviors in individuals with autism are warranted, in which case lithium may be a relatively safe and effective medication. Lithium salt therapy is used to treat a variety of neuropsychiatric disorders and has neuroprotective effects. In this study, we investigated the effects of different doses of lithium on neurobehavioural disorders using the rat model of autism established by valproic acid (VPA) injection. Lithium was observed to have an ameliorative effect on the social cognitive, social memory and anxiety levels in the rat model of autism. Immunofluorescence staining showed that subchronic LiCl administration (1.0 mmol/kg) significantly reduced the number of Iba-1 positive cells in the CA1 region of the hippocampus in VPA group and brought it close to the levels of control group. Significantly lower levels of the pro-inflammatory marker IL-6 were observed in the hippocampus and serum after lithium treatment. In addition, the lithium treatment increased the levels of H3K9 acetylation in the hippocampus of VPA-exposed rats. The results showed a defensive effect of environment-related lithium exposure doses on neurobehavioural deficits in the rat valproic acid model of autism, suggesting that it may be a potential drug for the treatment of autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Rats , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Autistic Disorder/chemically induced , Lithium/therapeutic use , Lithium/pharmacology , Autism Spectrum Disorder/chemically induced , Hippocampus , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use
14.
Neuromolecular Med ; 25(1): 125-135, 2023 03.
Article in English | MEDLINE | ID: mdl-36436129

ABSTRACT

Lithium is a mood stabilizer broadly used to prevent and treat symptoms of mania and depression in people with bipolar disorder (BD). Little is known, however, about its mode of action. Here, we analyzed the impact of lithium on synaptic vesicle (SV) cycling at presynaptic terminals releasing glutamate, a neurotransmitter previously implicated in BD and other neuropsychiatric conditions. We used the pHluorin-based synaptic tracer vGpH and a fully automated image processing pipeline to quantify the effect of lithium on both SV exocytosis and endocytosis in hippocampal neurons. We found that lithium selectively reduces SV exocytic rates during electrical stimulation, and markedly slows down SV recycling post-stimulation. Analysis of single-bouton responses revealed the existence of functionally distinct excitatory synapses with varying sensitivity to lithium-some terminals show responses similar to untreated cells, while others are markedly impaired in their ability to recycle SVs. While the cause of this heterogeneity is unclear, these data indicate that lithium interacts with the SV machinery and influences glutamate release in a large fraction of excitatory synapses. Together, our findings show that lithium down modulates SV cycling, an effect consistent with clinical reports indicating hyperactivation of glutamate neurotransmission in BD.


Subject(s)
Glutamic Acid , Lithium Compounds , Synapses , Synaptic Vesicles , Lithium Compounds/pharmacology , Glutamic Acid/metabolism , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , Action Potentials/drug effects , Bipolar Disorder/metabolism , Bipolar Disorder/pathology , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Hippocampus/pathology , Exocytosis/drug effects , Endocytosis/drug effects , Animals , Rats , Cells, Cultured
15.
Neuropsychopharmacology ; 48(7): 1000-1010, 2023 06.
Article in English | MEDLINE | ID: mdl-36376465

ABSTRACT

Bipolar disorder (BD) is a highly heritable mood disorder with intermittent episodes of mania and depression. Lithium is the first-in-line medication to treat BD, but it is only effective in a subset of individuals. Large-scale human genomic studies have repeatedly linked the ANK3 gene (encoding ankyrin-G, AnkG) to BD. Ank3 knockout mouse models mimic BD behavioral features and respond positively to lithium treatment. We investigated cellular phenotypes associated with BD, including dendritic arborization of pyramidal neurons and spine morphology in two models: (1) a conditional knockout mouse model which disrupts Ank3 expression in adult forebrain pyramidal neurons, and (2) an AnkG knockdown model in cortical neuron cultures. We observed a decrease in dendrite complexity and a reduction of dendritic spine number in both models, reminiscent of reports in BD. We showed that lithium treatment corrected dendrite and spine deficits in vitro and in vivo. We targeted two signaling pathways known to be affected by lithium using a highly selective GSK3ß inhibitor (CHIR99021) and an adenylate cyclase activator (forskolin). In our cortical neuron culture model, CHIR99021 rescues the spine morphology defects caused by AnkG knockdown, whereas forskolin rescued the dendrite complexity deficit. Interestingly, a synergistic action of both drugs was required to rescue dendrite and spine density defects in AnkG knockdown neurons. Altogether, our results suggest that dendritic abnormalities observed in loss of function ANK3 variants and BD patients may be rescued by lithium treatment. Additionally, drugs selectively targeting GSK3ß and cAMP pathways could be beneficial in BD.


Subject(s)
Cyclic AMP , Lithium , Mice , Adult , Animals , Humans , Lithium/pharmacology , Glycogen Synthase Kinase 3 beta , Colforsin/pharmacology , Signal Transduction , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Mice, Knockout , Ankyrins/genetics , Ankyrins/pharmacology
16.
Article in Russian | MEDLINE | ID: mdl-36440772

ABSTRACT

Lithium salts have been the mainstay of treatment for bipolar disorder for more than 50 years, since the FDA approved the treatment in 1970. Molecular mechanisms of lithium's action include inhibition of glycogen synthase kinase 3 beta and inositol monophosphatase, resulting in induction of brain-derived neurotrophic factor, antiapoptotic proteins, deprivation of calcium-induced apoptosis. Recent findings suggest autophagy regulation as a possible mechanism of lithium neuroprotective action. Moreover, lithium treatment has been reported to decrease accumulation of various pathological proteins including phosphorylated tau and amyloid-B. Also, telomeres length and telomerase activity are suggested to be upregulated by lithium. Clinical applications of lithium treatment include various neurodegenerative diseases, primarily Alzheimer disease, with increasing importance given to the use of lithium microdoses. Chemoreactome screening is used to find more safe and effective lithium compounds.


Subject(s)
Bipolar Disorder , Neurodegenerative Diseases , Humans , Lithium/pharmacology , Lithium/therapeutic use , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Neurodegenerative Diseases/drug therapy , Bipolar Disorder/drug therapy , Neuroprotection
17.
Acta Neurobiol Exp (Wars) ; 82(3): 245-253, 2022.
Article in English | MEDLINE | ID: mdl-36214707

ABSTRACT

Lithium is a mood stabilizer widely used in the pharmacotherapy of bipolar disorder and treatment­resistant depression. Taking into account dysregulated inflammatory activity in depression and the immunomodulatory role of lithium, we hypothesized that genes associated with inflammatory responses may be potential biomarkers of lithium action. We aimed to compare gene expression changes between the brain and the periphery after chronic lithium administration in an animal model of depression. Depressive behavior was induced by chronic mild stress protocol for 4 weeks. After 2 weeks, rats started to receive lithium (study group) or water (reference group). The control group were rats not exposed to stress. Amygdala, hippocampus, frontal cortex and peripheral blood were analyzed using whole transcriptome expression microarrays. Changes were confirmed with qPCR and ELISA assay. After 2 weeks of lithium administration, we observed significant changes in gene expression between amygdala and peripheral blood. Logistic regression analysis determined Alox15 expression as a predictor of lithium status, as its expression was tissue­specific and increased in amygdala and decreased in blood. Analysis of serum ALOX15 protein revealed its upregulation after two­week lithium administration. Our study suggests that lithium may have therapeutic potential in depressive behaviors. These results indicate immunomodulatory effect of lithium and that Alox15 may be a new potential marker of chronic lithium treatment.


Subject(s)
Depression , Lithium , Amygdala , Animals , Biomarkers , Depression/drug therapy , Depression/metabolism , Lithium/pharmacology , Lithium/therapeutic use , Lithium Compounds/pharmacology , Pilot Projects , Rats , Water
18.
Zool Res ; 43(6): 989-1004, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36257830

ABSTRACT

Ketamine, a rapid-acting antidepressant drug, has been used to treat major depressive disorder and bipolar disorder (BD). Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in patients. Ketamine has also been applied to establish animal models of mania. At present, however, the underlying mechanism is still unclear. In the current study, we found that chronic lithium exposure attenuated ketamine-induced mania-like behavior and c-Fos expression in the medial prefrontal cortex (mPFC) of adult male mice. Transcriptome sequencing was performed to determine the effect of lithium administration on the transcriptome of the PFC in ketamine-treated mice, showing inactivation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Pharmacological inhibition of AKT signaling by MK2206 (40 mg/kg), a selective AKT inhibitor, reversed ketamine-induced mania. Furthermore, selective knockdown of AKT via AAV-AKT-shRNA-EGFP in the mPFC also reversed ketamine-induced mania-like behavior. Importantly, pharmacological activation of AKT signaling by SC79 (40 mg/kg), an AKT activator, contributed to mania in low-dose ketamine-treated mice. Inhibition of PI3K signaling by LY294002 (25 mg/kg), a specific PI3K inhibitor, reversed the mania-like behavior in ketamine-treated mice. However, pharmacological inhibition of mammalian target of rapamycin (mTOR) signaling with rapamycin (10 mg/kg), a specific mTOR inhibitor, had no effect on ketamine-induced mania-like behavior. These results suggest that chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway, which may be a novel target for the development of BD treatment.


Subject(s)
Depressive Disorder, Major , Ketamine , Rodent Diseases , Male , Mice , Animals , Ketamine/toxicity , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Lithium/pharmacology , Mania , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , RNA, Small Interfering , TOR Serine-Threonine Kinases/genetics , Signal Transduction , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Sirolimus/pharmacology , Lithium Compounds/pharmacology , Mammals , Rodent Diseases/drug therapy
19.
Hum Genomics ; 16(1): 45, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253798

ABSTRACT

BACKGROUND: It has been suggested that bipolar disorder (BD) is associated with clinical and biological features of accelerated aging. In our previous studies, we showed that long-term lithium treatment was correlated with longer leukocyte telomere length (LTL) in BD patients. A recent study explored the role of TL in BD using patients-derived lymphoblastoid cell lines (LCLs), showing that baseline TL was shorter in BD compared to controls and that lithium in vitro increased TL but only in BD. Here, we used the same cell system (LCLs) to explore if a 7-day treatment protocol with lithium chloride (LiCl) 1 mM was able to highlight differences in TL between BD patients clinically responders (Li-R; n = 15) or non-responders (Li-NR; n = 15) to lithium, and if BD differed from non-psychiatric controls (HC; n = 15). RESULTS: There was no difference in TL between BD patients and HC. Moreover, LiCl did not influence TL in the overall sample, and there was no difference between diagnostic or clinical response groups. Likewise, LiCl did not affect TL in neural precursor cells from healthy donors. CONCLUSIONS: Our findings suggest that a 7-day lithium treatment protocol and the use of LCLs might not represent a suitable approach to deepen our understanding on the role of altered telomere dynamics in BD as previously suggested by studies in vivo.


Subject(s)
Bipolar Disorder , Neural Stem Cells , Bipolar Disorder/diagnosis , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Cell Line , Humans , Lithium/pharmacology , Lithium/therapeutic use , Lithium Chloride/pharmacology , Lithium Chloride/therapeutic use , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Neural Stem Cells/metabolism , Telomere/genetics
20.
J Affect Disord ; 317: 6-14, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36028011

ABSTRACT

BACKGROUND: There is an increasing interest about the role of miRNAs in the pathogenesis of bipolar disorder (BD). In this study, we aimed to examine the role of miRNAs as potential diagnostic and clinical biomarkers in BD. METHODS: Fifteen miRNAs in plasmas obtained from BD patients (n = 66) and from the healthy control group (n = 66) were analyzed by a qPCR test. Clinical variables including lithium treatment response were assessed with various test batteries. The correlation of the miRNA levels with the clinical variables and scale scores was examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the DIANA-miRPath v.3.0 software to identify the possible target genes. RESULTS: The miR-132, miR-134, miR-152, miR-607, miR-633, and miR-652 levels were significantly increased, whereas the miR-15b and miR-155 levels were found to be significantly decreased in the patient group compared to the controls. The miR-15b-5p and miR-155-5p levels and increases in the miR-134-5p and miR-652-3p levels were calculated to have 83.3 % sensitivity and 78.8 % specificity in determining the risk of BD. miR-155-5p was associated with the disease burden and severity. Fatty acid biosynthesis and metabolism, viral carcinogenesis, the EBV infection, and extracellular matrix and adhesion pathways were highlighted as target pathways. CONCLUSION: We can conclude that miRNAs may play a role in the pathophysiology of BD through various biological pathways and that miRNAs may be used as a screening test to distinguish bipolar patients from healthy controls. Our findings will provide a basis for long-term follow-up studies with larger samples.


Subject(s)
Bipolar Disorder , MicroRNAs , Biomarkers , Bipolar Disorder/diagnosis , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Fatty Acids , Gene Expression Profiling , Humans , Lithium/therapeutic use , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...