Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
J Phycol ; 59(3): 552-569, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36973579

ABSTRACT

The spread of non-indigenous and invasive seaweeds has increased worldwide, and their potential effects on native seaweeds have raised concern. Undaria pinnatifida is considered among the most prolific non-indigenous species. This species has expanded rapidly in the Northeast Pacific, overlapping with native communities such as the iconic giant kelp forests (Macrocystis pyrifera). Canopy shading by giant kelp has been argued to be a limiting factor for the presence of U. pinnatifida in the understory, thus its invasiveness capacity. However, its physiological plasticity under light limitation remains unclear. In this work, we compared the physiology and growth of juvenile U. pinnatifida and M. pyrifera sporophytes transplanted to the understory of a giant kelp forest, to juveniles growing outside of the forest. Extreme low light availability compared to that outside (~0.2 and ~4.4 mol photon ⋅ m-2 ⋅ d-1 , respectively) likely caused a "metabolic energy crisis" in U. pinnatifida, thus restricting its photoacclimation plasticity and nitrogen acquisition, ultimately reducing its growth. Despite M. pyrifera juveniles showing photoacclimatory responses (e.g., increases in photosynthetic efficiency and lower compensation irradiance, Ec ), their physiological/vegetative status deteriorated similarly to U. pinnatifida, which explains the low recruitment inside the forest. Generally, our results revealed the ecophysiological basis behind the limited growth and survival of juvenile U. pinnatifida sporophytes in the understory.


Subject(s)
Introduced Species , Kelp , Macrocystis , Undaria , Forests , Macrocystis/physiology , Photosynthesis
2.
PLoS One ; 18(3): e0271477, 2023.
Article in English | MEDLINE | ID: mdl-36952444

ABSTRACT

Giant kelp and bull kelp forests are increasingly at risk from marine heatwave events, herbivore outbreaks, and the loss or alterations in the behavior of key herbivore predators. The dynamic floating canopy of these kelps is well-suited to study via satellite imagery, which provides high temporal and spatial resolution data of floating kelp canopy across the western United States and Mexico. However, the size and complexity of the satellite image dataset has made ecological analysis difficult for scientists and managers. To increase accessibility of this rich dataset, we created Kelpwatch, a web-based visualization and analysis tool. This tool allows researchers and managers to quantify kelp forest change in response to disturbances, assess historical trends, and allow for effective and actionable kelp forest management. Here, we demonstrate how Kelpwatch can be used to analyze long-term trends in kelp canopy across regions, quantify spatial variability in the response to and recovery from the 2014 to 2016 marine heatwave events, and provide a local analysis of kelp canopy status around the Monterey Peninsula, California. We found that 18.6% of regional sites displayed a significant trend in kelp canopy area over the past 38 years and that there was a latitudinal response to heatwave events for each kelp species. The recovery from heatwave events was more variable across space, with some local areas like Bahía Tortugas in Baja California Sur showing high recovery while kelp canopies around the Monterey Peninsula continued a slow decline and patchy recovery compared to the rest of the Central California region. Kelpwatch provides near real time spatial data and analysis support and makes complex earth observation data actionable for scientists and managers, which can help identify areas for research, monitoring, and management efforts.


Subject(s)
Kelp , Macrocystis , Ecosystem , Kelp/physiology , Mexico , Forests
3.
Sci Rep ; 12(1): 22196, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564409

ABSTRACT

Climate change is producing shifts in the distribution and abundance of marine species. Such is the case of kelp forests, important marine ecosystem-structuring species whose distributional range limits have been shifting worldwide. Synthesizing long-term time series of kelp forest observations is therefore vital for understanding the drivers shaping ecosystem dynamics and for predicting responses to ongoing and future climate changes. Traditional methods of mapping kelp from satellite imagery are time-consuming and expensive, as they require high amount of human effort for image processing and algorithm optimization. Here we propose the use of mask region-based convolutional neural networks (Mask R-CNN) to automatically assimilate data from open-source satellite imagery (Landsat Thematic Mapper) and detect kelp forest canopy cover. The analyses focused on the giant kelp Macrocystis pyrifera along the shorelines of southern California and Baja California in the northeastern Pacific. Model hyper-parameterization was tuned through cross-validation procedures testing the effect of data augmentation, and different learning rates and anchor sizes. The optimal model detected kelp forests with high performance and low levels of overprediction (Jaccard's index: 0.87 ± 0.07; Dice index: 0.93 ± 0.04; over prediction: 0.06) and allowed reconstructing a time series of 32 years in Baja California (Mexico), a region known for its high variability in kelp owing to El Niño events. The proposed framework based on Mask R-CNN now joins the list of cost-efficient tools for long-term marine ecological monitoring, facilitating well-informed biodiversity conservation, management and decision making.


Subject(s)
Kelp , Macrocystis , Humans , Macrocystis/physiology , Ecosystem , Artificial Intelligence , Satellite Imagery , Mexico , Forests , Neural Networks, Computer
4.
Mar Drugs ; 21(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36662209

ABSTRACT

The aim of this study was to evaluate the antiangiogenic and immunomodulatory potential of sulfated polysaccharides from the marine algae Macrocystis integrifolia characterized by FTIR. The cytotoxicity of sulfated polysaccharides was evaluated using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay. Antiangiogenic activity was evaluated using the chicken chorioallantoic membrane (CAM) assay. Immunomodulatory activity was determined on macrophage functionality and allergic response. The results showed that sulfated polysaccharides significantly decreased angiogenesis in chicken chorioallantoic membranes (p < 0.05). Likewise, they inhibited in vivo chemotaxis and in vitro phagocytosis, the transcription process of genes that code the enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and nitric oxide synthase-2 (NOS-2) and the nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), showing immunomodulatory properties on the allergic response, as well as an in vivo inhibitory effect in the ovalbumin-induced inflammatory allergy model (OVA) and inhibited lymphocyte proliferation specific to the OVA antigen in immunized mice. Finally, these compounds inhibited the histamine-induced skin reaction in rats, the production of immunoglobulin E (IgE) in mice, and the passive response to skin anaphylaxis in rats. Therefore, the results of this research showed the potential of these compounds to be a promising source for the development of antiangiogenic and immunomodulatory drugs.


Subject(s)
Macrocystis , Animals , Mice , Rats , NF-kappa B , Polysaccharides/pharmacology , Spectroscopy, Fourier Transform Infrared , Sulfates , Angiogenesis Inhibitors/pharmacology , Immunologic Factors/pharmacology
5.
PLoS One ; 16(9): e0257662, 2021.
Article in English | MEDLINE | ID: mdl-34543325

ABSTRACT

Knowledge of the ecology of the fish fauna associated with kelp (primarily Macrocystis pyrifera) forests in Southern Patagonia is scarce, especially in how abiotic and biotic variables influence their structure, diversity, and distribution. This information is important for the management and conservation of this unique ecosystem, which has minimal anthropogenic impacts at present. We analyzed data from 122 quantitative underwater transects conducted within kelp forests at 61 stations from Chile's southern Patagonian fjords to the Cape Horn and Diego Ramirez archipelagos and the southern tip of Argentina, including the Mitre Peninsula and Isla de los Estados. In total, 25 fish species belonging to 13 families were observed. Multivariate analysis indicated that there are significant differences in fish assemblage structure among locations and wave exposures, which was driven primarily by Patagonotothen sima and Paranotothenia magellanica, which occurred on exposed and semi-exposed stations. P. cornucola was mainly distributed across sheltered stations of the Kawésqar National Park. Temperature, salinity, depth, and kelp density influenced fish assemblage structure, with the highest diversity in areas with the lowest temperature and greater depth at Isla de los Estados. In contrast, species richness, diversity, abundance, and biomass were all lower in areas with high density of the understory kelp Lessonia spp., which might be driven by the absence of P. tessellata, P. squamiceps and P. cornucola, the most important species in terms of occurrence, abundance, and biomass. Our study provides the first broad-scale description of the fish assemblages associated with kelp forests along the southern cone of South America based on non-invasive visual transects, improving our knowledge of the distribution of fish assemblages across several environmental conditions in this vast and little-studied area.


Subject(s)
Ecosystem , Kelp , Biodiversity , Forests , Macrocystis
6.
J Phycol ; 57(6): 1777-1791, 2021 12.
Article in English | MEDLINE | ID: mdl-34570392

ABSTRACT

Macroalgal holobiont studies involve understanding interactions between the host, its microbiota, and the environment. We analyzed the effect of bacteria-kelp interactions on phenotypic responses of two genetically distinct populations of giant kelp, Macrocystis pyrifera (north and south), exposed to different nitrogen (N) concentrations. In co-culture experiments with different N concentration treatments, we evaluated kelp growth responses and changes in three specific molecular markers associated with the N cycle, both in epiphytic bacteria (relative abundance of nrfA-gene: cytochrome c nitrite reductase) and macroalgae (expression of NR-gene: nitrate reductase; GluSyn-gene: glutamate synthase). Both kelp populations responded differently to N limitation, with M. pyrifera-south sporophytes having a lower specific growth rate (SGR) under N-limiting conditions than the northern population; M. pyrifera-north sporophytes showed no significant differences in SGR when exposed to low-N and high-N concentrations. This corresponded to a higher GluSyn-gene expression in the M. pyrifera-north sporophytes and the co-occurrence of specific nrfA bacterial taxa. These bacteria may increase ammonium availability under low-N concentrations, allowing M. pyrifera-north to optimize nutrient assimilation by increasing the expression of GluSyn. We conclude that bacteria-kelp interactions are important in enhancing kelp growth rates under low N availability, although this effect may be regulated by the genetic background of kelp populations.


Subject(s)
Kelp , Macrocystis , Bacteria/genetics , Nitrogen
7.
Molecules ; 26(8)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919590

ABSTRACT

Seaweed processing generates liquid fraction residual that could be used as a low-cost nutrient source for microbial production of metabolites. The Rhodotorula strain is able to produce antimicrobial compounds known as sophorolipids. Our aim was to evaluate sophorolipid production, with antibacterial activity, by marine Rhodotorula rubra using liquid fraction residual (LFR) from the brown seaweed Macrocystis pyrifera as the nutrient source. LFR having a composition of 32% w/w carbohydrate, 1% w/w lipids, 15% w/w protein and 52% w/w ash. The best culture condition for sophorolipid production was LFR 40% v/v, without yeast extract, artificial seawater 80% v/v at 15 °C by 3 growth days, with the antibacterial activity of 24.4 ± 3.1 % on Escherichia coli and 21.1 ± 3.8 % on Staphylococcus aureus. It was possible to identify mono-acetylated acidic and methyl ester acidic sophorolipid. These compounds possess potential as pathogen controllers for application in the food industry.


Subject(s)
Macrocystis/chemistry , Oleic Acids/chemistry , Plant Extracts/pharmacology , Rhodotorula/drug effects , Aquatic Organisms/chemistry , Oleic Acids/pharmacology , Plant Extracts/chemistry , Rhodotorula/pathogenicity
8.
J Phycol ; 57(3): 711-725, 2021 06.
Article in English | MEDLINE | ID: mdl-33583038

ABSTRACT

Inbreeding, the mating between genetically related individuals, often results in reduced survival and fecundity of offspring, relative to outcrossing. Yet, high inbreeding rates are commonly observed in seaweeds, suggesting compensatory reproductive traits may affect the costs and benefits of the mating system. We experimentally manipulated inbreeding levels in controlled crossing experiments, using gametophytes from 19 populations of Macrocystis pyrifera along its Eastern Pacific coastal distribution (EPC). The objective was to investigate the effects of male-female kinship on female fecundity and fertility, to estimate inbreeding depression in the F1 progeny, and to assess the variability of these effects among different regions and habitats of the EPC. Results revealed that the presence and kinship of males had a significant effect on fecundity and fertility of female gametophytes. Females left alone or in the presence of sibling males express the highest gametophyte size, number, and size of oogonia, suggesting they were able to sense the presence and the identity of their mates before gamete contact. The opposite trend was observed for the production of embryos per female gametes, indicating higher costs of selfing and parthenogenesis than outcrossing on fertility. However, the increased fecundity compensated for the reduced fertility, leading to a stable overall reproductive output. Inbreeding also affected morphological traits of juvenile sporophytes, but not their heatwave tolerance. The male-female kinship effect was stronger in high-latitude populations, suggesting that females from low-latitude marginal populations might have evolved to mate with any male gamete to guarantee reproductive success.


Subject(s)
Macrocystis , Germ Cells, Plant , Inbreeding , Reproduction
9.
Sci Total Environ ; 751: 141810, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32882566

ABSTRACT

The channel and fjord region of southern Chilean Patagonia hosts giant kelp forests (Macrocystis pyrifera) that have little known site-specific responses to diverse physical gradients. In this study, the functionality of the bio-optical, morphological and biochemical features of the kelps, that determine their light trapping and acclimation, were studied along a gradient of varying turbidity and light conditions at the land-terminating glacier of fjord Yendegaia in the Beagle Channel. These habitats are marked by glacial retreat, and M. pyrifera has successfully colonized new areas due to the effects of warming. Results indicated that under a sharp gradient of turbidity and light availability, the kelps have adapted shading characteristics. The photobiological traits (e.g. light absorption, pigment concentration, photochemistry and blade optics) of algae from depths between 6 and 13 m varied in relation to the degree of turbidity along the fjord. However, these populations did not show obvious intra-thallus variation along the longitudinal profile e.g. blades located at different depths showed relatively similar acclimation potential to the prevailing light field. Only basal sporophylls showed general differences in comparison with the vegetative fronds. Otherwise, the high phenolic (phlorotannin) content, which was reflected in the massive presence of intracellular physodes, suggests that these organisms could be biochemically well-equipped to cope with changes in physical conditions or the presence of herbivore invertebrates (e.g. sea urchins).


Subject(s)
Macrocystis , Animals , Chile , Dogs , Estuaries , Ice Cover , Photobiology
10.
Sci Rep ; 10(1): 8279, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427928

ABSTRACT

Macrocystis pyrifera and Lessonia spicata are economically and ecologically relevant brown seaweeds that recently have been classified as members of two separated families within Laminariales (kelps). Here we describe for the first time the Macrocystis pyrifera x Lessonia spicata hybridization in the wild (Chiloe Island, Southeastern Pacific), where populations of the two parents exist sympatrically. Externally, this hybrid exhibited typical features of its parents M. pyrifera (cylindrical and flexible distal stipes, serrate frond margins and presence of sporophylls) and L. spicata (rigid and flat main stipe and first bifurcation), as well as intermediate features between them (thick unfused haptera in the holdfast). Histological sections revealed the prevalence of mucilage ducts within stipes and fronds (absent in Lessonia) and fully developed unilocular sporangia in the sporophylls. Molecular analyses confirmed the presence of the two parental genotypes for ITS1 nrDNA and the M. pyrifera genotype for two predominantly maternally inherited cytoplasmic markers (COI and rbcLS spacer) in the tissue of the hybrid. A metabolome-wide approach revealed that this hybrid is more chemically reminiscent to M. pyrifera. Nevertheless, several hits were identified as Lessonia exclusive or more remarkably, not present in any of the parent. Meiospores developed into apparently fertile gametophytes, which gave rise to F1 sporophytes that reached several millimeters before suddenly dying. In-vitro reciprocal crossing of Mar Brava gametophytes from both species revealed that although it is rare, interfamilial hybridization between the two species is possible but mostly overcome by pseudogamy of female gametophytes.


Subject(s)
Genotyping Techniques/methods , Laminaria/physiology , Macrocystis/physiology , Metabolomics/methods , DNA, Algal/genetics , Genotype , Hybridization, Genetic , Plant Breeding , Sporangia/physiology , Sympatry
11.
PLoS One ; 15(3): e0229259, 2020.
Article in English | MEDLINE | ID: mdl-32160219

ABSTRACT

The kelp forests of southern South America are some of the least disturbed on the planet. The remoteness of this region has, until recently, spared it from many of the direct anthropogenic stressors that have negatively affected these ecosystems elsewhere. Re-surveys of 11 locations at the easternmost extent of Tierra del Fuego originally conducted in 1973 showed no significant differences in the densities of adult and juvenile Macrocystis pyrifera kelp or kelp holdfast diameter between the two survey periods. Additionally, sea urchin assemblage structure at the same sites were not significantly different between the two time periods, with the dominant species Loxechinus albus accounting for 66.3% of total sea urchin abundance in 2018 and 61.1% in 1973. Time series of Landsat imagery of the region from 1998 to 2018 showed no long-term trends in kelp canopy over the past 20 years. However, ~ 4-year oscillations in canopy fraction were observed and were strongly and negatively correlated with the NOAA Multivariate ENSO index and sea surface temperature. More extensive surveying in 2018 showed significant differences in benthic community structure between exposed and sheltered locations. Fish species endemic to the Magellanic Province accounted for 73% of all nearshore species observed and from 98-100% of the numerical abundance enumerated at sites. Fish assemblage structure varied significantly among locations and wave exposures. The recent creation of the Yaganes Marine Park is an important step in protecting this unique and biologically rich region; however, the nearshore waters of the region are currently not included in this protection. There is a general lack of information on changes in kelp forests over long time periods, making a global assessment difficult. A complete picture of how these ecosystems are responding to human pressures must also include remote locations and locations with little to no impact.


Subject(s)
Climate Change , Fishes/physiology , Food Chain , Macrocystis/physiology , Oceans and Seas , Sea Urchins/physiology , Animals , South America , Temperature
12.
J Appl Microbiol ; 127(4): 1069-1079, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31237965

ABSTRACT

AIMS: To evaluate an aqueous extract of Macrocystis pyrifera as a nutrient source for the production of carotenoids by a marine Rhodotorula mucilaginosa isolated from seaweed samples. MATERIALS AND RESULTS: The effect of different culture conditions on the concentration of biomass and total pigments was evaluated using a Box-Behnken experimental design. The seaweed extract contained 15% w w-1 of protein and 20% w w-1 of carbohydrate; the main sugar in this fraction was trehalose (78%). The culture conditions that maximize the total pigment concentration (1·84 ± 0·03 mg l-1 ) were initial pH equal to 7, yeast extract as nitrogen source at a concentration of 4 g l-1 , seaweed extract concentration at 25% v v-1 , incubation performed at 25°C and 150 rev min-1 during 6 days. Under optimal growth conditions, three carotenoids were identified among the pigments produced by R. mucilaginosa, lycopene (38·4 ± 9·4%), ß-carotene (21·8 ± 1·5%) and astaxanthin (1·8 ± 0·3%). CONCLUSIONS: Carotenoids of commercial interest (lycopene, ß-carotene and astaxanthin) can be produced using a marine R. mucilaginosa cultivated with an aqueous extract of M. pyrifera as nutrient source. The total pigment concentration in the culture ranged between 0·82 and 1·84 mg l-1 , and was significantly affected by the concentration of the seaweed extract, and yeast extract. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that M. pyrifera can be used as a nutrient source for the production of carotenoids by the marine yeast.


Subject(s)
Carotenoids , Macrocystis/chemistry , Rhodotorula , Biomass , Bioreactors , Carotenoids/analysis , Carotenoids/metabolism , Culture Media , Rhodotorula/metabolism , Rhodotorula/physiology
13.
Viruses ; 10(8)2018 08 05.
Article in English | MEDLINE | ID: mdl-30081590

ABSTRACT

Two sister orders of the brown macroalgae (class Phaeophyceae), the morphologically complex Laminariales (commonly referred to as kelp) and the morphologically simple Ectocarpales are natural hosts for the dsDNA phaeoviruses (family Phycodnaviridae) that persist as proviruses in the genomes of their hosts. We have previously shown that the major capsid protein (MCP) and DNA polymerase concatenated gene phylogeny splits phaeoviruses into two subgroups, A and B (both infecting Ectocarpales), while MCP-based phylogeny suggests that the kelp phaeoviruses form a distinct third subgroup C. Here we used MCP to better understand the host range of phaeoviruses by screening a further 96 and 909 samples representing 11 and 3 species of kelp and Ectocarpales, respectively. Sporophyte kelp samples were collected from their various natural coastal habitats spanning five continents: Africa, Asia, Australia, Europe, and South America. Our phylogenetic analyses showed that while most of the kelp phaeoviruses, including one from Macrocystispyrifera, belonged to the previously designated subgroup C, new lineages of Phaeovirus in 3 kelp species, Ecklonia maxima, Ecklonia radiata, Undaria pinnatifida, grouped instead with subgroup A. In addition, we observed a prevalence of 26% and 63% in kelp and Ectocarpales, respectively. Although not common, multiple phaeoviral infections per individual were observed, with the Ectocarpales having both intra- and inter-subgroup phaeoviral infections. Only intra-subgroup phaeoviral infections were observed in kelp. Furthermore, prevalence of phaeoviral infections within the Ectocarpales is also linked to their exposure to waves. We conclude that phaeoviral infection is a widely occurring phenomenon in both lineages, and that phaeoviruses have diversified with their hosts at least since the divergence of the Laminariales and Ectocarpales.


Subject(s)
Kelp/virology , Macrocystis/virology , Phycodnaviridae/classification , Undaria/virology , Virus Diseases/virology , Asia , Australia , Capsid Proteins/genetics , DNA-Directed DNA Polymerase , Ecosystem , Europe , Oceans and Seas , Phycodnaviridae/isolation & purification , Phylogeny , Proviruses/genetics , Proviruses/physiology , South America , Virus Latency
14.
J Phycol ; 54(3): 368-379, 2018 06.
Article in English | MEDLINE | ID: mdl-29533462

ABSTRACT

The persistence of floating seaweeds, which depends on abiotic conditions but also herbivory, had previously been mostly tested in outdoor mesocosm experiments. In order to investigate if the obtained mesocosm results of high seaweed persistence under natural environmental conditions and under grazing pressure can be extrapolated to field situations, we conducted in situ experiments. During two summers (2007 and 2008), Macrocystis pyrifera was tethered (for 14 d) to lines in the presence and absence of the amphipod Peramphithoe femorata at three sites (Iquique, Coquimbo, Calfuco). We hypothesized that grazing damage and seaweed persistence vary among sites due to different abiotic factors. By incubating the sporophytes in mesh bags, we were either able to isolate (grazing) or exclude (control) amphipods. To test for a mesh bag artifact, a set of sporophytes was incubated without mesh bags (natural). Mesh bags used to exclude herbivores influenced sporophyte growth and physiological performance. The chlorophyll a (Chl a) content depended largely on grazers and grazed sporophytes grew less than natural and control sporophytes within the two summers. A decrease in Chl a content was found for the sites with the highest prevailing irradiances and temperatures, suggesting an efficient acclimation to these sea surface conditions. Our field-based results of sporophyte acclimation ability even under grazing pressure widely align with previous mesocosm results. We conclude that M. pyrifera and other temperate floating seaweeds can function as long-distance dispersal vectors even with hitchhiking mesoherbivores.


Subject(s)
Acclimatization , Amphipoda/physiology , Environment , Food Chain , Macrocystis/physiology , Animals , Biomass , Chile , Herbivory , Macrocystis/growth & development , Photosynthesis , Population Dynamics
15.
Mar Environ Res ; 135: 93-102, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29428528

ABSTRACT

Finfish aquaculture is an activity that has experienced an explosive global development, but presents several environmental risks, such as high nitrogen outputs with potential eutrophication consequences. Therefore, the integration of seaweed aquaculture with the aim of decreasing nitrogen emissions associated with intensive salmon farming has been proposed as a bioremediation solution. Ecophysiological knowledge about seaweeds cultured close to farming cages is, however, still rudimentary. We experimentally studied the growth and physiological responses of Macrocystis pyrifera (Linnaeus) C. Agardh in a suspended culture system near a commercial salmon farm at three culture depths in order to understand its productivity performance. The results showed maximum growth responses at intermediate depths (3 m) as opposed to near the surface (1 m) or at a deeper culture level (6 m). At 6 m depth, light limitations were detected, whereas the sporophytes growing at 1 m depth responded to high irradiances, especially in late spring and summer, where they were more intensely exposed to decay of photosynthesis than individuals from other depths. Accordingly, photosynthetic pigment concentrations (chlorophyll a and c, and fucoxonthin) were higher during low-light seasons (winter and early spring) but decreased during the summer. On the other hand, although both nitrogen uptake and Nitrate Reductase (NR) activity varied seasonally, increasing significantly in spring and summer, these variables were not affected by culture depth. Therefore, the optimal culture depth of M. pyrifera near salmon farms appears to be a physiological integration between nitrogen supply and demand, which is modulated by plant acclimation to the seasonal change in light and temperature. The results allow to discuss about the environmental constrains of M. pyrifera in an ecophysiological context to improve the understanding of its aquaculture, and to contribute relevant information on the use of this species in bioremediation.


Subject(s)
Aquaculture , Environmental Monitoring , Macrocystis/physiology , Nitrogen/metabolism , Photosynthesis/physiology , Animals , Chlorophyll A , Farms , Salmon
16.
J Environ Manage ; 207: 70-79, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29154010

ABSTRACT

Reactive Black 5, RB5, has been used as a model azo dye to evaluate the removal efficiency of sorption on Macrocystis pyrifera biomass (Mpyr) and commercial zerovalent iron nanoparticles (nZVI) in individual and combined treatments. The best conditions for the treatment with the isolated materials were first determined, and then, in series and combined treatments were performed under these conditions, achieving removal efficiencies higher than 80% of the initial dye concentration. Strengths and weaknesses of all removal strategies (individual, in series and combined) are analyzed regarding the application on real effluents. Mpyr efficiently adsorbed RB5, but also increased the total organic content by partial dissolution of components of the algal biomass. Removal experiments with commercial nZVI were also efficient but liberated Fe to the solution, and sulfanilic acid was observed after the treatment as a product of RB5 degradation. In contrast, after the Mpyr treatment, no sulfanilic acid was detected, suggesting that sulfanilic acid is efficiently adsorbed by the biomass. The best condition was the integrated use of Mpyr and nZVI, with a remarkable removal efficiency (69-80%) obtained after only 1 h of treatment. Finally, nZVI were successfully immobilized in Mpyr, and the hybrid material was used to remove RB5 in continuous flow experiments at pH 3, obtaining a removal capacity of 39.9 mg RB5 g-1 after a total processed volume of 630 mL of [RB5]0 = 100 mg L-1.


Subject(s)
Macrocystis , Nanoparticles , Naphthalenesulfonates , Water Purification , Biomass , Iron , Water Pollutants, Chemical
17.
Food Chem ; 237: 312-319, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28764002

ABSTRACT

Phlorotannins are secondary metabolites produced by brown seaweed, which are known for their nutraceutical and pharmacological properties. The aim of this work was to determine the type of macroporous resin and the conditions of operation that improve the purification of phlorotannins extracted from brown seaweed, Macrocystis pyrifera. For the purification of phlorotannins, six resins (HP-20, SP-850, XAD-7, XAD-16N, XAD-4 and XAD-2) were assessed. The kinetic adsorption allowed determination of an average adsorption time for the resins of 9h. The highest level of purification of phlorotannins was obtained with XAD-16N, 42%, with an adsorption capacity of 183±18mgPGE/g resin, and a desorption ratio of 38.2±7.7%. According to the adsorption isotherm the best temperature of operation was 25°C, and the model that best described the adsorption properties was the Freundlich model. The purification of phlorotannins might expand their use as a bioactive substance in the food, nutraceutical and pharmaceutical industries.


Subject(s)
Macrocystis/chemistry , Acrylic Resins , Adsorption , Polystyrenes , Resins, Plant
18.
Toxins (Basel) ; 9(6)2017 06 12.
Article in English | MEDLINE | ID: mdl-28604648

ABSTRACT

The saxitoxin-group (STX-group) corresponds to toxic metabolites produced by cyanobacteria and dinoflagellates of the genera Alexandrium, Gymnodinium, and Pyrodinium. Over the last decade, it has been possible to extrapolate the areas contaminated with the STX-group worldwide, including Chile, a phenomenon that has affected ≈35% of the Southern Pacific coast territory, generating a high economic impact. The objective of this research was to study the toxicity of the STX-group in all aquatic organisms (bivalves, algae, echinoderms, crustaceans, tunicates, cephalopods, gastropods, and fish) present in areas with a variable presence of harmful algal blooms (HABs). Then, the toxic profiles of each species and dose of STX equivalents ingested by a 60 kg person from 400 g of shellfish were determined to establish the health risk assessment. The toxins with the highest prevalence detected were gonyautoxin-4/1 (GTX4/GTX1), gonyautoxin-3/2 (GTX3/GTX2), neosaxitoxin (neoSTX), decarbamoylsaxitoxin (dcSTX), and saxitoxin (STX), with average concentrations of 400, 2800, 280, 200, and 2000 µg kg-1 respectively, a species-specific variability, dependent on the evaluated tissue, which demonstrates the biotransformation of the analogues in the trophic transfer with a predominance of α-epimers in all toxic profiles. The identification in multiple vectors, as well as in unregulated species, suggests that a risk assessment and risk management update are required; also, chemical and specific analyses for the detection of all analogues associated with the STX-group need to be established.


Subject(s)
Food Contamination/analysis , Saxitoxin/analysis , Seafood/analysis , Animals , Cyanobacteria , Dinoflagellida , Food Chain , Invertebrates/chemistry , Invertebrates/metabolism , Macrocystis/chemistry , Macrocystis/metabolism , Salmon/metabolism , Saxitoxin/metabolism
19.
J Phycol ; 53(1): 230-234, 2017 02.
Article in English | MEDLINE | ID: mdl-27878814

ABSTRACT

Recent findings on holdfast development in the giant kelp highlighted its key importance for Macrocystis vegetative propagation. We report here for the first time the development of adventitious holdfasts from Macrocystis stipes. Swellings emerge spontaneously from different areas of the stipes, especially in senescent or creeping individuals. After being manually fastened to solid substrata, these swellings elongated into haptera, which became strongly attached after 1 month. Within 4 months, new thalli increased in size and vitality, and developed reproductive fronds. Our results suggest the usage of these structures for auxiliary attachment techniques. These could act as a backup, when primary holdfasts are weak, and thus improve the survival rate of the giant kelp in natural beds.


Subject(s)
Kelp/physiology , Macrocystis/physiology , Chile , Kelp/growth & development , Macrocystis/growth & development , Reproduction
20.
Mol Ecol ; 24(19): 4866-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26339775

ABSTRACT

At small spatial and temporal scales, genetic differentiation is largely controlled by constraints on gene flow, while genetic diversity across a species' distribution is shaped on longer temporal and spatial scales. We assess the hypothesis that oceanographic transport and other seascape features explain different scales of genetic structure of giant kelp, Macrocystis pyrifera. We followed a hierarchical approach to perform a microsatellite-based analysis of genetic differentiation in Macrocystis across its distribution in the northeast Pacific. We used seascape genetic approaches to identify large-scale biogeographic population clusters and investigate whether they could be explained by oceanographic transport and other environmental drivers. We then modelled population genetic differentiation within clusters as a function of oceanographic transport and other environmental factors. Five geographic clusters were identified: Alaska/Canada, central California, continental Santa Barbara, California Channel Islands and mainland southern California/Baja California peninsula. The strongest break occurred between central and southern California, with mainland Santa Barbara sites forming a transition zone between the two. Breaks between clusters corresponded approximately to previously identified biogeographic breaks, but were not solely explained by oceanographic transport. An isolation-by-environment (IBE) pattern was observed where the northern and southern Channel Islands clustered together, but not with closer mainland sites, despite the greater distance between them. The strongest environmental association with this IBE pattern was observed with light extinction coefficient, which extends suitable habitat to deeper areas. Within clusters, we found support for previous results showing that oceanographic connectivity plays an important role in the population genetic structure of Macrocystis in the Northern hemisphere.


Subject(s)
Genetics, Population , Macrocystis/genetics , Alaska , California , Canada , Ecosystem , Gene Flow , Genotype , Mexico , Microsatellite Repeats , Models, Genetic , Pacific Ocean , Phylogeography , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL