Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 666
Filter
1.
Science ; 384(6696): 697-703, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723080

ABSTRACT

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Subject(s)
Anopheles , Hydrology , Malaria , Mosquito Vectors , Animals , Malaria/transmission , Africa , Anopheles/parasitology , Mosquito Vectors/parasitology , Climate Change , Humans , Seasons , Rain , Models, Theoretical , Water , Greenhouse Gases/analysis
2.
PLoS One ; 19(5): e0303473, 2024.
Article in English | MEDLINE | ID: mdl-38743768

ABSTRACT

Urban malaria has become a challenge for most African countries due to urbanization, with increasing population sizes, overcrowding, and movement into cities from rural localities. The rapid expansion of cities with inappropriate water drainage systems, abundance of water storage habitats, coupled with recurrent flooding represents a concern for water-associated vector borne diseases, including malaria. This situation could threaten progress made towards malaria elimination in sub-Saharan countries, including Senegal, where urban malaria has presented as a threat to national elimination gains. To assess drivers of urban malaria in Senegal, a 5-month study was carried out from August to December 2019 in three major urban areas and hotspots for malaria incidence (Diourbel, Touba, and Kaolack) including the rainy season (August-October) and partly dry season (November-December). The aim was to characterize malaria vector larval habitats, vector dynamics across both seasons, and to identify the primary eco- environmental entomological factors contributing to observed urban malaria transmission. A total of 145 Anopheles larval habitats were found, mapped, and monitored monthly. This included 32 in Diourbel, 83 in Touba, and 30 in Kaolack. The number of larval habitats fluctuated seasonally, with a decrease during the dry season. In Diourbel, 22 of the 32 monitored larval habitats (68.75%) were dried out by December and considered temporary, while the remaining 10 (31.25%) were classified as permanent. In the city of Touba 28 (33.73%) were temporary habitats, and of those 57%, 71% and 100% dried up respectively by October, November, and December. However, 55 (66.27%) habitats were permanent water storage basins which persisted throughout the study. In Kaolack, 12 (40%) permanent and 18 (60%) temporary Anopheles larval habitats were found and monitored during the study. Three malaria vectors (An. arabiensis, An. pharoensis and An. funestus s.l.) were found across the surveyed larval habitats, and An. arabiensis was found in all three cities and was the only species found in the city of Diourbel, while An. arabiensis, An. pharoensis, and An. funestus s.l. were detected in the cities of Touba and Kaolack. The spatiotemporal observations of immature malaria vectors in Senegal provide evidence of permanent productive malaria vector larval habitats year-round in three major urban centers in Senegal, which may be driving high urban malaria incidence. This study aimed to assess the presence and type of anopheline larvae habitats in urban areas. The preliminary data will better inform subsequent detailed additional studies and seasonally appropriate, cost-effective, and sustainable larval source management (LSM) strategies by the National Malaria Control Programme (NMCP).


Subject(s)
Anopheles , Cities , Ecosystem , Larva , Malaria , Mosquito Vectors , Seasons , Animals , Anopheles/parasitology , Senegal/epidemiology , Malaria/epidemiology , Malaria/transmission , Mosquito Vectors/parasitology , Incidence , Humans
3.
Malar J ; 23(1): 135, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711028

ABSTRACT

BACKGROUND: The direct membrane feeding assay (DMFA), whereby gametocyte-infected blood is collected from human donors and from which mosquitoes feed through a membrane, is proving essential for assessing parameters influencing Plasmodium transmission potential in endemic countries. The success of DMFAs is closely tied to gametocyte density in the blood, with relatively high gametocytaemia ensuring optimal infection levels in mosquitoes. As transmission intensity declines with control efforts, the occurrence of asymptomatic individuals with low gametocyte densities, who can significantly contribute to the infectious reservoir, is increasing. This poses a limitation to studies relying on the experimental infection of large numbers of mosquitoes with natural isolates of Plasmodium. A simple, field-applicable method is presented for improving parasite infectivity by concentrating Plasmodium falciparum gametocytes. METHODS: Anopheles gambiae received one of the following 5 blood treatments through DMFA: (i) whole blood (WB) samples from naturally-infected donors; (ii) donor blood whose plasma was replaced with the same volume of Plasmodium-naive AB + serum (1:1 control); (iii) plasma replaced with a volume of malaria-naïve AB + serum equivalent to half (1:1/2), or to a quarter (1:1/4), of the initial plasma volume; and (v) donor blood whose plasma was fully removed (RBC). The experiment was repeated 4 times using 4 distinct wild parasite isolates. Seven days post-infection, a total of 1,095 midguts were examined for oocyst presence. RESULTS: Substituting plasma with reduced amounts (1:1/2 and 1:1/4) of Plasmodium-naive AB + serum led to a 31% and 17% increase of the mosquito infection rate and to a 85% and 308% increase in infection intensity compared to the 1:1 control, respectively. The full removal of plasma (RBC) reduced the infection rate by 58% and the intensity by 64% compared to the 1:1 control. Reducing serum volumes (1:1/2; 1:1/4 and RBC) had no impact on mosquito feeding rate and survival when compared to the 1:1 control. CONCLUSIONS: Concentrating gametocytic blood by replacing natural plasma by lower amount of naive serum can enhance the success of mosquito infection. In an area with low gametocyte density, this simple and practical method of parasite concentration can facilitate studies on human-to-mosquito transmission such as the evaluation of transmission-blocking interventions.


Subject(s)
Anopheles , Mosquito Vectors , Plasmodium falciparum , Plasmodium falciparum/physiology , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Female , Feeding Behavior
4.
Parasit Vectors ; 17(1): 227, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755646

ABSTRACT

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.


Subject(s)
Culicidae , Psychodidae , Ticks , Volatile Organic Compounds , Animals , Volatile Organic Compounds/metabolism , Psychodidae/physiology , Psychodidae/parasitology , Ticks/physiology , Humans , Culicidae/physiology , Behavior, Animal , Vector Borne Diseases/transmission , Female , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Plasmodium falciparum/physiology
5.
J Math Biol ; 89(1): 7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772937

ABSTRACT

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Subject(s)
Malaria, Vivax , Mathematical Concepts , Mosquito Vectors , Plasmodium vivax , Superinfection , Humans , Plasmodium vivax/immunology , Plasmodium vivax/physiology , Superinfection/immunology , Superinfection/transmission , Superinfection/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Disease Reservoirs/parasitology , Models, Biological , Computer Simulation , Anopheles/parasitology , Anopheles/immunology
6.
BMC Biol ; 22(1): 117, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764011

ABSTRACT

BACKGROUND: Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. RESULTS: The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. CONCLUSIONS: The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge.


Subject(s)
Anopheles , Insecticide Resistance , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Anopheles/genetics , Insecticide Resistance/genetics , Malaria/transmission , Mosquito Vectors/parasitology , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Phenotype , Insecticides/pharmacology , Spatio-Temporal Analysis , Africa South of the Sahara , Female
7.
Math Biosci ; 372: 109189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580079

ABSTRACT

The mosquito-borne disease (malaria) imposes significant challenges on human health, healthcare systems, and economic growth/productivity in many countries. This study develops and analyzes a model to understand the interplay between malaria dynamics, economic growth, and transient events. It uncovers varied effects of malaria and economic parameters on model outcomes, highlighting the interdependence of the reproduction number (R0) on both malaria and economic factors, and a reciprocal relationship where malaria diminishes economic productivity, while higher economic output is associated with reduced malaria prevalence. This emphasizes the intricate interplay between malaria dynamics and socio-economic factors. The study offers insights into malaria control and underscores the significance of optimizing external aid allocation, especially favoring an even distribution strategy, with the most significant reduction observed in an equal monthly distribution strategy compared to longer distribution intervals. Furthermore, the study shows that controlling malaria in high mosquito biting areas with limited aid, low technology, inadequate treatment, or low economic investment is challenging. The model exhibits a backward bifurcation implying that sustainability of control and mitigation measures is essential even when R0 is slightly less than one. Additionally, there is a parameter regime for which long transients are feasible. Long transients are critical for predicting the behavior of dynamic systems and identifying factors influencing transitions; they reveal reservoirs of infection, vital for disease control. Policy recommendations for effective malaria control from the study include prioritizing sustained control measures, optimizing external aid allocation, and reducing mosquito biting.


Subject(s)
Economic Development , Malaria , Malaria/economics , Malaria/prevention & control , Malaria/parasitology , Malaria/epidemiology , Humans , Economic Development/statistics & numerical data , Basic Reproduction Number/statistics & numerical data , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/growth & development
8.
Theor Popul Biol ; 157: 118-128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626854

ABSTRACT

Infectious disease agents can influence each other's dynamics in shared host populations. We consider such influence for two mosquito-borne infections where one pathogen is endemic at the time that a second pathogen invades. We regard a setting where the vector has a bias towards biting host individuals infected with the endemic pathogen and where there is a cost to co-infected hosts. As a motivating case study, we regard Plasmodium spp., that cause avian malaria, as the endemic pathogen, and Usutu virus (USUV) as the invading pathogen. Hosts with malaria attract more mosquitoes compared to susceptible hosts, a phenomenon named vector bias. The possible trade-off between the vector-bias effect and the co-infection mortality is studied using a compartmental epidemic model. We focus first on the basic reproduction number R0 for Usutu virus invading into a malaria-endemic population, and then explore the long-term dynamics of both pathogens once Usutu virus has become established. We find that the vector bias facilitates the introduction of malaria into a susceptible population, as well as the introduction of Usutu in a malaria-endemic population. In the long term, however, both a vector bias and co-infection mortality lead to a decrease in the number of individuals infected with either pathogen, suggesting that avian malaria is unlikely to be a promoter of Usutu invasion. This proposed approach is general and allows for new insights into other negative associations between endemic and invading vector-borne pathogens.


Subject(s)
Birds , Flavivirus , Plasmodium , Animals , Birds/virology , Birds/parasitology , Plasmodium/pathogenicity , Flavivirus/pathogenicity , Coinfection/virology , Malaria, Avian , Endemic Diseases , Flavivirus Infections/virology , Mosquito Vectors/virology , Mosquito Vectors/parasitology , Malaria
9.
PLoS Pathog ; 20(4): e1012145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598552

ABSTRACT

Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.


Subject(s)
Anopheles , Malaria, Falciparum , Plasmodium falciparum , Wolbachia , Animals , Anopheles/parasitology , Anopheles/microbiology , Anopheles/immunology , Wolbachia/immunology , Plasmodium falciparum/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Mosquito Vectors/parasitology , Mosquito Vectors/microbiology , Mosquito Vectors/immunology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/immunology , Transcriptome , Female
10.
J Vector Borne Dis ; 61(1): 136-142, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648416

ABSTRACT

BACKGROUND OBJECTIVES: Annual mass drug administration (MDA) is the main strategy to interrupt the transmission of lymphatic filariasis (LF) in the community. The main aim of monitoring the MDA program, for its effectiveness and interruption of LF is the post-MDA surveillance using antigen survey in children born after MDA. The latest technique of new research suggests that xenomonitoring is an effective tool for monitoring LF intervention. The objective of this study was to assess the W. bancrofti infection/or infectivity in vector mosquitoes by xenomonitoring during post-MDA surveillance. METHODS: A descriptive cross-sectional study was conducted in the hotspots of selected four districts of Central Nepal. A gravid trap technique was used for sampling mosquitoes. Infection/or infectivity was determined via the dissection of vector mosquitoes. Anopheles, Aedes, Armigerus and Culex species were collected from hotspots of four endemic districts, two from the hilly region (Lalitpur and Dhading) and two from Terai region (Bara and Mahottari) of Central Nepal. RESULTS: A total of 4450 mosquitoes belonging to four genera, Anopheles, Culex, Armigeres, and Aedes were collected from four hotspots. The distribution of Culex quinquefasciatus was found to be the highest, 88.9% (n=3955/4450) followed by Cx. vishnui (4.5%), Armigeres sp (5.8%), An. culicifascies (0.2%), Aedes spp (0.8%). The proportion of female mosquitoes trapped is significantly higher. A total of 3344 parous Cx. quinquefasciatus mosquitoes were dissected for any larval stage of W. bancrofti. We could not find any filarial infection in dissected mosquito samples. INTERPRETATION CONCLUSION: We conclude that the gravid trap is an efficient tool for the collection of gravid Cx. quinquefasciatus mosquitoes for xenomonitoring studies of filariasis endemic regions. Vector composition indicated a maximum number of vector mosquitoes of lymphatic filariasis were trapped compared with the other three species. Distribution and density of Cx. quinquefasciatus was found highest in four hotspots of endemic districts. None of the Cx. quinquefasciatus dissected were found to be infected by larval forms of filaria. Since the low levels of infection persistence in the human population in these hot spots, vector infection and infectivity can't be ignored. Microscopic xenomonitoring at a low level of infection persistent is less likely to be efficient so molecular xenomonitoring along with a large sample should be required in each of the hot spots of the districts. Additionally, area is receptive so further vector control intervention should be required to reduce the risk of resurgence of infection.


Subject(s)
Aedes , Culex , Elephantiasis, Filarial , Mass Drug Administration , Mosquito Vectors , Wuchereria bancrofti , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/transmission , Elephantiasis, Filarial/prevention & control , Animals , Nepal/epidemiology , Cross-Sectional Studies , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Humans , Wuchereria bancrofti/isolation & purification , Culex/parasitology , Culex/physiology , Aedes/physiology , Aedes/parasitology , Female , Anopheles/parasitology , Anopheles/physiology , Epidemiological Monitoring , Male , Endemic Diseases
11.
Nat Commun ; 15(1): 3230, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649361

ABSTRACT

Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change. Results provide insights into factors limiting transmission in cooler environments and indicate that increases in malaria transmission due to climate warming in areas like the Kenyan Highlands, might be less than previously predicted.


Subject(s)
Anopheles , Malaria, Falciparum , Mosquito Vectors , Plasmodium falciparum , Temperature , Plasmodium falciparum/physiology , Malaria, Falciparum/transmission , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Animals , Anopheles/parasitology , Humans , Kenya/epidemiology , Mosquito Vectors/parasitology , Climate Change , Female
12.
Emerg Microbes Infect ; 13(1): 2343911, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38618930

ABSTRACT

Malaria remains one of the most important infectious diseases globally due to its high incidence and mortality rates. The influx of infected cases from endemic to non-endemic malaria regions like Europe has resulted in a public health concern over sporadic local outbreaks. This is facilitated by the continued presence of competent Anopheles vectors in non-endemic countries.We modelled the potential distribution of the main malaria vector across Spain using the ensemble of eight modelling techniques based on environmental parameters and the Anopheles maculipennis s.l. presence/absence data collected from 2000 to 2020. We then combined this map with the number of imported malaria cases in each municipality to detect the geographic hot spots with a higher risk of local malaria transmission.The malaria vector occurred preferentially in irrigated lands characterized by warm climate conditions and moderate annual precipitation. Some areas surrounding irrigated lands in northern Spain (e.g. Zaragoza, Logroño), mainland areas (e.g. Madrid, Toledo) and in the South (e.g. Huelva), presented a significant likelihood of A. maculipennis s.l. occurrence, with a large overlap with the presence of imported cases of malaria.While the risk of malaria re-emergence in Spain is low, it is not evenly distributed throughout the country. The four recorded local cases of mosquito-borne transmission occurred in areas with a high overlap of imported cases and mosquito presence. Integrating mosquito distribution with human incidence cases provides an effective tool for the quantification of large-scale geographic variation in transmission risk and pinpointing priority areas for targeted surveillance and prevention.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Anopheles/parasitology , Animals , Malaria/epidemiology , Malaria/transmission , Spain/epidemiology , Humans , Mosquito Vectors/parasitology , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , Incidence
13.
J Vet Med Sci ; 86(5): 485-492, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38569883

ABSTRACT

Plasmodium parasites within mosquitoes are exposed to various physiological processes, such as blood meal digestion activity, the gonotrophic cycle, and host responses preventing the entry of parasites into the midgut wall. However, when in vitro-cultured ookinetes are injected into the hemocoel of mosquitoes, Plasmodium parasites are not affected by the vertebrate host's blood contents and do not pass through the midgut epithelial cells. This infection method might aid in identifying mosquito-derived factors affecting Plasmodium development within mosquitoes. This study investigated novel mosquito-derived molecules related to parasite development in Anopheles mosquitoes. We injected in vitro-cultured Plasmodium berghei (ANKA strain) ookinetes into female and male Anopheles stephensi (STE2 strain) mosquitoes and found that the oocyst number was significantly higher in males than in females, suggesting that male mosquitoes better support the development of parasites. Next, RNA-seq analysis was performed on the injected female and male mosquitoes to identify genes exhibiting changes in expression. Five genes with different expression patterns between sexes and greatest expression changes were identified as being potentially associated with Plasmodium infection. Two of the five genes also showed expression changes with infection by blood-feeding, indicating that these genes could affect the development of Plasmodium parasites in mosquitoes.


Subject(s)
Anopheles , Plasmodium berghei , Animals , Anopheles/parasitology , Female , Male , Plasmodium berghei/physiology , Malaria/parasitology , Mosquito Vectors/parasitology , Mice , Host-Parasite Interactions
14.
J Vector Borne Dis ; 61(1): 1-4, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648401

ABSTRACT

Malaria remains a major health problem in Kenya despite the huge efforts put in place to control it. The non-relenting malaria threat has partly been attributed to residual malaria transmission driven by vectors that cannot effectively be controlled by the two popularly applied control methods: long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Reports indicate that residual transmission is widely spread in areas where malaria is endemic. This could mean that the World Health Organization's vision of a world free of malaria remains a mirage as elimination and prevention of re-establishment of malaria are rendered unachievable. Amongst the major contributors to residual malaria transmission are cryptic rare species, species of mosquitoes that are morphologically indistinguishable, but isolated genetically, that have not been the focus of malaria control programs. Recent studies have reported extensive new Anopheles cryptic species believed to be involved in malaria transmission in Kenya. This underscores the need to understand these malaria vector species, their distribution and bionomics and their impact on malaria transmission. This article discusses reports of these cryptic species, their importance to malaria transmission, especially in the arid and semi-arid areas, and what can be done to mitigate the situation.


Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Animals , Kenya/epidemiology , Anopheles/classification , Anopheles/parasitology , Anopheles/physiology , Malaria/transmission , Malaria/prevention & control , Mosquito Vectors/parasitology , Mosquito Vectors/classification , Mosquito Control/methods , Humans , Insecticides/pharmacology , Insecticide-Treated Bednets
15.
Sci Rep ; 14(1): 9871, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38684775

ABSTRACT

The Plasmodium is responsible for malaria which poses a major health threat, globally. This study is based on the estimation of the relative abundance of mosquitoes, and finding out the correlations of meteorological parameters (temperature, humidity and rainfall) with the abundance of mosquitoes. In addition, this study also focused on the use of nested PCR (species-specific nucleotide sequences of 18S rRNA genes) to explore the Plasmodium spp. in female Anopheles. In the current study, the percentage relative abundance of Culex mosquitoes was 57.65% and Anopheles 42.34% among the study areas. In addition, the highest number of mosquitoes was found in March in district Mandi Bahauddin at 21 °C (Tmax = 27, Tmin = 15) average temperature, 69% average relative humidity and 131 mm rainfall, and these climatic factors were found to affect the abundance of the mosquitoes, directly or indirectly. Molecular analysis showed that overall, 41.3% of the female Anopheles pools were positive for genus Plasmodium. Among species, the prevalence of Plasmodium (P.) vivax (78.1%) was significantly higher than P. falciparum (21.9%). This study will be helpful in the estimation of future risk of mosquito-borne diseases along with population dynamic of mosquitoes to enhance the effectiveness of vector surveillance and control programs.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Plasmodium , Polymerase Chain Reaction , Animals , Anopheles/parasitology , Anopheles/genetics , Mosquito Vectors/parasitology , Mosquito Vectors/genetics , Polymerase Chain Reaction/methods , Female , Plasmodium/genetics , Plasmodium/isolation & purification , Malaria/epidemiology , Malaria/parasitology , Malaria/transmission , RNA, Ribosomal, 18S/genetics , Culex/parasitology , Culex/genetics , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium vivax/genetics
16.
Int J Infect Dis ; 143: 107010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490637

ABSTRACT

OBJECTIVE: A 15-month longitudinal study was conducted to determine the duration and infectivity of asymptomatic qPCR-detected Plasmodium falciparum and Plasmodium vivax infections in Ethiopia. METHOD: Total parasite and gametocyte kinetics were determined by molecular methods; infectivity to Anopheles arabiensis mosquitoes by repeated membrane feeding assays. Infectivity results were contrasted with passively recruited symptomatic malaria cases. RESULTS: For P. falciparum and P. vivax infections detected at enrolment, median durations of infection were 37 days (95% confidence interval [CI], 15-93) and 60 days (95% CI, 18-213), respectively. P. falciparum and P. vivax parasite densities declined over the course of infections. From 47 feeding assays on 22 asymptomatic P. falciparum infections, 6.4% (3/47) were infectious and these infected 1.8% (29/1579) of mosquitoes. No transmission was observed in feeding assays on asymptomatic P. vivax mono-infections (0/56); one mixed-species infection was highly infectious. Among the symptomatic cases, 4.3% (2/47) of P. falciparum and 73.3% (53/86) of P. vivax patients were infectious to mosquitoes. CONCLUSION: The majority of asymptomatic infections were of short duration and low parasite density. Only a minority of asymptomatic individuals were infectious to mosquitoes. This contrasts with earlier findings and is plausibly due to the low parasite densities in this population.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Ethiopia/epidemiology , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Humans , Longitudinal Studies , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Animals , Plasmodium vivax/isolation & purification , Plasmodium vivax/physiology , Plasmodium falciparum/isolation & purification , Anopheles/parasitology , Male , Female , Adult , Adolescent , Child , Young Adult , Child, Preschool , Asymptomatic Infections/epidemiology , Mosquito Vectors/parasitology , Middle Aged
17.
Acta Trop ; 254: 107191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554994

ABSTRACT

Malaria remains one of the most perilous vector-borne infectious diseases for humans globally. Sexual gametocyte represents the exclusive stage at which malaria parasites are transmitted from the vertebrate to the Anopheles host. The feasible and effective approach to prevent malaria transmission is by addressing the sexual developmental processes, that is, gametocytogenesis and gametogenesis. Thus, this review will comprehensively cover advances in the regulation of gene expression surrounding the transmissible stages, including epigenetic, transcriptional, and post-transcriptional control.


Subject(s)
Anopheles , Plasmodium , Animals , Anopheles/parasitology , Anopheles/genetics , Plasmodium/genetics , Plasmodium/growth & development , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Mosquito Vectors/growth & development , Gametogenesis/genetics , Humans , Malaria/transmission , Malaria/parasitology , Gene Expression Regulation , Gene Expression Regulation, Developmental , Epigenesis, Genetic , Sexual Development/genetics
18.
Parasit Vectors ; 17(1): 143, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500231

ABSTRACT

BACKGROUND: Accurately determining the age and survival probabilities of adult mosquitoes is crucial for understanding parasite transmission, evaluating the effectiveness of control interventions and assessing disease risk in communities. This study was aimed at demonstrating the rapid identification of epidemiologically relevant age categories of Anopheles funestus, a major Afro-tropical malaria vector, through the innovative combination of infrared spectroscopy and machine learning, instead of the cumbersome practice of dissecting mosquito ovaries to estimate age based on parity status. METHODS: Anopheles funestus larvae were collected in rural south-eastern Tanzania and reared in an insectary. Emerging adult females were sorted by age (1-16 days old) and preserved using silica gel. Polymerase chain reaction (PCR) confirmation was conducted using DNA extracted from mosquito legs to verify the presence of An. funestus and to eliminate undesired mosquitoes. Mid-infrared spectra were obtained by scanning the heads and thoraces of the mosquitoes using an attenuated total reflection-Fourier transform infrared (ATR-FT-IR) spectrometer. The spectra (N = 2084) were divided into two epidemiologically relevant age groups: 1-9 days (young, non-infectious) and 10-16 days (old, potentially infectious). The dimensionality of the spectra was reduced using principal component analysis, and then a set of machine learning and multi-layer perceptron (MLP) models were trained using the spectra to predict the mosquito age categories. RESULTS: The best-performing model, XGBoost, achieved overall accuracy of 87%, with classification accuracy of 89% for young and 84% for old An. funestus. When the most important spectral features influencing the model performance were selected to train a new model, the overall accuracy increased slightly to 89%. The MLP model, utilizing the significant spectral features, achieved higher classification accuracy of 95% and 94% for the young and old An. funestus, respectively. After dimensionality reduction, the MLP achieved 93% accuracy for both age categories. CONCLUSIONS: This study shows how machine learning can quickly classify epidemiologically relevant age groups of An. funestus based on their mid-infrared spectra. Having been previously applied to An. gambiae, An. arabiensis and An. coluzzii, this demonstration on An. funestus underscores the potential of this low-cost, reagent-free technique for widespread use on all the major Afro-tropical malaria vectors. Future research should demonstrate how such machine-derived age classifications in field-collected mosquitoes correlate with malaria in human populations.


Subject(s)
Anopheles , Malaria , Animals , Female , Humans , Infant , Child, Preschool , Child , Infant, Newborn , Anopheles/parasitology , Mosquito Vectors/parasitology , Spectroscopy, Fourier Transform Infrared , Tanzania
19.
Parasit Vectors ; 17(1): 134, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491547

ABSTRACT

BACKGROUND: The global temperature has significantly risen in the past century. Studies have indicated that higher temperature intensifies malaria transmission in tropical and temperate countries. Temperature fluctuations will have a potential impact on parasite development in the vector Anopheles mosquito. METHODS: Year-long microclimate temperatures were recorded from a malaria-endemic area, Chennai, India, from September 2021 to August 2022. HOBO data loggers were placed in different vector resting sites including indoor and outdoor roof types. Downloaded temperatures were categorised by season, and the mean temperature was compared with data from the same study area recorded from November 2012 to October 2013. The extrinsic incubation period for Plasmodium falciparum and P. vivax was calculated from longitudinal temperatures recorded during both periods. Vector surveillance was also carried out in the area during the summer season. RESULTS: In general, temperature and daily temperature range (DTR) have increased significantly compared to the 2012-2013 data, especially the DTR of indoor asbestos structures, from 4.30 â„ƒ to 12.62 â„ƒ in 2021-2022, unlike the marginal increase observed in thatched and concrete structures. Likewise, the average DTR of outdoor asbestos structures increased from 5.02 â„ƒ (2012-2013) to 8.76 â„ƒ (2021-2022) although the increase was marginal in thatched structures and, surprisingly, showed no such changes in concrete structures. The key finding of the extrinsic incubation period (EIP) is that a decreasing trend was observed in 2021-2022 compared to 2012-2013, mainly in indoor asbestos structures from 7.01 to 6.35 days, which negatively correlated with the current observation of an increase in temperature. Vector surveillance undertaken in the summer season revealed the presence of Anopheles breeding in various habitats. Anopheles stephensi could be collected using CDC light traps along with other mosquito species. CONCLUSION: The microclimate temperature has increased significantly over the years, and mosquitoes are gradually adapting to this rising temperature. Temperature negatively correlates with the extrinsic incubation period of the parasite. As the temperature increases, the development of the parasite in An. stephensi will be faster because of a decrease in EIP, thus requiring relatively fewer days, posing a risk for disease transmission and a hindrance to malaria elimination efforts.


Subject(s)
Anopheles , Asbestos , Malaria, Vivax , Malaria , Parasites , Animals , Temperature , Climate Change , Biodiversity , Infectious Disease Incubation Period , India/epidemiology , Malaria, Vivax/parasitology , Mosquito Vectors/parasitology , Anopheles/parasitology
20.
Malar J ; 23(1): 74, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475793

ABSTRACT

BACKGROUND: Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies in resource-limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission for the designing of adaptive interventions. METHODS: Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya. Spatial heterogeneity of malaria was analyzed and classified into different eco-epidemiological zones. RESULTS: There was strong heterogeneity and detected hot/cold spots in clinical malaria incidence, Plasmodium prevalence, and vector abundance. The study area was classified into four zones based on clinical malaria incidence, parasite prevalence, vector density, and altitude. The two irrigated zones have either the highest malaria incidence, parasite prevalence, or the highest malaria vector density; the highlands have the lowest vector density and parasite prevalence; and the dryland and flooding area have the average clinical malaria incidence, parasite prevalence and vector density. Different zones have different vector species, species compositions and predominant species. Both indoor and outdoor transmission may have contributed to the malaria transmission in the area. Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis, Anopheles funestus s.s., and Anopheles leesoni had similar human blood index and malaria parasite sporozoite rate. CONCLUSION: The multi-transmission-indicator-based eco-epidemiological zone classifications will be helpful for making decisions on locally adapted malaria interventions.


Subject(s)
Anopheles , Malaria , Animals , Humans , Anopheles/parasitology , Feeding Behavior , Kenya/epidemiology , Malaria/prevention & control , Mosquito Vectors/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...