Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 923
Filter
1.
J Sep Sci ; 47(11): e2400126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819781

ABSTRACT

Chromatography is a technique of separation based on adsorption and/or interaction of target molecules with stationary phases. Herein, we report the design and fabrication of BTDA@SiO2 core-shell microspheres as a new class of stationary phase and demonstrate its impressive performance for chromatographic separations. The silica microspheres of BTDA@SiO2 were synthesized by in situ method with 1,3,5-benzenetricarboxaldehyde and 3,5-diaminobenzoic to separate peptides and proteins on high-performance liquid chromatography. The BTDA@SiO2 core-shell structure has a high specific surface area and retention factor of 4.27 and 8.31 for anionic and cationic peptides, respectively. The separation factor and resolution were high as well. A typical chromatogram illustrated nearly baseline resolution of the two peptides in less than 3 min. The BTDA@SiO2 was also highly stable in the pH range of 1 to 14. Furthermore, the prepared BTDA@SiO2 core-shell material not only be used for chromatographic separation but also as heavy metal removal from water. Using a BTDA@SiO2, we also achieved a lysozyme enrichment with a maximum saturated adsorption capacity reaching 714 mg/g. In summary, BTDA@SiO2 has great application prospects and significance in separation and purification systems.


Subject(s)
Metals, Heavy , Microspheres , Muramidase , Silicon Dioxide , Silicon Dioxide/chemistry , Muramidase/chemistry , Muramidase/isolation & purification , Chromatography, Ion Exchange/methods , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Adsorption , Chromatography, High Pressure Liquid , Particle Size , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
2.
Sci Rep ; 12(1): 3005, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194113

ABSTRACT

Macromolecular protein crystallisation was one of the potential tools to accelerate the biomanufacturing of biopharmaceuticals. In this work, it was the first time to investigate the roles of biotemplates, Saccharomyces cerevisiae live cells, in the crystallisation processes of lysozyme, with different concentrations from 20 to 2.5 mg/mL lysozyme and different concentrations from 0 to 5.0 × 107 (cfu/mL) Saccharomyces cerevisiae cells, during a period of 96 h. During the crystallisation period, the nucleation possibility in droplets, crystal numbers, and cell growth and cell density were observed and analysed. The results indicated the strong interaction between the lysozyme molecules and the cell wall of the S. cerevisiae, proved by the crystallization of lysozyme with fluorescent labels. The biotemplates demonstrated positive influence or negative influence on the nucleation, i.e. shorter or longer induction time, dependent on the concentrations of the lysozyme and the S. cerevisiae cells, and ratios between them. In the biomanufacturing process, target proteins were various cells were commonly mixed with various cells, and this work provides novel insights of new design and application of live cells as biotemplates for purification of macromolecules.


Subject(s)
Biopharmaceutics/methods , Crystallization , Muramidase/chemistry , Muramidase/metabolism , Saccharomyces cerevisiae/metabolism , Cell Wall/metabolism , Fluorescent Dyes , Macromolecular Substances , Muramidase/isolation & purification , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development
3.
Protein Expr Purif ; 190: 105993, 2022 02.
Article in English | MEDLINE | ID: mdl-34656738

ABSTRACT

Several sperm lysozyme-like genes evolved from lysozyme by successive duplications and mutations; however their functional role in the reproduction of farm animals is not well understood. To understand the function and molecular properties of buffalo sperm lysozyme-like protein 1 (buSLLP1), it was expressed in E. coli; however, it partitioned to inclusion bodies. Lowering of temperature and inducer concentration did not help in the recovery of the expressed protein in the biologically active form. Therefore, buSLLP1 was cloned and expressed in Pichiapink system based on auxotrophic Pichia pastoris in a labscale fermenter. The expressed protein was obtained in flow-through by using a 30 kDa ultrafiltration membrane followed by MonoQ anion exchange chromatography, resulting in a homogenous preparation of 40 mg recombinant buSLLP1 per liter of initial spent culture-supernatant. Circular dichroism spectroscopy showed that recombinant buSLLP1 possessed a native-like secondary structure. The recombinant buSLLP1 also showed thermal denaturation profile typical of folded globular proteins; however, the thermal stability was lower than the hen egg white lysozyme. Binding of buSLLP1 to chitin and zona pellucida of buffalo oocytes showed that the recombinant buSLLP1 possessed a competent binding pocket, therefore, the produced protein could be used to study its functional role in the reproduction of farm animals.


Subject(s)
Buffaloes/genetics , Gene Expression , Muramidase , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Muramidase/biosynthesis , Muramidase/chemistry , Muramidase/genetics , Muramidase/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Saccharomycetales/genetics , Saccharomycetales/metabolism
4.
Biochem Biophys Res Commun ; 575: 73-77, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34461438

ABSTRACT

The general characteristics of the effect of surfactants on the activity of lysozyme were demonstrated. The kinetics of bacterial cell lysis is consistent with the Michaelis-Menten equation and the presence of surfactants does not shift the pH-optimum of activity. Surfactants do not change the Km value but instead, affect the Vmax value. The experimental dependencies are well described by theoretical equations, which assume three surfactant binding sites on the lysozyme molecule. The dependencies of the activity of lysozyme on the surfactant concentration are either a step type (i.e., a higher plateau becomes a lower plateau), or a dependency with a maximum and continuation of the curve in the form of a plateau but with an increase in the surfactant concentration. It can be assumed that there is a mechanism for the regulation of lysozyme activity by an unknown natural factor that has a suitable hydrophobic radical capable of binding to the surface of lysozyme.


Subject(s)
Lactobacillus plantarum/drug effects , Lactobacillus plantarum/metabolism , Muramidase/metabolism , Polysorbates/pharmacology , Sodium Dodecyl Sulfate/pharmacology , Surface-Active Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Kinetics , Lactobacillus plantarum/growth & development , Muramidase/isolation & purification , Protein Binding
5.
J Sep Sci ; 44(18): 3477-3488, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34255416

ABSTRACT

A mixed polymer brushes material based on poly (2-methyl-2-oxazoline)- and poly (acrylic acid)-coated capillary with switchable protein adsorption/desorption properties was applied for online preconcentration of lysozyme in hen egg white during capillary electrophoresis performance. First, lysozyme in simulated egg white was successfully online preconcentrated and the detection signal of lysozyme was amplified. Ovalbumin, ovomucoid, and conalbumin in egg white were verified show negligible interference on the online preconcentration of lysozyme according to the study on electroosmotic flow mobility. Second, a series validation procedure was carried out to evaluate the proposed method performance. There was a good linearity behavior range from 0.1 to 5.0 ng/mL, limit of detection was 20 pg/mL, and limit of quantity was 50 pg/mL, the accuracy and robustness of this method were also excellent. Last, the proposed method has been successfully used to detect and analyze lysozyme in hen egg white, the determined amounts of lysozyme in hen egg white were consistent with reported normal levels and recoveries were in the range of 96.0-99.2%. After 75 consecutive runs, this prepared capillary was still stable for online preconcentration and determination of lysozyme in hen egg white without being affected by complex matrix.


Subject(s)
Egg White/chemistry , Electrophoresis, Capillary/methods , Muramidase , Polymers/chemistry , Adsorption , Limit of Detection , Linear Models , Muramidase/analysis , Muramidase/chemistry , Muramidase/isolation & purification , Reproducibility of Results
6.
ACS Appl Mater Interfaces ; 13(29): 35019-35025, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34264068

ABSTRACT

Although covalent organic frameworks (COFs) have earned significant interest in separation applications, the use of COFs in biomolecule separation remains unexplored. We examined the ionic COF Py-BPy2+-COF as an ion exchange material for biomolecule separation. After characterizing the properties of the synthesized COF with a variety of techniques, binding experiments with both large and small biomolecules were performed. High adsorption capacities of amino acids with different hydrophobicity and charge, as well as proteins of different isoelectric points and molecular weights, were determined in batch equilibrium experiments. Desorption experiments with mixtures of model proteins demonstrated an ability to successfully separate one protein from another with the selectivity hypothesized to be a combination of the isoelectric point, hydrophobicity, and ability to penetrate the crystalline material. Overall, the results demonstrated that Py-BPy2+-COF can be exploited as a robust crystalline anion exchange biomolecule separation material.


Subject(s)
Amino Acids/isolation & purification , Cytochromes c/isolation & purification , Metal-Organic Frameworks/chemistry , Muramidase/isolation & purification , Serum Albumin, Bovine/isolation & purification , Adsorption , Amino Acids/chemistry , Animals , Cattle , Chemical Fractionation/methods , Cytochromes c/chemistry , Ion Exchange , Muramidase/chemistry , Porosity , Serum Albumin, Bovine/chemistry
7.
J Chromatogr A ; 1651: 462337, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34157476

ABSTRACT

Here, a m-xylene bisphosphonate immobilized tentacle-type cellulose monolith (BP-PCM) is prepared by atom transfer radical polymerization for lysozyme purification. In the preparation, the m-xylene bisphosphonate was anchored glycidyl methacrylate and then polymerized to enhance the flexibility of the ligands to improve lysozyme adsorption capacity, and glycerol monomethacrylate serves as spacer to further optimize the layers structure and ligands density of the grafted tentacles for satisfactory adsorption capacity. The maximum static and dynamic adsorption capacity (10% breakthrough) of BP-PCM reach to 169.6 and 102.6 mg mL-1, respectively. Moreover, BP-PCM displays weak nonspecific adsorption and is able to successfully enrich lysozyme from diluted chicken egg white, indicating the excellent selectivity. The results demonstrated that BP-PCM is promising for use as high-capacity protein chromatography.


Subject(s)
Cellulose/chemistry , Chemistry Techniques, Analytical/methods , Chromatography , Diphosphonates/chemistry , Muramidase/isolation & purification , Adsorption , Chemistry Techniques, Analytical/instrumentation , Epoxy Compounds/chemistry , Ligands , Methacrylates/chemistry , Muramidase/chemistry , Polymerization , Porosity
8.
Food Chem ; 358: 129914, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34000689

ABSTRACT

A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.


Subject(s)
Chromatography, Ion Exchange/instrumentation , Chromatography, Ion Exchange/methods , Egg White/chemistry , Membranes, Artificial , Muramidase/isolation & purification , Acetates/chemistry , Acrylic Resins/chemistry , Adsorption , Animals , Chickens , Ethylenediamines/chemistry , Hydrogen-Ion Concentration , Muramidase/chemistry , Nanofibers/chemistry
9.
Amino Acids ; 53(5): 745-751, 2021 May.
Article in English | MEDLINE | ID: mdl-33881613

ABSTRACT

Taurine is a compatible osmolyte that confers stability to proteins. Recent studies have revealed that liquid-liquid phase separation (LLPS) of proteins underlie the formation of membraneless organelles in cells. In the present study, we evaluated the role of taurine on LLPS of hen egg lysozyme. We demonstrated that taurine decreases the turbidity of the polyethylene glycol-induced crowding solution of lysozyme. We also demonstrated that taurine attenuates LLPS-dependent cloudiness of lysozyme solution with 0.5 or 1 M NaCl at a critical temperature. Moreover, we observed that taurine inhibits LLPS formation of a heteroprotein mix solution of lysozyme and ovalbumin. These data indicate that taurine can modulate the formation of LLPS of proteins.


Subject(s)
Muramidase/isolation & purification , Taurine/chemistry , Animals , Chickens , Liquid-Liquid Extraction , Muramidase/chemistry
10.
Food Chem ; 353: 129442, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33714116

ABSTRACT

Fe3O4 magnetic nanoparticles modified with tetraethyl orthosilicate and bovine serum albumin (Fe3O4@TEOS@BSA) were synthesized and efficiently used to separate lysozyme from egg white. Glutaraldehyde was used to crosslink the bovine serum albumine molecules around the nanoparticles. The surface modifications were attested by transmission electron microscopy, infrared spectroscopy, thermogravimetry analysis, and zeta potential. The material was thermally stable, and its surface charge was pH-dependent. The best lysozyme adsorption and desorption were obtained at pHs 10.0 and 5.0, respectively. The pseudo-second-order model fitted well into the lysozyme adsorption kinetic data and the time for the equilibrium was 15 min. The adsorption equilibrium results were best described by the Freundlich model. Fe3O4@TEOS@BSA particles were very efficient to extract lysozyme from chicken egg, according to the SDS-PAGE analyses. The extracted molecules maintained their enzymatic activity in about 90%. Fe3O4@TEOS@BSA particles were easily recycled, with their reuse being possible 5 times with the same performance.


Subject(s)
Egg White/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Muramidase/isolation & purification , Serum Albumin, Bovine/chemistry , Adsorption , Animals , Chickens , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Transmission , Muramidase/chemistry , Silanes/chemistry , Thermogravimetry
11.
Arch Microbiol ; 203(5): 2059-2073, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33575852

ABSTRACT

The hot spring water of Atri in India was believed to have disease curing property. An antibacterial producing organism was isolated and identified as Bacillus paralicheniformis by morphology, microscopy, and 16S-rRNA. Its secretion inhibited bacteria, yeast, and fungus in well-diffusion-method. The secreted antimicrobial was a 16.74 kDa protein homologous of chicken-lysozyme-C. The novel lysozyme's activities were recorded under different parameters. It was active from pH 5-9 and endured up to 60 °C for 120 min. Complete cell wall lysis of S. flexneri and P. aeruginosa was observed under a microscope at 4500× with a minimum inhibitory concentration of 7.8 µg/ml, while others required a higher dose, i.e., 13 µg/ml, and 20 µg/ml for E.coli and S. typhimurium, respectively. The discovered lysozyme has the extraordinary potential to lyse Gram-positive bacteria, yeast, fungus, and more efficiently lyse chick-lysozyme-C resistant lipopolysaccharide rich Gram-negative bacteria's outer cell wall.


Subject(s)
Bacillus/enzymology , Muramidase/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/pharmacology , Chickens , Drug Resistance/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Fungi/drug effects , India , Microbial Sensitivity Tests , Muramidase/genetics , Muramidase/isolation & purification , Pseudomonas aeruginosa/drug effects , RNA, Ribosomal, 16S/genetics
12.
Sci Rep ; 11(1): 526, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436858

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most contagious diseases of cloven-hoofed animals. Disinfectants are used to inactivate FMD virus (FMDV) in Japan. Reports that heat-denatured lysozyme inactivates bacteria as well as viruses, such as norovirus and hepatitis A virus, led us to determine its effects on FMDV. We show here that heat-denatured lysozyme partially inhibited the infectivity of FMDV O/JPN/2010-1/14C but of FMDVs A/TAI/46-1/2015 and Asia1/Shamir (ISR/3/89). Further, heat-denatured lysozyme variably reduced RNA loads of FMDVs O/JPN/2010-1/14C, O/MOG/2/Ca/BU/2017, O/Taiwan/1997, Asia1/Shamir (ISR/3/89), Asia1/TUR/49/2011, SAT1/KEN/117/2009, SAT2/SAU/6/2000 and SAT3/ZIM/3/83 but could not those of O/JPN/2000, A/TAI/46-1/2015, A22/IRQ/24/64, A15/TAI/1/60 and C/PHI/7/84. These findings indicate that heat-denatured lysozyme may serve as a new disinfectant against FMDV.


Subject(s)
Disinfectants , Egg White/chemistry , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/pathogenicity , Hot Temperature , Muramidase/pharmacology , Protein Denaturation , Virus Inactivation/drug effects , Foot-and-Mouth Disease Virus/physiology , Muramidase/isolation & purification , RNA, Viral/metabolism
13.
Anal Sci ; 37(2): 359-365, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33100306

ABSTRACT

The partition efficiency of the double-spaced coil for eccentric and toroidal coils on countercurrent chromatographic separation of proteins was evaluated using the small-scale cross-axis coil planet centrifuge (CPC) equipped with circular and elliptic cylindrical columns. Standard cytochrome c, myoglobin and lysozyme samples were used for separation with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system. In the circular column, the double-spaced eccentric coil yielded better peak resolution than the double-spaced toroidal coil, and the double-spaced eccentric coil yielded better peak resolution than the single-spaced eccentric coil. In the elliptic column, the double-spaced eccentric coil also produced better peak resolution than the double-spaced toroidal coil, but the single-spaced eccentric coil yielded better peak resolution than the double-spaced eccentric coil. The overall results indicated that the double-spaced eccentric coil for the circular column and the single-spaced eccentric coil for the elliptic column yielded better protein separation using the small-scale cross-axis CPC with aqueous two-phase solvent systems.


Subject(s)
Centrifugation , Cytochromes c/isolation & purification , Muramidase/isolation & purification , Myoglobin/isolation & purification , Countercurrent Distribution , Cytochromes c/chemistry , Cytochromes c/metabolism , Muramidase/chemistry , Muramidase/metabolism , Myoglobin/chemistry , Phosphates/chemistry , Planets , Polyethylene Glycols/chemistry , Potassium Compounds/chemistry
14.
Food Chem ; 338: 128144, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33092004

ABSTRACT

A weak ion-exchange membrane (P-COOH) was synthesized by alkaline hydrolysis of a polyacrylonitrile nanofiber membrane prepared by electrospinning process. The P-COOH membrane was characterized for its physical properties and its application for purification of lysozyme from chicken egg white was investigated. The lysozyme adsorption efficiency of the P-COOH membrane operating in a stirred cell contactor (Millipore, Model 8010) was evaluated. The effects of key parameters such as the feed concentration, the rotating speed, the flow rate of feed and the operating pressure were studied. The results showed successful purification of lysozyme with a high recovery yield of 98% and a purification factor of 63 in a single step. The purification strategy was scaled-up to the higher feedstock loading volume of 32.7 and 70 mL using stirred cell contactors of Model 8050 and 8200, respectively. The scale-up processes achieved similar purification results, proving linear scalability of the purification technique adopted.


Subject(s)
Chemical Fractionation/instrumentation , Egg White , Membranes, Artificial , Muramidase/isolation & purification , Nanofibers/chemistry , Acrylic Resins/chemistry , Adsorption , Animals , Ion Exchange , Muramidase/chemistry
15.
Food Chem ; 342: 128295, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33092916

ABSTRACT

Here, the macroporous poly(hydroxylmethyl methacrylate/glycidyl methacrylate [p(HEMA-GMA)] cryogels with large porous surface were prepared, and then the epoxy groups of the p(HEMA-GMA) cryogels were systematically modified into strong and weak cationic groups. The effects of initial protein concentrations, adsorption time, pH, salt concentrations and temperatures on adsorption efficiency of cation exchange cryogels for lysozyme were determined. The maximum lysozyme adsorption capacities of strong and weak cation exchange cryogels were found to be 188.3 and 79.7 mg/g cryogel at 25 °C, respectively. The performance of the strong cationic cryogel was evaluated by purification of lysozyme from egg white. The activity of the isolated lysozyme was found to be 21,347 U/mg. The cationic cryogel maintained its expected high adsorption capacity and efficiency of the purification levels during repeated adsorption desorption processes. Finally, the purpose of this work is the design a cation exchange system for purification of lysozyme from egg-white.


Subject(s)
Chickens , Cryogels/chemistry , Egg White/chemistry , Muramidase/chemistry , Muramidase/isolation & purification , Adsorption , Animals , Hydrogen-Ion Concentration , Ion Exchange , Temperature , Time Factors
16.
J Chromatogr A ; 1635: 461737, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33253999

ABSTRACT

Recently, we developed a new approach for the selective enrichment of low-abundance compounds in biological samples by capillary electrophoresis. As a model test, the low-abundance compound lysozyme was successfully fractionated from a mixture containing high-abundance compound BSA (1:4500) using a custom-made apparatus. The feasibility of this approach for real complex biological samples was verified by rat serum, wherein three low-abundance proteins with high charge/mass ratios were detected.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Electrophoresis, Capillary/instrumentation , Muramidase/isolation & purification , Animals , Muramidase/chemistry , Rats , Serum/chemistry , Serum Albumin, Bovine/chemistry
17.
Food Chem ; 343: 128543, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33187742

ABSTRACT

Lysozyme from crude chicken egg white (CEW) feedstock was successfully purified using a stirred fluidized bed adsorption system ion exchange chromatography where STREAMLINE SP and SP-XL high density adsorbents were selected as the adsorption carrier. The thermodynamic and kinetic studies were carried out to understand the characteristics of lysozyme adsorption by adsorbents under various conditions, including adsorption pH, temperature, lysozyme concentration and salt concentrations. Results showed that SP and SP-XL adsorbents achieved optimum lysozyme adsorption at pH 9 with capacity of ~139.77 and ~251.26 mg/mL, respectively. The optimal conditions obtained from batch studies were directly employed to operate in SFBA process. For SP-XL adsorbent, the recovery yield and purification factor of lysozyme were 93.78% and ~40 folds, respectively. For SP adsorbent, lysozyme can be eluted ~100% with purification factor of ~26 folds. These two adsorbents are highly suitable for use in direct recovery of lysozyme from crude CEW.


Subject(s)
Chromatography, Ion Exchange/methods , Egg White/chemistry , Muramidase/isolation & purification , Adsorption , Animals , Chickens , Kinetics , Muramidase/chemistry , Temperature
18.
Mar Drugs ; 18(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233712

ABSTRACT

Organisms specialized to thrive in cold environments (so-called psychrophiles) produce enzymes with the remarkable ability to catalyze chemical reactions at low temperature. Cold activity relies on adaptive changes in the proteins' sequence and structural organization that result in high conformational flexibility. As a consequence of flexibility, several such enzymes are inherently heat sensitive. Cold-active enzymes are of interest for application in a number of bioprocesses, where cold activity coupled with easy thermal inactivation can be of advantage. We describe the biochemical and functional properties of two glycosyl hydrolases (named LYS177 and LYS188) of family 19 (GH19), identified in the genome of an Antarctic marine Pseudomonas. Molecular evolutionary analysis placed them in a group of characterized GH19 endolysins active on lysozyme substrates, such as peptidoglycan. Enzyme activity peaks at about 25-35 °C and 40% residual activity is retained at 5 °C. LYS177 and LYS188 are thermolabile, with Tm of 52 and 45 °C and half-lives of 48 and 12 h at 37 °C, respectively. Bioinformatics analyses suggest that low heat stability may be associated to temperature-driven increases in local flexibility occurring mainly in a specific region of the polypeptide that is predicted to contain hot spots for aggregation.


Subject(s)
Bacterial Proteins/metabolism , Cold Temperature , Endopeptidases/metabolism , Muramidase/metabolism , Pseudomonas/enzymology , Antarctic Regions , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Endopeptidases/genetics , Endopeptidases/isolation & purification , Enzyme Stability , Evolution, Molecular , Half-Life , Muramidase/genetics , Muramidase/isolation & purification , Pseudomonas/genetics , Substrate Specificity
19.
J Chromatogr A ; 1634: 461669, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33166892

ABSTRACT

Polymer-grafted media have been a focus of recent development for ion exchange chromatography (IEC) because of their capacity and uptake kinetics that can lead to high dynamic capacity in protein purification. This work is devoted to developing novel cation exchangers of high adsorption performance by grafting polymerization of sodium methacrylate (MA) onto a commercial agarose gel Sepharose FF (FF). Five polyMA (pMA)-grafted FF gels were prepared with the same grafting density but different chain lengths (i.e., different ionic capacities, ICs), and named as FF-pMA-IC (IC denotes IC value in mmol/L). The effects of chain length (IC) and ionic strength (IS) on protein adsorption and chromatographic behaviors were examined using lysozyme (at pH 8.0) and γ-globulin (at pH 5.0) as model proteins. It was found that lysozyme adsorption capacity increased with increasing IC till reaching a plateau (390 mg/mL) over IC=540 mmol/L (FF-pMA-540), while there was an optimum IC (320 mmol/L, FF-pMA-320) at which γ-globulin adsorption capacity reached the highest (208 mg/mL). With increasing chain length (IC), the uptake rates of both the proteins presented decreasing trends due to the steric hindrance caused by the polymer chains. At the same IC, however, the uptake rate of lysozyme was much higher than that of γ-globulin because of the different sizes of the two proteins. Increasing salt concentration obviously promoted the uptake rates of the proteins, which led to the increase of dynamic binding capacities (DBCs) in different salt concentration ranges. The DBC value of lysozyme on FF-pMA-540 kept as high as 108-198 mg/mL in the salt concentration range of 0-150 mmol/L, and the DBC of γ-globulin on FF-pMA-320 increased to 27 mg/mL with increasing salt concentration from 100 mmol/L. This work clearly indicated the presence of optimal IC values (chain lengths) for different sized proteins, and IS was also crucial for reaching a high DBC for a specific protein. The findings provided insight into the selection of FF-pMA-n gels and operational conditions (e.g., IS) for the purification of a target protein of defined size.


Subject(s)
Chromatography, Ion Exchange/methods , Polymethacrylic Acids/chemistry , Proteins/analysis , Proteins/isolation & purification , Sepharose/chemistry , Adsorption , Cations , Kinetics , Muramidase/analysis , Muramidase/isolation & purification , Osmolar Concentration , Polyethyleneimine/chemistry , Proteins/chemistry , gamma-Globulins/analysis , gamma-Globulins/isolation & purification
20.
Int J Biol Macromol ; 165(Pt A): 1410-1421, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33045299

ABSTRACT

Electrospinning technology was applied for the preparation of polyacrylonitrile (PAN) nanofiber membrane in this work. After hot pressing, alkaline hydrolysis and neutralization treatment, a weak acid cation exchange membrane (P-COOH) was prepared. By the covalent coupling reaction between the acidic membrane and aminomethane sulfonic acid (AMSA), a strong acidic nanofiber membrane (P-SO3H) was obtained. The surface morphology, chemical structure, and thermal stability of the prepared ion exchange membranes were analyzed via SEM, FTIR and TGA. Analytical results showed that the membranes were prepared successfully and thermally stable. The ion exchange membrane (IEX) was conducted with the newly designed membrane reactor, and different operating conditions affecting the adsorption efficiency of Toluidine Blue dye (TBO) were investigated by dynamic flow process. The results showed that dynamic binding capacity (DBC) of weak and strong IEX membranes for TBO dye was ~170 mg/g in a dynamic flow process. Simultaneously, the ion exchange membranes were also used for purifying lysozyme from chicken egg white (CEW). Results illustrated that the recovery yield and purification factor of lysozyme were 93.43% and 29.23 times (P-COOH); 90.72% and 36.22 times (P-SO3H), respectively. It was revealed that two type ion exchange membranes were very suitable as an adsorber for use in dye waste treatment and lysozyme purification process. P-SO3H strong ion-exchange membrane was more effective either removal of TBO dye or purification of lysozyme. The ion exchange membranes not only effectively purified lysozyme from CEW solution, but also effectively removed dye from wastewater.


Subject(s)
Amsacrine/chemistry , Coloring Agents/chemistry , Muramidase/chemistry , Nanofibers/chemistry , Acrylic Resins/chemistry , Adsorption/drug effects , Cations/chemistry , Coloring Agents/isolation & purification , Ion Exchange , Membranes, Artificial , Muramidase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...