Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 920
Filter
1.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700031

ABSTRACT

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Subject(s)
Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
2.
Mol Nutr Food Res ; 68(9): e2300759, 2024 May.
Article in English | MEDLINE | ID: mdl-38651284

ABSTRACT

SCOPE: Tolypocladium sinense is a fungus isolated from Cordyceps. Cordyceps has some medicinal value and is also a daily health care product. This study explores the preventive effects of T. sinense mycelium polysaccharide (TSMP) on high-fat diet-induced obesity and chronic inflammation in mice. METHODS AND RESULTS: Here, the study establishes an obese mouse model induced by high-fat diet. In this study, the mice are administered TSMP daily basis to evaluate its effect on alleviating obesity. The results show that TSMP can significantly inhibit obesity and alleviate dyslipidemia by regulating the expression of lipid metabolism-related genes such as liver kinase B1 (LKB1), phosphorylated AMP-activated protein kinase (pAMPK), peroxisome proliferator activated receptor α (PPARα), fatty acid synthase (FAS), and hydroxymethylglutaryl-CoA reductase (HMGCR) in the liver. TSMP can increase the protein expression of zona occludens-1 (ZO-1), Occludin, and Claudin-1 in the colon, improve the intestinal barrier dysfunction, and reduce the level of serum LPS, thereby reducing the inflammatory response. 16S rDNA sequencing shows that TSMP alters the intestinal microbiota by increasing the relative abundance of Akkermansia, Lactobacillus, and Prevotellaceae_NK3B31_group, while decreasing the relative abundance of Faecalibaculum. CONCLUSION: The findings show that TSMP can inhibit obesity and alleviates obesity-related lipid metabolism disorders, inflammatory responses, and oxidative stress by modulating the gut microbiota and improving intestinal barrier.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Inflammation , Mice, Inbred C57BL , Mycelium , Obesity , Diet, High-Fat/adverse effects , Animals , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Male , Mycelium/chemistry , Inflammation/drug therapy , Lipid Metabolism Disorders/drug therapy , Mice , Lipid Metabolism/drug effects , Polysaccharides/pharmacology , Hypocreales , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Fungal Polysaccharides/pharmacology , Liver/drug effects , Liver/metabolism
3.
Int J Biol Macromol ; 267(Pt 1): 131387, 2024 May.
Article in English | MEDLINE | ID: mdl-38582470

ABSTRACT

A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet ß cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.


Subject(s)
Caspase 1 , Gasdermins , Glycation End Products, Advanced , Human Umbilical Vein Endothelial Cells , MicroRNAs , Mycelium , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , RNA, Long Noncoding , Shiitake Mushrooms , Signal Transduction , TOR Serine-Threonine Kinases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Caspase 1/metabolism , Shiitake Mushrooms/chemistry , Glycation End Products, Advanced/metabolism , Signal Transduction/drug effects , Mycelium/chemistry , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Cell Survival/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry
4.
J Agric Food Chem ; 72(18): 10282-10294, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657235

ABSTRACT

This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.


Subject(s)
Bacillus , Basidiomycota , Coptis , Plant Diseases , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Bacillus/chemistry , Bacillus/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Basidiomycota/chemistry , Basidiomycota/metabolism , Coptis/chemistry , Coptis/microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Gas Chromatography-Mass Spectrometry , Mycelium/chemistry , Mycelium/growth & development , Mycelium/drug effects
5.
J Microsc ; 294(2): 203-214, 2024 May.
Article in English | MEDLINE | ID: mdl-38511469

ABSTRACT

Low-vacuum scanning electron microscopy (low-vacuum SEM) is widely used for different applications, such as the investigation of noncoated specimen or the observation of biological materials, which are not stable to high vacuum. In this study, the combination of mineral building materials (concrete or clay plaster) with a biological composite (fungal mycelium composite) by using low-vacuum SEM was investigated. Fungal biotechnology is increasingly gaining prominence in addressing the challenges of sustainability transformation. The construction industry is one of the biggest contributors to the climate crises and, therefore, can highly profit from applications based on regenerative fungal materials. In this work, a fungal mycelium composite is used as alternative to conventional insulating materials like Styrofoam. However, to adapt bio-based products to the construction industry, investigations, optimisations and adaptations to existing solutions are needed. This paper examines the compatibility between fungal mycelium materials with mineral-based materials to demonstrate basic feasibility. For this purpose, fresh and hardened concrete specimens as well as clay plaster samples are combined with growing mycelium from the tinder fungus Fomes fomentarius. The contact zone between the mycelium composite and the mineral building materials is examined by scanning electron microscopy (SEM). The combination of these materials proves to be feasible in general. The use of hardened concrete or clay with living mycelium composite appears to be the favoured variant, as the hyphae can grow into the surface of the building material and thus a layered structure with a stable connection is formed. In order to work with the combination of low-density organic materials and higher-density inorganic materials simultaneously, low-vacuum SEM offers a suitable method to deliver results with reduced effort in preparation while maintaining high capture and magnification quality. Not only are image recordings possible with SE and BSE, but EDX measurements can also be carried out quickly without the influence of a coating. Depending on the signal used, as well as the magnification, image-recording strategies must be adapted. Especially when using SE, an image-integration method was used to reduce the build-up of point charges from the electron beam, which damages the mycelial hyphae. Additionally using different signals during image capture is recommended to confirm acquired information, avoiding misinterpretations.


Subject(s)
Minerals , Mycelium , Microscopy, Electron, Scanning , Vacuum , Clay , Mycelium/chemistry , Minerals/analysis , Construction Materials
6.
Z Naturforsch C J Biosci ; 79(3-4): 89-92, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38421614

ABSTRACT

A novel isocoumarin was isolated from the mycelia of the dark septate endophytic fungus Phialocephala fortinii. The chemical structure was determined to be 8-hydroxy-6-methoxy-3,7-dimethyl-1H-2-benzopyran-1-one based on mass spectrometry, 1H-nuclear magnetic resonance (NMR), and 13C-NMR spectroscopic analyses, including 2D-NMR experiments. The isolated compound inhibited root growth of Arabidopsis thaliana, suggesting its potential as a plant growth regulator.


Subject(s)
Arabidopsis , Ascomycota , Isocoumarins , Plant Roots , Isocoumarins/chemistry , Isocoumarins/pharmacology , Isocoumarins/isolation & purification , Ascomycota/chemistry , Plant Roots/microbiology , Arabidopsis/microbiology , Magnetic Resonance Spectroscopy , Endophytes/chemistry , Mycelium/growth & development , Mycelium/chemistry , Mycelium/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry , Molecular Structure
7.
Int J Med Mushrooms ; 25(12): 55-64, 2023.
Article in English | MEDLINE | ID: mdl-37947064

ABSTRACT

This research aimed to use a novel and effective ultrasound (US) approach for obtaining high bio-compound production, hence proposing strategies for boosting active ingredient biosynthesis. Furthermore, the US promotes several physiological effects on the relevant organelles in the cell, morphological effects on the structure of Phellinus igniarius mycelium, and increases the transfer of nutrients and metabolites. One suitable US condition for flavonoid fermentation was determined as once per day for 7-9 days at a frequency 22 + 40 kHz, power density 120 W/L, treated 10 min, treatment off time 7 s. The flavonoid content and production increased about 47.51% and 101.81%, respectively, compared with the untreated fermentation (P < 0.05). SEM showed that sonication changes the morphology and structure of Ph. igniarius mycelium; TEM reveals the ultrasonic treatment causes organelle aggregation. The ultrasound could affect the metabolism of the biosynthesis of the active ingredients.


Subject(s)
Agaricales , Basidiomycota , Salix , Agaricales/chemistry , Flavonoids/analysis , Fermentation , Basidiomycota/chemistry , Mycelium/chemistry
8.
Int J Med Mushrooms ; 25(12): 65-80, 2023.
Article in English | MEDLINE | ID: mdl-37947065

ABSTRACT

The optimal cultivation conditions and chemical components of Poria cocos fruiting bodies were examined by employing the single factor and response surface methods to screen for optimal conditions for artificial cultivation. The differences in chemical composition among the fruiting bodies, fermented mycelium, and sclerotia of P. cocos were compared using UV spectrophotometry and high-performance liquid chromatography (HPLC). The optimal growth conditions for P. cocos fruiting bodies were 28.5°C temperature, 60% light intensity, and 2.5 g pine sawdust, which resulted in the production of numerous basidiocarps and basidiospores under microscopic examination. Polysaccharides, triterpenoids, and other main active components of P. cocos were found in the fruiting bodies, sclerotia, and fermented mycelium. The triterpenoid components of the fruiting bodies were consistent with those of the sclerotia. The content of pachymic acid in the fruiting bodies was significantly higher than that in the sclerotia, with a value of 33.37 ± 0.1902 mg/g. These findings provide novel insights into the sexual breeding and comprehensive development and utilization of P. cocos.


Subject(s)
Wolfiporia , Wolfiporia/chemistry , Chromatography, Gas , Mycelium/chemistry , Chromatography, High Pressure Liquid , Fruiting Bodies, Fungal
9.
Sci Rep ; 13(1): 19285, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935723

ABSTRACT

Gradient porous structures (GPS) are characterized by structural variations along a specific direction, leading to enhanced mechanical and functional properties compared to homogeneous structures. This study explores the potential of mycelium, the root part of a fungus, as a biomaterial for generating GPS. During the intentional growth of mycelium, the filamentous network undergoes structural changes as the hyphae grow away from the feed substrate. Through microstructural analysis of sections obtained from the mycelium tissue, systematic variations in fiber characteristics (such as fiber radii distribution, crosslink density, network density, segment length) and pore characteristics (including pore size, number, porosity) are observed. Furthermore, the mesoscale mechanical moduli of the mycelium networks exhibit a gradual variation in local elastic modulus, with a significant change of approximately 50% across a 30 mm thick mycelium tissue. The structure-property analysis reveals a direct correlation between the local mechanical moduli and the network crosslink density of the mycelium. This study presents the potential of controlling growth conditions to generate mycelium-based GPS with desired functional properties. This approach, which is both sustainable and economically viable, expands the applications of mycelium-based GPS to include filtration membranes, bio-scaffolds, tissue regeneration platforms, and more.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Tissue Scaffolds/chemistry , Porosity , Biocompatible Materials/chemistry , Elastic Modulus , Mycelium/chemistry
10.
Int J Med Mushrooms ; 25(11): 27-40, 2023.
Article in English | MEDLINE | ID: mdl-37831510

ABSTRACT

Mushrooms have two components, the fruiting body, which encompasses the stalk and the cap, and the mycelium, which supports the fruiting body underground. The part of the mushroom most commonly consumed is the fruiting body. Given that it is more time consuming to harvest the fruiting body versus simply the mycelia, we were interested in understanding the difference in metabolite content between the fruiting bodies and mycelia of four widely consumed mushrooms in Taiwan: Agrocybe cylindracea (AC), Coprinus comatus (CC), Hericium erinaceus (HE), and Hypsizygus marmoreus (HM). In total, we identified 54 polar metabolites using 1H NMR spectroscopy that included sugar alcohols, amino acids, organic acids, nucleosides and purine/pyrimidine derivatives, sugars, and others. Generally, the fruiting bodies of AC, CC, and HM contained higher amounts of essential amino acids than their corresponding mycelia. Among fruiting bodies, HE had the lowest essential amino acid content. Trehalose was the predominant carbohydrate in most samples except for the mycelia of AC, in which the major sugar was glucose. The amount of adenosine, uridine, and xanthine in the samples was similar, and was higher in fruiting bodies compared with mycelia, except for HM. The organic acid and sugar alcohol content between fruiting bodies and mycelia did not tend to be different. Although each mushroom had a unique metabolic profile, the metabolic profile of fruiting bodies and mycelia were most similar for CC and HE, suggesting that the mycelia of CC and HE may be good replacements for their corresponding fruiting bodies. Additionally, each mushroom species had a unique polar metabolite fingerprint, which could be utilized to identify adulteration.


Subject(s)
Agaricales , Ascomycota , Basidiomycota , Fruiting Bodies, Fungal/chemistry , Agaricales/chemistry , Basidiomycota/chemistry , Mycelium/chemistry , Sugars/analysis , Sugars/metabolism
11.
Int J Biol Macromol ; 248: 125951, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37499724

ABSTRACT

Coriolus versicolor, a popular traditional Chinese medicinal herb, is widely used in China to treat spleen and liver diseases; however, the beneficial effects of C. versicolor polysaccharides (CVPs) on nonalcoholic fatty liver disease (NAFLD) remain elusive. Herein we isolated and purified a novel CVP (molecular weight, 17,478 Da) from fermented mycelium powder. This CVP was composed of mannose, galacturonic acid, glucose, galactose, xylose, and fucose at a molar ratio of 22:1:8:15:10:3. Methylation, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses indicated that the CVP backbone consisted of →1)-ß-D-Man-(6,4→1)-α-D-Gal-(3→1)-α-D-Man-(4→1)-α-D-Gal-(6→, with branches of →1)-α-D-Glc-(6→1)-α-D-Man-(4,3→1)-ß-D-Xyl-(2→1)-ß-D-Glc on the O-6 position of →1)-ß-D-Man-(6,4→ of the main chain. The secondary branches linked to the O-4 position of →1)-α-D-Man-(4,3→ with the chain of →1)-α-D-Fuc-(4→1)-α-D-Man. Further, CVP treatment alleviated the symptoms of NAFLD in an HFD-induced mice model. CVP altered gut microbiota, predominantly suppressing microbes associated with bile acids both in the serum and cecal contents. In vitro data showed that CVP reduced HFD-induced hyperlipidemia via farnesoid X receptor. Our results improve our understanding of the mechanisms underlying the cholesterol- and lipid-lowering effects of CVP and indicate that CVP is a promising candidate for NAFLD therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Polyporaceae , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Mycelium/chemistry
12.
Int J Biol Macromol ; 242(Pt 4): 125181, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37270134

ABSTRACT

Ganoderma lucidum polysaccharides (GPS) have many functions. Polysaccharides are abundant in G. lucidum mycelia, but it is unclear whether the production and chemical characteristics of polysaccharides are related to the liquid cultural periods of mycelia. This study harvests G. lucidum mycelia at different cultural stages and isolates GPS and sulfated polysaccharides (GSPS) separately to determine an optimum cultural duration. After 42 and 49 days of mycelia are found to be the best times to harvest GPS and GSPS. Characteristic studies show that glucose and galactose are the main sugars in GPS and GSPS. The molecular weights of various GPS and GSPS are mainly distributed at >1000 kDa and from 101 to 1000 kDa. The sulfate content of GSPS at Day 49 is greater than that at Day 7. GPS and GSPS at 49 days exhibits a good anticancer effect but does not affect normal fibroblasts. GPS and GSPS that is isolated on day 49 inhibits lung cancer by suppressing epidermal growth factor receptor (EGFR) and transforming growth factor beta receptor (TGFßR)-mediated signaling networks. These results show that the mycelia of G. lucidum that are cultured for 49 days exhibit the best biological characteristics.


Subject(s)
Ganoderma , Reishi , Reishi/chemistry , Polysaccharides/chemistry , Mycelium/chemistry , Glucose/metabolism , Ganoderma/chemistry
13.
J Mech Behav Biomed Mater ; 142: 105831, 2023 06.
Article in English | MEDLINE | ID: mdl-37075528

ABSTRACT

This study investigates the compressive deformation and the effect of structural architecture on the compressive strength of bioprocessed mycelium biocomposites reinforced with laterite particles. In the mycelium blocks, lignocellulosic hemp hurds function as reinforcing and nutritional substrates. The mycelium acts as a supportive matrix, binding the hemp hurds and the laterite particles which are integrated for further reinforcement to improve the compressive strength of the composite. The compressive behavior of the composites is elucidated using a combined approach of experimental and theoretical studies. The deformation mechanisms are investigated via in-situ observations of the specimens under uniaxial compressive loading. The experiments show that the compressive deformation results in progressive micro-buckling in slender specimens, whereas thicker samples exhibit a soft elastic response at small strain levels followed by continuous stiffening at larger strains. Based on the experimental observations and the morphological characterization, a column buckling analysis was developed for the mycelium-hemp composites to further explain the observed deformation phenomena.


Subject(s)
Models, Theoretical , Mycelium , Mycelium/chemistry , Compressive Strength , Pressure
14.
Front Immunol ; 14: 1150287, 2023.
Article in English | MEDLINE | ID: mdl-37114040

ABSTRACT

Background: Ophiocordyceps sinensis is well-known worldwide as a traditional medicine. An alternative natural source of O. sinensis is provided by mycelial cultivation. However, the bioactivities of cultured mycelial-enriched ß-D-glucan polysaccharides from a novel fungus O. sinensis OS8 are still unknown. Methods: We investigated the potential bioactivities via anticancer, antioxidant, and immunomodulatory polysaccharides (OS8P) produced from cultured mycelia of O. sinensis OS8. This strain is a novel fungus isolated from natural O. sinensis, which is further cultured by submerged mycelial cultivation for polysaccharide production. Results: The yield of mycelial biomass was 23.61 g/l, and it contained 306.1 mg/100 g of adenosine and 3.22 g/100 g of polysaccharides. This OS8P was enriched with ß-D-glucan at 56.92% and another form of α-D-glucan at 35.32%. The main components of OS8P were dodecamethyl pentasiloxane, 2,6-bis (methylthiomethyl) pyridine, 2-(4-pyrimidinyl)-1H-Benzimidazole, and 2-Chloro-4-(4-nitroanilino)-6-(O-toluidino)-1,3,5-triazine at the rates of 32.5, 20.0, 17.5, and 16.25%, respectively. The growth of colon cancer cells (HT-29) was significantly inhibited by OS8P, with IC50 value of 202.98 µg/ml, and encouraged apoptosis in HT-29 cells as confirmed by morphological change analysis via AO/PI and DAPI staining, DNA fragmentation, and scanning electron microscopic observations. In addition, significant antioxidant activity was demonstrated by OS8P through DPPH and ABTS assays, with IC50 values of 0.52 and 2.07 mg/ml, respectively. The OS8P also exhibited suitable immunomodulatory activities that significantly enhanced (P< 0.05) the induction of splenocyte proliferation. Conclusion: The OS8P enriched with ß-D-glucan polysaccharides and produced by submerged mycelial culture of a new fungal strain of O. sinensis OS8 strongly inhibited the proliferation of colon cancer cells without any cytotoxicity against normal cells. The potential effect of the OS8P on the cancer cells was due to the stimulation of apoptosis. Also, the OS8P exhibited good antioxidant and immunomodulatory activities. The results indicate that OS8P has promising applications in the functional food industry and/or therapeutic agents for colon cancer.


Subject(s)
Cordyceps , Cordyceps/chemistry , Glucans , Antioxidants/analysis , Polysaccharides/pharmacology , Polysaccharides/analysis , Mycelium/chemistry
15.
Int J Med Mushrooms ; 25(3): 37-46, 2023.
Article in English | MEDLINE | ID: mdl-37017660

ABSTRACT

This study was conducted to evaluate extraction yield, antioxidant content, antioxidant capacity and antibacterial activity of extracts obtained from submerged mycelium (ME) and fruiting body (FBE) of Phellinus robiniae NTH-PR1. The results showed that yields of ME and FBE reached 14.84 ± 0.63 and 18.89 ± 0.86%, respectively. TPSC, TPC, and TFC were present in both mycelium and fruiting body, and the more contents of them were found in fruiting body. The concentrations of TPSC, TPC and TFC in ME and FBE were 17.61 ± 0.67 and 21.56 ± 0.89 mg GE g-1, 9.31 ± 0.45 and 12.14 ± 0.56 mg QAE g-1, and 8.91 ± 0.53 and 9.04 ± 0.74 mg QE g-1, respectively. EC50 values for DPPH radical scavenging revealed FBE (260.62 ± 3.33 µg mL-1) was more effective than ME (298.21 ± 3.61 µg mL-1). EC50 values for ferrous ion chelating in ME and FBE were 411.87 ± 7.27 and 432.39 ± 2.23 µg mL-1, respectively. Thus, both extracts were able to inhibit Gram-positive and Gram-negative pathogenic bacterial strains, at concentrations ranging in 25-100 mg mL-1 of ME and 18.75-75 mg mL-1 of FBE for Gram-positive bacteria; ranging in 75-100 mg mL-1 of ME and 50-75 of FBE for Gram-negative bacteria. Overall submerged mycelial biomass and fruiting bodies of Ph. robiniae NTH-PR1 can be considered as useful natural sources for development of functional food, pharmaceuticals and cosmetic products or cosmeceuticals.


Subject(s)
Agaricales , Anti-Infective Agents , Ascomycota , Basidiomycota , Agaricales/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Mycelium/chemistry , Fruiting Bodies, Fungal/chemistry
16.
Int J Med Mushrooms ; 24(12): 37-46, 2022.
Article in English | MEDLINE | ID: mdl-36374980

ABSTRACT

Despite knowledge on the therapeutic properties of fungal bio-compounds, few studies have been reported on their anti-parasitic activities. The anti-parasitic activity (APA) of mycelial extracts from seven medicinal agaricomycetous mushrooms (Polyporus lipsiensis, Ganoderma applanatum, Pleurotus ostreatus, P. flabellatus, Oudemansiella canarii, Lentinula edodes, and Pycnoporus sanguineus) against Giardia duodenalis, and identification of chemical compounds produced by mycelium P. lipsiensis mycelium, have been reported. The extracts of mycelia and fermented culture broths of tested mushroom species were evaluated against G. duodenalis by biological assays. P. lipsiensis showed the highest APA. The chemical analysis of mycelial extract of P. lipsiensis by gas chromatography-mass spectrometry (GC-MS) identified 73 molecules, including steroids, terpenes, and lipids. According to literature data, among these molecules, 11 possess APA. The present study revealed the diversity of compounds with anti-protozoal potential produced by mycelia of Agaricomycetes mushrooms, particularly P. lipsiensis against G. duodenalis.


Subject(s)
Agaricales , Giardia lamblia , Pleurotus , Shiitake Mushrooms , Gas Chromatography-Mass Spectrometry , Mycelium/chemistry , Pleurotus/chemistry , Shiitake Mushrooms/chemistry
17.
Article in English | MEDLINE | ID: mdl-36070448

ABSTRACT

Cordyceps sinensis, as an expensive traditional Chinese medicine and edible fungus mycelium, lacks an effective quality evaluation method, especially and cultivated Cordyceps sinensis. In this study, a feasible workflow method was developed for traceability evaluation of wild and cultivated Cordyceps sinensis, based on mass spectrometry-based metabolomics. Mass spectrometry data were firstly acquired from Cordyceps sinensis, samples by liquid chromatography-quadrupole and time of flight mass spectrometry. Characteristic mass spectrometry peaks were extracted by applying the MZmine. Then significant markers were obtained from Cordyceps sinensis samples by orthogonal partial least square discriminant analysis. Then, identification of significant markers were identified by MS-FINDER data analytics. The results showed that Changdu, the other four wild origins (Naqu, Xinghai, Yushu and Guoluo) and cultivated samples could be significantly distinguished. This identified significant markers of Cordyceps sinensis, including 174 special significant markers for the wild samples, 204 special significant markers for the cultivated samples and 87 share significant markers. Number of 87 shared significant markers were identified in the wild and cultivated Cordyceps sinensis, especially 28 confident significant compounds, such as adenosine, riboflavin, tyrosine, arginine and glutamine. These shared significant markers might support the quality control of multi-targets of Cordyceps sinensis, compared with a single target in the Chinese Pharmacopoeia. The special significant markers indicated that cultivated Cordyceps sinensis was different from the wild based on mass spectrometry-based metabolomics. In the comparison of chromatographic fingerprint technology, it was found that the established feasible workflow method was easy to acquire significant markers and traceability of Cordyceps sinensis. This feasible workflow method has great potential to be successful for comprehensive and traceability evaluation of the wild and cultivated Cordyceps sinensis.


Subject(s)
Cordyceps , Cordyceps/chemistry , Workflow , Mass Spectrometry , Metabolomics , Mycelium/chemistry
18.
Sci Rep ; 12(1): 15930, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151275

ABSTRACT

Living substrates are capable for nontrivial mappings of electrical signals due to the substrate nonlinear electrical characteristics. This property can be used to realise Boolean functions. Input logical values are represented by amplitude or frequency of electrical stimuli. Output logical values are decoded from electrical responses of living substrates. We demonstrate how logical circuits can be implemented in mycelium bound composites. The mycelium bound composites (fungal materials) are getting growing recognition as building, packaging, decoration and clothing materials. Presently the fungal materials are passive. To make the fungal materials adaptive, i.e. sensing and computing, we should embed logical circuits into them. We demonstrate experimental laboratory prototypes of many-input Boolean functions implemented in fungal materials from oyster fungi P. ostreatus. We characterise complexity of the functions discovered via complexity of the space-time configurations of one-dimensional cellular automata governed by the functions. We show that the mycelium bound composites can implement representative functions from all classes of cellular automata complexity including the computationally universal. The results presented will make an impact in the field of unconventional computing, experimental demonstration of purposeful computing with fungi, and in the field of intelligent materials, as the prototypes of computing mycelium bound composites.


Subject(s)
Mycelium , Smart Materials , Algorithms , Fungi , Mycelium/chemistry
19.
Biosci Biotechnol Biochem ; 86(10): 1327-1332, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-35983620

ABSTRACT

Five compounds including a new compound (1) were isolated from mycelia of a mushroom-forming fungus Agaricus blazei. Compound 2 was isolated from nature for the first time. Their structures were determined by the interpretation of spectroscopic data. In the bioassay examining growth inhibitory activity against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae, and Peptobacterium carotovorum, all the compounds showed inhibition effects on C. michiganensis. Compounds 3 and 4 also showed weak inhibitory activity against growth of B. glumae.


Subject(s)
Agaricus , Fatty Acids , Agaricus/chemistry , Bacteria , Fatty Acids/analysis , Mycelium/chemistry
20.
Int J Med Mushrooms ; 24(6): 47-55, 2022.
Article in English | MEDLINE | ID: mdl-35695637

ABSTRACT

Bioactivity is defined as the intrinsic property of compounds that enables their participation in specific biological reactions. This study aimed to evaluate the antimicrobial capacity and to separate and characterize bioactives from aqueous and hydroalcoholic extracts obtained from the mycelium of medicinal mushrooms Pleurotus albidus and Phellinus linteus. Antimicrobial activity, through the disc diffusion method, was found against strains of Bacillus cereus, B. subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus. P. albidus extracts showed better activity against Bacillus strains, whereas Ph. linteus extracts had greater effectiveness against S. aureus and P. aeruginosa. Aqueous extraction was best for obtaining bioactive compounds of P. albidus, whereas 30% hydralcoholic extraction performed best for obtaining Ph. linteus. Mass spectrometry analyses allowed the identification of the main chemical compounds extracted from the fungal biomasses, including glutathione oxidase, leucovorin, and riboflavin. Taking these findings into consideration, P. albidus and Ph. linteus might be used as sources of bioactive molecules for the development of novel drugs or nutraceuticals, contributing to the improvement of public health.


Subject(s)
Agaricales , Anti-Infective Agents , Pleurotus , Agaricales/chemistry , Anti-Bacterial Agents , Anti-Infective Agents/analysis , Anti-Infective Agents/pharmacology , Basidiomycota , Mycelium/chemistry , Pseudomonas aeruginosa , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...