Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.340
Filter
1.
Cancer Control ; 31: 10732748241251562, 2024.
Article in English | MEDLINE | ID: mdl-38716503

ABSTRACT

BACKGROUND: Liquid biopsy, including the detection of circulating tumor cells (CTCs), has emerged as a promising tool for cancer diagnosis and monitoring. However, the prognostic value of CTCs in nasopharyngeal carcinoma (NPC) remains unclear due to the lack of phenotypic characterization. The expression of Excision Repair Cross-Complementation Group 1 (ERCC1) and CTCs epithelial-mesenchymal transition (EMT) have been associated with treatment efficacy. In this study, we aimed to evaluate the prognostic significance of ERCC1 expression on CTCs and their EMT subtypes before treatment in NPC. METHODS: We retrospectively analyzed 108 newly diagnosed locally advanced NPC patients who underwent CanPatrol™ CTC testing between November 2018 and November 2021. CTCs were counted and classified into epithelial, epithelial-mesenchymal hybrid, and mesenchymal subtypes. ERCC1 expression was divided into negative and positive groups. Clinical features and survival outcomes were analyzed. RESULTS: The positive rate of CTCs was 92.6% (100/108), with an ERCC1 positivity rate of 74% (74/100). Further analysis of the subtypes showed that positive ERCC1 on mesenchymal CTCs was associated with a later N stage (P = .01). Positive ERCC1 expression was associated with poor overall survival (OS; P = .039) and disease-free survival (DFS; P = .035). Further analysis of subtypes showed that the positive ERCC1 on mesenchymal-type CTCs was associated with poor OS (P = .012) and metastasis-free survival (MFS; P = .001). CONCLUSION: Our findings suggest that ERCC1 expression on CTCs may serve as a new prognostic marker for NPC patients. Evaluating CTCs subtypes may become an auxiliary tool for personalized and precise treatment.


BackgroundLiquid biopsy, including the detection of circulating tumor cells (CTCs), has emerged as a promising tool for cancer diagnosis and monitoring. However, the prognostic value of CTCs in nasopharyngeal carcinoma (NPC) remains unclear due to the lack of phenotypic characterization. The expression of Excision Repair Cross-Complementation Group 1 (ERCC1) and CTCs epithelial-mesenchymal transition (EMT) have been associated with treatment efficacy. In this study, we aimed to evaluate the prognostic significance of ERCC1 expression on CTCs and their EMT subtypes before treatment in NPC.MethodsWe retrospectively analyzed 108 newly diagnosed locally advanced NPC patients who underwent CanPatrol™ CTC testing between November 2018 and November 2021. CTCs were counted and classified into epithelial, epithelial-mesenchymal hybrid, and mesenchymal subtypes. ERCC1 expression was divided into negative and positive groups. Clinical features and survival outcomes were analyzed.ResultsThe positive rate of CTCs was 92.6% (100/108), with an ERCC1 positivity rate of 74% (74/100). Further analysis of the subtypes showed that positive ERCC1 on mesenchymal CTCs was associated with a later N stage (P = .01). Positive ERCC1 expression was associated with poor overall survival (OS; P = .039) and disease-free survival (DFS; P = .035). Further analysis of subtypes showed that the positive ERCC1 on mesenchymal-type CTCs was associated with poor OS (P = .012) and metastasis-free survival (MFS; P = .001).ConclusionOur findings suggest that ERCC1 expression on CTCs may serve as a new prognostic marker for NPC patients. Evaluating CTCs subtypes may become an auxiliary tool for personalized and precise treatment.


Subject(s)
DNA-Binding Proteins , Endonucleases , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/metabolism , Male , Female , Prognosis , Middle Aged , Endonucleases/metabolism , Retrospective Studies , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/blood , Nasopharyngeal Neoplasms/mortality , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Adult , Biomarkers, Tumor/metabolism , Aged , Excision Repair
2.
Mol Cancer ; 23(1): 93, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720314

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA's full potential, this study introduces a novel approach for CTC enrichment from DLAs. METHODS: DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. RESULTS: Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. CONCLUSIONS: In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Leukapheresis , Lung Neoplasms , Neoplastic Cells, Circulating , Phenotype , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Single-Cell Analysis/methods , Transcriptome , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Cell Line, Tumor
3.
J Nanobiotechnology ; 22(1): 231, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720360

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) are considered as a useful biomarker for early cancer diagnosis, which play a crucial role in metastatic process. Unfortunately, the tumor heterogeneity and extremely rare occurrence rate of CTCs among billions of interfering leukocytes seriously hamper the sensitivity and purity of CTCs isolation. METHODS: To address these, we firstly used microfluidic chips to detect the broad-spectrum of triple target combination biomarkers in CTCs of 10 types of cancer patients, including EpCAM, EGFR and Her2. Then, we constructed hybrid engineered cell membrane-camouflaged magnetic nanoparticles (HE-CM-MNs) for efficient capture of heterogeneous CTCs with high-purity, which was enabled by inheriting the recognition ability of HE-CM for various CTCs and reducing homologous cell interaction with leukocytes. Compared with single E-CM-MNs, HE-CM-MNs showed a significant improvement in the capture efficiency for a cell mixture, with an efficiency of 90%. And the capture efficiency of HE-CM-MNs toward 12 subpopulations of tumor cells was ranged from 70 to 85%. Furthermore, by using HE-CM-MNs, we successfully isolated heterogeneous CTCs with high purity from clinical blood samples. Finally, the captured CTCs by HE-CM-MNs could be used for gene mutation analysis. CONCLUSIONS: This study demonstrated the promising potential of HE-CM-MNs for heterogeneous CTCs detection and downstream analysis.


Subject(s)
Biomarkers, Tumor , Cell Membrane , Cell Separation , Magnetite Nanoparticles , Neoplastic Cells, Circulating , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Humans , Magnetite Nanoparticles/chemistry , Cell Separation/methods , Cell Line, Tumor , Cell Membrane/metabolism , Cell Membrane/chemistry , Biomarkers, Tumor/blood , Receptor, ErbB-2 , Epithelial Cell Adhesion Molecule/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Neoplasms
4.
Mol Biomed ; 5(1): 17, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724687

ABSTRACT

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Subject(s)
Genetic Heterogeneity , Melanoma , Molecular Targeted Therapy , Uveal Neoplasms , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/therapy , Melanoma/drug therapy , Molecular Targeted Therapy/methods , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Mutation , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Liquid Biopsy/methods
5.
Cells ; 13(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38727318

ABSTRACT

CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.


Subject(s)
B7-H1 Antigen , Neoplastic Cells, Circulating , Prostatic Neoplasms , Receptors, CXCR4 , Humans , Male , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Middle Aged , Proto-Oncogene Proteins c-jun/metabolism , Gene Expression Regulation, Neoplastic
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732051

ABSTRACT

This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/immunology , Breast Neoplasms/blood , Prognosis , Female
7.
Sci Rep ; 14(1): 11057, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744942

ABSTRACT

Circulating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically comprises thousands of gene expression reads per cell, which artificial intelligence algorithms can accurately analyze. This work presents machine-learning-based classifiers that differentiate CTCs from peripheral blood mononuclear cells (PBMCs) based on single cell RNA sequencing data. We developed four tree-based models and we trained and tested them on a dataset consisting of Smart-Seq2 sequenced data from primary tumor sections of breast cancer patients and PBMCs and on a public dataset with manually annotated CTC expression profiles from 34 metastatic breast patients, including triple-negative breast cancer. Our best models achieved about 95% balanced accuracy on the CTC test set on per cell basis, correctly detecting 133 out of 138 CTCs and CTC-PBMC clusters. Considering the non-invasive character of the liquid biopsy examination and our accurate results, we can conclude that our work has potential application value.


Subject(s)
Breast Neoplasms , Machine Learning , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Single-Cell Analysis/methods , Leukocytes, Mononuclear/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnosis , Sequence Analysis, RNA/methods , Algorithms , Biomarkers, Tumor/genetics
9.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683997

ABSTRACT

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Microfluidics/methods , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/blood , Phenotype , Cell Line, Tumor , Immunotherapy/methods , Gene Expression Profiling/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
10.
Breast Cancer ; 31(3): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38561479

ABSTRACT

BACKGROUND: Patients with breast cancer (BC) at advanced stages have poor outcomes because of high rate of recurrence and metastasis. Biomarkers for predicting prognosis remain to be explored. This study aimed to evaluate the relationships between circulating tumor cells (CTCs) and outcomes of BC patients. PATIENTS AND METHODS: A total of 50 female were enrolled in this study. Their diagnoses were determined by clinical characteristics, image data, and clinical pathology. CTC subtypes and TOP2A gene expression on CTCs were detected by CanPatrol™ technology and triple color in situ RNA hybridization (RNA-ISH), which divided into epithelial CTCs (eCTCs), mesenchymal CTCs (MCTCs), and hybrid CTCs (HCTCs) based on their surface markers. Hormone receptor, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression, was measured by immunohistochemistry (IHC) method before treatment. The risk factors for predicting recurrence and metastasis were calculated by COX risk regression model. The progression-free survival (PFS) of patients was determined using Kaplan-Meier survival curve. RESULTS: The patients with a large tumor size (≥ 3 cm) and advanced tumor node metastasis (TNM) stages had high total CTCs (TCTCs) (P < 0.05). These patients also had high TOP2A expression level. COX risk regression analysis indicated that TOP2A expression levels in TCTCs, ER + , HER-2 + , and TNM stages were critical risk factors for recurrence and metastasis of patients (P < 0.05). The PFS of patients with ≥ 5 TCTCs, ≥ 3 HCTCs, and positive TOP2A expression in ≥ 3 TCTCs was significantly longer than that in patient with < 5 TCTCs, < 3 HCTCs, and TOP2A expression in < 3 TCTCs (P < 0.05). In contrast, the PFS of patients with positive hormone receptors (ER + , PR + , HER-2 +) also was dramatically lived longer than that in patients with negative hormone receptor expression. CONCLUSIONS: High TCTC, HCTCs, and positive TOP2A gene expression on CTCs were critical biomarkers for predicting outcomes of BC patients. Positive hormone receptor expression in BC patients has significant favor PFS.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , DNA Topoisomerases, Type II , Drug Resistance, Neoplasm , Neoplastic Cells, Circulating , Humans , Female , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Middle Aged , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Adult , Aged , Receptor, ErbB-2/metabolism , Prognosis , Receptors, Estrogen/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/genetics , Receptors, Progesterone/metabolism , Gene Expression Regulation, Neoplastic , Progression-Free Survival , Kaplan-Meier Estimate
11.
World J Surg Oncol ; 22(1): 110, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664770

ABSTRACT

BACKGROUND: Octamer-binding transcription factor 4-positive circulating tumor cell (OCT4+CTC) exhibits high stemness and invasive potential, which may influence the efficacy of immune checkpoint inhibitors (ICI). This study aimed to assess the prognostic role of OCT4+CTC in advanced cholangiocarcinoma (CCA) patients who received ICI treatment. METHODS: In total, 40 advanced CCA patients who received ICI treatment were included, and CTC and OCT4 counts were detected via a Canpatrol system and an RNA in situ hybridization method before ICI treatment. Patients were subsequently divided into none CTC, OCT4-CTC, and OCT4+CTC groups. Patients were followed up for a median of 10.4 months. RESULTS: The percentages of patients in none CTC, OCT4-CTC, and OCT4+CTC groups were 25.0%, 30.0%, and 45.0%, respectively. The proportion of patients with lymph node metastasis was highest in OCT4+CTC group, followed by none CTC group, and lowest in OCT4-CTC group (P = 0.025). The objective response rate (ORR) was lowest in OCT4+CTC group, moderate in OCT4-CTC group, and highest in none CTC group (P = 0.009), while disease control rate was not different among three groups (P = 0.293). In addition, progression-free survival (PFS) (P < 0.001) and overall survival (OS) (P = 0.001) were shorter in the OCT4+CTC group than in none CTC & OCT4-CTC group. Moreover, OCT4+CTC (versus none CTC) was independently linked with poorer PFS [hazard ratio (HR) = 6.752, P = 0.001] and OS (HR = 6.674, P = 0.003) in advanced CCA patients. CONCLUSION: OCT4+CTC relates to lymph node metastasis and shows a good predictive value for poor treatment response and survival in advanced CCA patients who receive ICI treatment.


Subject(s)
Bile Duct Neoplasms , Biomarkers, Tumor , Cholangiocarcinoma , Immune Checkpoint Inhibitors , Neoplastic Cells, Circulating , Octamer Transcription Factor-3 , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/mortality , Cholangiocarcinoma/blood , Male , Female , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/blood , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Middle Aged , Octamer Transcription Factor-3/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Prognosis , Survival Rate , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Follow-Up Studies , Aged , Adult , Lymphatic Metastasis , Retrospective Studies
12.
J Exp Clin Cancer Res ; 43(1): 96, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561776

ABSTRACT

Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/analysis , Neoplasm Recurrence, Local , Liquid Biopsy/methods , Prognosis , Neoplastic Cells, Circulating/metabolism
13.
Biomolecules ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672414

ABSTRACT

Small-cell lung cancer (SCLC) cases represent approximately 15% of all lung cancer cases, remaining a recalcitrant malignancy with poor survival and few treatment options. In the last few years, the addition of immunotherapy to chemotherapy improved clinical outcomes compared to chemotherapy alone, resulting in the current standard of care for SCLC. However, the advantage of immunotherapy only applies to a few SCLC patients, and predictive biomarkers selection are lacking for SCLC. In particular, due to some features of SCLC, such as high heterogeneity, elevated cell plasticity, and low-quality tissue samples, SCLC biopsies cannot be used as biomarkers. Therefore, the characterization of the tumor and, subsequently, the selection of an appropriate therapeutic combination may benefit greatly from liquid biopsy. Soluble factors, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) are now useful tools in the characterization of SCLC. This review summarizes the most recent data on biomarkers detectable with liquid biopsy, emphasizing their role in supporting tumor detection and their potential role in SCLC treatment choice.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Lung Neoplasms , Neoplastic Cells, Circulating , Small Cell Lung Carcinoma , Humans , Liquid Biopsy/methods , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/diagnosis , Immunotherapy/methods , Biomarkers, Tumor/metabolism , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Circulating Tumor DNA/blood , Extracellular Vesicles/metabolism
14.
Signal Transduct Target Ther ; 9(1): 84, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575583

ABSTRACT

Circulating tumor cells (CTCs) are precursors of distant metastasis in a subset of cancer patients. A better understanding of CTCs heterogeneity and how these CTCs survive during hematogenous dissemination could lay the foundation for therapeutic prevention of cancer metastasis. It remains elusive how CTCs evade immune surveillance and elimination by immune cells. In this study, we unequivocally identified a subpopulation of CTCs shielded with extracellular vesicle (EVs)-derived CD45 (termed as CD45+ CTCs) that resisted T cell attack. A higher percentage of CD45+ CTCs was found to be closely correlated with higher incidence of metastasis and worse prognosis in cancer patients. Moreover, CD45+ tumor cells orchestrated an immunosuppressive milieu and CD45+ CTCs exhibited remarkably stronger metastatic potential than CD45- CTCs in vivo. Mechanistically, CD45 expressing on tumor surfaces was shown to form intercellular CD45-CD45 homophilic interactions with CD45 on T cells, thereby preventing CD45 exclusion from TCR-pMHC synapse and leading to diminished TCR signaling transduction and suppressed immune response. Together, these results pointed to an underappreciated capability of EVs-derived CD45-dressed CTCs in immune evasion and metastasis, providing a rationale for targeting EVs-derived CD45 internalization by CTCs to prevent cancer metastasis.


Subject(s)
Extracellular Vesicles , Neoplastic Cells, Circulating , Humans , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Neoplastic Cells, Circulating/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes/metabolism
15.
Endocr Relat Cancer ; 31(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642579

ABSTRACT

Neuropilin 2 (NRP2), a transmembrane non-tyrosine kinase receptor, has been described as a potential critical player in the tumourigenesis of several solid cancers and particularly in neuroendocrine neoplasms (NENs). A soluble form of NRP2 (sNRP2) has been previously described and corresponds to a truncated splice isoform. Its prognostic value has never been studied in NEN. NRP2 expression was studied by immunochemistry on tissue microarrays (n = 437) and on circulating tumour cells (CTCs, n = 5 patients with neuroendocrine carcinoma, NEC). We described the levels of sNRP2 in 229 patients with NEN using the ELISA method to identify the factors associated with sNRP2 levels and to evaluate its prognostic role; 90 blood donors represented the healthy control group. NRP2 was found in 97% of neuroendocrine tumours (396/410) and in 74% of NEC (20/27). NRP2 was also expressed in CTC of all the studied patients. The receiver operating characteristic (ROC) analysis showed that sNRP2 had a weak capacity to discriminate between NEN patients and healthy controls (area under curve (AUC) = 0.601, P = 0.053). Abnormal sNRP2 levels were associated with inflammatory syndrome, bone and peritoneal metastases, and abnormal chromogranin A levels. Patients with high sNRP2 levels (sNRP2Q3-Q4) had significantly poorer overall survival in multivariate analysis (HR 0.16, 95% CI (0.04-0.67), P = 0.015). In conclusion, the present study found that sNRP2 and NRP2 could represent a new prognostic biomarker and a therapeutic target, respectively, particularly in aggressive NEN.


Subject(s)
Biomarkers, Tumor , Neuroendocrine Tumors , Neuropilin-2 , Humans , Female , Neuropilin-2/metabolism , Neuropilin-2/genetics , Male , Middle Aged , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/blood , Aged , Adult , Biomarkers, Tumor/metabolism , Prognosis , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Aged, 80 and over , Young Adult
16.
J Exp Clin Cancer Res ; 43(1): 129, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685125

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise in guiding treatment strategies for advanced gastric cancer (GC). However, their clinical impact has been limited due to challenges in identifying epithelial-mesenchymal transition (EMT)-CTCs using conventional methods. METHODS: To bridge this knowledge gap, we established a detection platform for CTCs based on the distinctive biomarker cell surface vimentin (CSV). A prospective study involving 127 GC patients was conducted, comparing CTCs enumeration using both EpCAM and CSV. This approach enabled the detection of both regular and EMT-CTCs, providing a comprehensive analysis. Spiking assays and WES were employed to verify the reliability of this marker and technique. To explore the potential inducer of CSV+CTCs formation, a combination of Tandem Mass Tag (TMT) quantitative proteomics, m6A RNA immunoprecipitation-qPCR (MeRIP-qPCR), single-base elongation- and ligation-based qPCR amplification method (SELECT) and RNA sequencing (RNA-seq) were utilized to screen and confirm the potential target gene. Both in vitro and in vivo experiments were performed to explore the molecular mechanism of CSV expression regulation and its role in GC metastasis. RESULTS: Our findings revealed the potential of CSV in predicting therapeutic responses and long-term prognosis for advanced GC patients. Additionally, compared to the conventional EpCAM-based CTCs detection method, the CSV-specific positive selection CTCs assay was significantly better for evaluating the therapeutic response and prognosis in advanced GC patients and successfully predicted disease progression 14.25 months earlier than radiology evaluation. Apart from its excellent role as a detection marker, CSV emerges as a promising therapeutic target for attenuating GC metastasis. It was found that fat mass and obesity associated protein (FTO) could act as a potential catalyst for CSV+CTCs formation, and its impact on the insulin-like growth factor-I receptor (IGF-IR) mRNA decay through m6A modification. The activation of IGF-I/IGF-IR signaling enhanced the translocation of vimentin from the cytoplasm to the cell surface through phosphorylation of vimentin at serine 39 (S39). In a GC mouse model, the simultaneous inhibition of CSV and blockade of the IGF-IR pathway yielded promising outcomes. CONCLUSION: In summary, leveraging CSV as a universal CTCs marker represents a significant breakthrough in advancing personalized medicine for patients with advanced GC. This research not only paves the way for tailored therapeutic strategies but also underscores the pivotal role of CSV in enhancing GC management, opening new frontiers for precision medicine.


Subject(s)
Biomarkers, Tumor , Neoplastic Cells, Circulating , Stomach Neoplasms , Vimentin , Animals , Female , Humans , Male , Mice , Middle Aged , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prospective Studies , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Vimentin/metabolism
17.
Clin Cancer Res ; 30(9): 1788-1800, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38587547

ABSTRACT

PURPOSE: Prostate-specific membrane antigen (PSMA)-based images, which visually quantify PSMA expression, are used to determine prostate cancer micrometastases. This study evaluated whether a circulating tumor cell (CTC)-based transcript platform, including PSMA mRNA, could help identify potential prognostic markers in prostate cancer. EXPERIMENTAL DESIGN: We prospectively enrolled 21 healthy individuals and 247 patients with prostate cancer [localized prostate cancer (LPCa), n = 94; metastatic hormone-sensitive prostate cancer (mHSPC), n = 44; and metastatic castration-resistant prostate cancer (mCRPC), n = 109]. The mRNA expression of six transcripts [PSMA, prostate-specific antigen (PSA), AR, AR-V7, EpCAM, and KRT 19] from CTCs was measured, and their relationship with biochemical recurrence (BCR) in LPCa and mCRPC progression-free survival (PFS) rate in mHSPC was assessed. PSA-PFS and radiological-PFS were also calculated to identify potential biomarkers for predicting androgen receptor signaling inhibitor (ARSI) and taxane-based chemotherapy resistance in mCRPC. RESULTS: CTC detection rates were 75.5%, 95.3%, and 98.0% for LPCa, mHSPC, and mCRPC, respectively. In LPCa, PSMA [hazard ratio (HR), 3.35; P = 0.028) and PSA mRNA (HR, 1.42; P = 0.047] expressions were associated with BCR. Patients with mHSPC with high PSMA (HR, 4.26; P = 0.020) and PSA mRNA (HR, 3.52; P = 0.042) expressions showed significantly worse mCRPC-PFS rates than those with low expression. Increased PSA and PSMA mRNA expressions were significantly associated with shorter PSA-PFS and radiological PFS in mCPRC, indicating an association with drug resistance. CONCLUSIONS: PSMA and PSA mRNA expressions are associated with BCR in LPCa. In advanced prostate cancer, PSMA and PSA mRNA can also predict rapid progression from mHSPC to mCRPC and ARSI or taxane-based chemotherapy resistance.


Subject(s)
Antigens, Surface , Biomarkers, Tumor , Glutamate Carboxypeptidase II , Neoplasm Staging , Neoplastic Cells, Circulating , Prostate-Specific Antigen , Humans , Male , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prostate-Specific Antigen/blood , Aged , Glutamate Carboxypeptidase II/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Antigens, Surface/genetics , Antigens, Surface/metabolism , Middle Aged , Prognosis , RNA, Messenger/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/blood , Prostatic Neoplasms/mortality , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Aged, 80 and over , Prospective Studies , Kallikreins/blood , Kallikreins/genetics , Gene Expression Regulation, Neoplastic
18.
Cancer Lett ; 590: 216870, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38614386

ABSTRACT

To seed lethal secondary lesions, circulating tumor cells (CTCs) must survive all rate-limiting factors during hematogenous dissemination, including fluid shear stress (FSS) that poses a grand challenge to their survival. We thus hypothesized that CTCs with the ability to survive FSS in vasculature might hold metastasis-initiating competence. This study reported that FSS of physiologic magnitude selected a small subpopulation of suspended tumor cells in vitro with the traits of metastasis-initiating cells, including stemness, migration/invasion potential, cellular plasticity, and biophysical properties. These shear-selected cells generated local and metastatic tumors at the primary and distal sites efficiently, implicating their metastasis competence. Mechanistically, FSS activated the mechanosensitive protein CXCR4 and the downstream PI3K/AKT signaling, which were essential in shear-mediated selection of metastasis-competent CTCs. In summary, these findings conclude that CTCs with metastasis-initiating competence survive FSS during hematogenous dissemination through CXCR4-PI3K/AKT signaling, which may provide new therapeutic targets for the early prevention of tumor metastasis.


Subject(s)
Neoplastic Cells, Circulating , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, CXCR4 , Signal Transduction , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Receptors, CXCR4/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Humans , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Stress, Mechanical , Female , Mice , Cell Movement , Neoplasm Metastasis
19.
Talanta ; 274: 125921, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552481

ABSTRACT

Breast cancer is the most common malignant tumor in women, which accounts for 6.9% of all cancer-related deaths. Early diagnosis is crucial for making the best clinical decision and improving the prognosis of patients. Circulating tumor cells (CTCs) have been regarded as significant tumor biomarkers. Herein, we designed a colorimetric biosensor for breast cancer CTCs quantification based on ladder-branch hybridization chain reaction (HCR) and DNA flowers/gold nanoclusters (DFs/AuNCs) nanozyme. With the assistance of complementary DNA labeled on magnetic beads (MBs), the cleavage products of RNA-cleaving DNAzymes (RCDs) could be rapidly captured, subsequently triggering ladder-branch HCR. In addition, the DFs/AuNCs nanozyme was applied for colorimetric analysis, which further improved the sensitivity for the detection of target CTCs. Benefiting from specific RCDs, ladder-branch HCR and DFs/AuNCs, we achieved a superior detection limit of 3 cells/mL as well as a broad linear range of 10 cells/mL to 104 cells/mL. Conclusively, this colorimetric biosensor achieved sensitively and selectively detection of breast cancer CTCs without the participation of enzymes at room temperature, which might provide new insight into the early detection of breast cancer.


Subject(s)
Breast Neoplasms , Colorimetry , Gold , Metal Nanoparticles , Neoplastic Cells, Circulating , Nucleic Acid Hybridization , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Humans , Colorimetry/methods , Breast Neoplasms/blood , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Gold/chemistry , Female , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Limit of Detection , MCF-7 Cells
20.
Thorac Cancer ; 15(13): 1060-1071, 2024 May.
Article in English | MEDLINE | ID: mdl-38532562

ABSTRACT

BACKGROUND: The aim of the study was to evaluate the prognostic value of postoperative folate receptor-positive circulating tumor cell (FR + CTC) detection in patients with stage I-III invasive adenocarcinoma (IAC) treated with surgery. METHODS: Patients with lung adenocarcinoma (LUAD) who underwent surgical resection in Peking University Cancer Hospital and received postoperative FR + CTC analysis from July 2016 to January 2021 were retrospectively collected. Comparisons between or among groups were made using the Kruskal-Wallis or Mann-Whitney U tests. Survival curves were estimated using the Kaplan-Meier method and compared using the log-rank test. Cox proportional hazard regression analyses were performed to explore the factors predicting recurrence and survival. RESULTS: There were significant differences between the high and low groups in terms of age (p = 0.002), postoperative CA199 (p = 0.038), and postoperative SCC (p = 0.024). There were no significant differences in the other indicators (all p>0.05). N stage 1, N stage 2, and neoadjuvant therapy (NAT) were independent risk factors for disease recurrence and death; pleural invasion (PI), and nerve invasion were independent risk factors for death. The Kaplan-Meier curve showed a notable trend for a worse disease-free survival (DFS) or overall survival (OS) for patients with high levels of FR + CTCs in our study, but none of these were statistically significant. CONCLUSION: The detection of FR + CTCs postoperatively was an independent predictor of recurrence in patients treated for stage I-III IAC. Standardized detection methods and optimal time points for assessment should be established in future studies.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Female , Male , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prognosis , Middle Aged , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Aged , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Retrospective Studies , Biomarkers, Tumor/metabolism , Neoplasm Invasiveness , Adult , Clinical Relevance
SELECTION OF CITATIONS
SEARCH DETAIL
...