Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.411
Filter
1.
Neurol Res ; 46(5): 416-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38577889

ABSTRACT

OBJECTIVE: Previous studies have revealed that Propane-2-sulfonic acid octadec-9-enyl-amide(N15) exerts a protective role in the inflammatory response after ischemic stroke and in neuronal damage. However, little is known about N15 in Alzheimer's disease (AD). The aim of this study was to investigate the effects of N15 on AD and explore the underlying molecular mechanism. METHODS: AD mice model was established by lateral ventricular injection with Aß25-35. N15 was daily intraperitoneal administered for 28 days. Morris Water Maze was used to evaluate the neurocognitive function of the mice. The expression of PPARα/γ, brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3), ADAM10, PS1 and BACE1 were measured by qPCR. Aß amyloid in the hippocampus was measured by Congo red assay. Toluidine blue staining was used to detect the neuronal apoptosis. Protein levels of ADAM10, PS1 and BACE1 were determined using immunoblotting. RESULTS: N15 treatment significantly reduced neurocognitive dysfunction, which also significantly activated the expression of PPARα/γ at an optimal dose of 200 mg/kg. Administration of N15 alleviated the formation of Aß amyloid in the hippocampus of AD mice, enhanced the BDNF mRNA expression, decreased the mRNA and protein levels of PS1 and BACE1, upregulated ADAM10 mRNA and protein levels. CONCLUSION: N15 exerts its neuroprotective effects through the activation of PPARα/γ and may be a potential drug for the treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Hippocampus , PPAR alpha , PPAR gamma , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , PPAR gamma/agonists , PPAR gamma/metabolism , PPAR alpha/agonists , PPAR alpha/metabolism , Male , Amyloid beta-Peptides/metabolism , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Sulfonic Acids/pharmacology , Peptide Fragments , Maze Learning/drug effects , Neuroprotective Agents/pharmacology , Memory/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Mice, Inbred C57BL
2.
Nat Commun ; 15(1): 3408, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649351

ABSTRACT

De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of drug-like molecules. This method capitalizes on the unique strengths of both graph neural networks and chemical language models, offering an alternative to the need for application-specific reinforcement, transfer, or few-shot learning. It enables the "zero-shot" construction of compound libraries tailored to possess specific bioactivity, synthesizability, and structural novelty. In order to proactively evaluate the deep interactome learning framework for protein structure-based drug design, potential new ligands targeting the binding site of the human peroxisome proliferator-activated receptor (PPAR) subtype gamma are generated. The top-ranking designs are chemically synthesized and computationally, biophysically, and biochemically characterized. Potent PPAR partial agonists are identified, demonstrating favorable activity and the desired selectivity profiles for both nuclear receptors and off-target interactions. Crystal structure determination of the ligand-receptor complex confirms the anticipated binding mode. This successful outcome positively advocates interactome-based de novo design for application in bioorganic and medicinal chemistry, enabling the creation of innovative bioactive molecules.


Subject(s)
Deep Learning , Drug Design , PPAR gamma , Humans , Ligands , PPAR gamma/metabolism , PPAR gamma/agonists , PPAR gamma/chemistry , Binding Sites , Protein Binding
3.
Metabolism ; 155: 155912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609038

ABSTRACT

Saroglitazar (SARO), a dual peroxisome proliferator activated receptor (PPAR)-α/γ agonist, has been used to treat metabolic diseases such as insulin resistance and diabetic dyslipidemia in patients with non-alcoholic fatty liver disease (NAFLD). SARO, administered at a dose of 4 mg/day, has been consistently studied in clinical trials with different time points ranging from 4 to 24 weeks with NAFLD patients. Due to its PPAR-γ agonistic action, SARO prevents adipose tissue-mediated fatty acid delivery to the liver by increasing insulin sensitivity and regulating adiponectin and leptin levels in adipose tissue. In hepatocytes, SARO induces fatty acid ß-oxidation in mitochondria and transcriptionally activates lipid metabolizing genes in peroxisomes. SARO inhibits insulin resistance, thereby preventing the activation of sterol regulatory element-binding proteins -1c and carbohydrate response element binding protein in hepatocytes through its PPAR-α agonistic action. SARO treatment reduces lipotoxicity-mediated oxidative stress by activating the nuclear factor erythroid 2-related factor 2 and transcriptionally expressing the antioxidants from the antioxidant response element in the nucleus through its PPAR-γ agonistic action. SARO provides a PPAR-α/γ-mediated anti-inflammatory effect by preventing the phosphorylation of mitogen-activated protein kinases (JNK and ERK) and nuclear factor kappa B in hepatocytes. Additionally, SARO interferes with transforming growth factor-ß/Smad downstream signaling, thereby reducing liver fibrosis progression through its PPAR-α/γ agonistic actions. Thus, SARO improves insulin resistance and dyslipidemia in NAFLD, reduces lipid accumulation in the liver, and thereby prevents mitochondrial toxicity, oxidative stress, inflammation, and fibrosis progression. This review summarizes the possible molecular mechanism of SARO in the NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR alpha , PPAR gamma , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Animals , Phenylpropionates/therapeutic use , Phenylpropionates/pharmacology , Insulin Resistance , Pyrroles
4.
Expert Opin Ther Pat ; 34(1-2): 83-98, 2024.
Article in English | MEDLINE | ID: mdl-38501260

ABSTRACT

INTRODUCTION: The search for novel compounds targeting Peroxisome Proliferator-Activated Receptors (PPARs) is currently ongoing, starting from the previous successfully identification of selective, dual or pan agonists. In last years, researchers' efforts are mainly paid to the discovery of PPARγ and δ modulators, both agonists and antagonists, selective or with a dual-multitarget profile. Some of these compounds are currently under clinical trials for the treatment of primary biliary cirrhosis, nonalcoholic fatty liver disease, hepatic, and renal diseases. AREAS COVERED: A critical analysis of patents deposited in the range 2020-2023 was carried out. The novel compounds discovered were classified as selective PPAR modulators, dual and multitarget PPAR agonists. The use of PPAR ligands in combination with other drugs was also discussed, together with novel therapeutic indications proposed for them. EXPERT OPINION: From the analysis of the patent literature, the current emerging landscape sees the necessity to obtain PPAR multitarget compounds, with a balanced potency on three subtypes and the ability to modulate different targets. This multitarget action holds great promise as a novel approach to complex disorders, as metabolic, inflammatory diseases, and cancer. The utility of PPAR ligands in the immunotherapy field also opens an innovative scenario, that could deserve further applications.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Patents as Topic , PPAR gamma/agonists , Hypoglycemic Agents , Metabolic Diseases/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Ligands
5.
Chemosphere ; 354: 141723, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494006

ABSTRACT

Perfluorooctanoic acid (PFOA) is a widespread environmental pollutant of the perfluoroalkyl substance (PFAS) class that is extremely resistant to environmental and metabolic degradation, leading to bioaccumulation. PFOA exposure has been linked to many health effects including endocrine disruption and metabolic dysregulation, but our understanding of the molecular mechanisms resulting in these outcomes remains incomplete. One target affected by PFOA is the ligand regulated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) which plays a critical role in controlling metabolic homeostasis through regulating processes such as adipogenesis, glucose homeostasis, inflammation and osteogenesis. It has been previously established that PFOA activates PPARγ through binding to the PPARγ ligand binding domain (PPARγ LBD) leading to increased expression of PPARγ controlled target genes. However, the mechanism by which PFOA achieves this has remained elusive. Here, we employed a combination of X-ray crystallography and fluorescence polarization assays to provide a structural basis for PFOA mediated activation of PPARγ via binding to the PPARγ LBD. Using X-ray crystallography, the cocrystal structure of the PPARγ LBD:PFOA complex was solved. This revealed that PFOA occupies three distinct sites, two within the PPARγ LBD and one within the activation function 2 (AF2) on the protein surface. Structural comparison of PFOA binding with previously reported PPARγ:ligand complexes supports that PFOA activates PPARγ by a partial agonist mechanism at micromolar concentrations. Fluorescence polarization assays also revealed that PFOA binding to the AF2 is unlikely to occur in a cellular context and confirmed that PFOA behaves as a partial agonist in vitro, weakly recruiting a coactivator peptide to the AF2 of the PPARγ LBD. This discovery provides an advancement in understanding PFOA mediated regulation of PPARγ, giving new insight regarding regulation of PPARγ by PFAS and PFAS substitutes in general and can be applied to the design and assessment of safer PFAS.


Subject(s)
Caprylates , Fluorocarbons , PPAR gamma , PPAR gamma/agonists , Ligands , Furylfuramide , Fluorocarbons/toxicity
6.
J Mol Graph Model ; 129: 108742, 2024 06.
Article in English | MEDLINE | ID: mdl-38422823

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPAR-γ) serves as a nuclear receptor with a pivotal function in governing diverse facets of metabolic processes. In diabetes, the prime physiological role of PPAR-γ is to enhance insulin sensitivity and regulate glucose metabolism. Although PPAR-γ agonists such as Thiazolidinediones are effective in addressing diabetes complications, it is vital to be mindful that they are associated with substantial side effects that could potentially give rise to health challenges. The recent surge in the discovery of selective modulators of PPAR-γ inspired us to formulate an integrated computational strategy by leveraging the promising capabilities of both machine learning and in silico drug design approaches. In pursuit of our objectives, the initial stage of our work involved constructing an advanced machine learning classification model, which was trained utilizing chemical information and physicochemical descriptors obtained from known PPAR-γ modulators. The subsequent application of machine learning-based virtual screening, using a library of 31,750 compounds, allowed us to identify 68 compounds having suitable characteristics for further investigation. A total of four compounds were identified and the most favorable configurations were complemented with docking scores ranging from -8.0 to -9.1 kcal/mol. Additionally, the compounds engaged in hydrogen bond interactions with essential conserved residues including His323, Leu330, Phe363, His449 and Tyr473 that describe the ligand binding site. The stability indices investigated herein for instance root-mean-square fluctuations in the backbone atoms indicated higher mobility in the region of orthosteric site in the presence of agonist with the deviation peaks in the range of 0.07-0.69 nm, signifying moderate conformational changes. The deviations at global level revealed that the average values lie in the range of 0.25-0.32 nm. In conclusion, our identified hits particularly, CHEMBL-3185642 and CHEMBL-3554847 presented outstanding results and highlighted the stable conformation within the orthosteric site of PPAR-γ to positively modulate the activity.


Subject(s)
PPAR-gamma Agonists , Thiazolidinediones , Molecular Docking Simulation , Thiazolidinediones/chemistry , Binding Sites , PPAR gamma/agonists , PPAR gamma/metabolism
7.
Biomolecules ; 14(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38397426

ABSTRACT

Lung cancer is one of the most lethal malignancies worldwide. Peroxisome proliferator-activated receptor gamma (PPARγ, NR1C3) is a ligand-activated transcriptional factor that governs the expression of genes involved in glucolipid metabolism, energy homeostasis, cell differentiation, and inflammation. Multiple studies have demonstrated that PPARγ activation exerts anti-tumor effects in lung cancer through regulation of lipid metabolism, induction of apoptosis, and cell cycle arrest, as well as inhibition of invasion and migration. Interestingly, PPARγ activation may have pro-tumor effects on cells of the tumor microenvironment, especially myeloid cells. Recent clinical data has substantiated the potential of PPARγ agonists as therapeutic agents for lung cancer. Additionally, PPARγ agonists also show synergistic effects with traditional chemotherapy and radiotherapy. However, the clinical application of PPARγ agonists remains limited due to the presence of adverse side effects. Thus, further research and clinical trials are necessary to comprehensively explore the actions of PPARγ in both tumor and stromal cells and to evaluate the in vivo toxicity. This review aims to consolidate the molecular mechanism of PPARγ modulators and to discuss their clinical prospects and challenges in tackling lung cancer.


Subject(s)
Lung Neoplasms , PPAR gamma , Humans , Apoptosis , Cell Differentiation , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , PPAR gamma/agonists , Transcription Factors/agonists , Tumor Microenvironment
8.
Cell Commun Signal ; 22(1): 125, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360670

ABSTRACT

The activation of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively shown to attenuate inflammatory responses in conditions such as asthma, acute lung injury, and acute respiratory distress syndrome, as demonstrated in animal studies. However, the precise molecular mechanisms underlying these inhibitory effects remain largely unknown. The upregulation of heme oxygenase-1 (HO-1) has been shown to confer protective effects, including antioxidant, antiapoptotic, and immunomodulatory effects in vitro and in vivo. PPARγ is highly expressed not only in adipose tissues but also in various other tissues, including the pulmonary system. Thiazolidinediones (TZDs) are highly selective agonists for PPARγ and are used as antihyperglycemic medications. These observations suggest that PPARγ agonists could modulate metabolism and inflammation. Several studies have indicated that PPARγ agonists may serve as potential therapeutic candidates in inflammation-related diseases by upregulating HO-1, which in turn modulates inflammatory responses. In the respiratory system, exposure to external insults triggers the expression of inflammatory molecules, such as cytokines, chemokines, adhesion molecules, matrix metalloproteinases, and reactive oxygen species, leading to the development of pulmonary inflammatory diseases. Previous studies have demonstrated that the upregulation of HO-1 protects tissues and cells from external insults, indicating that the induction of HO-1 by PPARγ agonists could exert protective effects by inhibiting inflammatory signaling pathways and attenuating the development of pulmonary inflammatory diseases. However, the mechanisms underlying TZD-induced HO-1 expression are not well understood. This review aimed to elucidate the molecular mechanisms through which PPARγ agonists induce the expression of HO-1 and explore how they protect against inflammatory and oxidative responses.


Subject(s)
Heme Oxygenase-1 , PPAR gamma , Pneumonia , Rosiglitazone , Animals , Heme Oxygenase-1/metabolism , Lung/metabolism , PPAR gamma/agonists , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Pneumonia/drug therapy
9.
BMC Cancer ; 24(1): 234, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378472

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARG) is a member of the nuclear receptor family. It is involved in the regulation of adipogenesis, lipid metabolism, insulin sensitivity, vascular homeostasis and inflammation. In addition, PPARG agonists, known as thiazolidinediones, are well established in the treatment of type 2 diabetes mellitus. PPARGs role in cancer is a matter of debate, as pro- and anti-tumour properties have been described in various tumour entities. Currently, the specific role of PPARG in patients with colorectal cancer (CRC) is not fully understood. MATERIAL AND METHODS: The prognostic impact of PPARG expression was investigated by immunohistochemistry in a case-control study using a matched pair selection of CRC tumours (n = 246) with either distant metastases to the liver (n = 82), lung (n = 82) or without distant metastases (n = 82). Its effect on proliferation as well as the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU) was examined after activation, inhibition, and transient gene knockdown of PPARG in the CRC cell lines SW403 and HT29. RESULTS: High PPARG expression was significantly associated with pulmonary metastasis (p = 0.019). Patients without distant metastases had a significantly longer overall survival with low PPARG expression in their tumours compared to patients with high PPARG expression (p = 0.045). In the pulmonary metastasis cohort instead, a trend towards longer survival was observed for patients with high PPARG expression in their tumour (p = 0.059). Activation of PPARG by pioglitazone and rosiglitazone resulted in a significant dose-dependent increase in proliferation of CRC cell lines. Inhibition of PPARG by its specific inhibitor GW9662 and siRNA-mediated knockdown of PPARG significantly decreased proliferation. Activating PPARG significantly increased the CRC cell lines sensitivity to 5-FU while its inhibition decreased it. CONCLUSION: The prognostic effect of PPARG expression depends on the metastasis localization in advanced CRC patients. Activation of PPARG increased malignancy associated traits such as proliferation in CRC cell lines but also increases sensitivity towards the chemotherapeutic agent 5-FU. Based on this finding, a combination therapy of PPARG agonists and 5-FU-based chemotherapy constitutes a promising strategy which should be further investigated.


Subject(s)
Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , PPAR gamma/agonists , Diabetes Mellitus, Type 2/drug therapy , Case-Control Studies , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic
10.
Eur J Med Chem ; 265: 116125, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38185055

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) play a major role in regulating inflammatory processes, and dual or pan-PPAR agonists with PPARγ partial activation have been recognised to be useful to manage both metabolic syndrome and metabolic dysfunction-associated fatty liver disease (MAFLD). Previous works have demonstrated the capacity of 2-prenylated benzopyrans as PPAR ligands. Herein, we have replaced the isoprenoid bond by hydrazone, a highly attractive functional group in medicinal chemistry. In an attempt to discover novel and safety PPAR activators, we efficiently prepared benzopyran hydrazone/hydrazine derivatives containing benzothiazole (series 1) or 5-chloro-3-(trifluoromethyl)-2-pyridine moiety (series 2) with a 3- or 7-carbon side chain at the 2-position of the benzopyran nucleus. Benzopyran hydrazones 4 and 5 showed dual hPPARα/γ agonism, while hydrazone 14 exerted dual hPPARα/δ agonism. These three hydrazones greatly attenuated inflammatory markers such as IL-6 and MCP-1 on the THP-1 macrophages via NF-κB activation. Therefore, we have discovered novel hits (4, 5 and 14), containing a hydrazone framework with dual PPARα/γ or PPARα/δ partial agonism, depending on the length of the side chain. Benzopyran hydrazones emerge as potential lead compounds which could be useful for treating metabolic diseases.


Subject(s)
Benzopyrans , PPAR alpha , Humans , PPAR alpha/agonists , Benzopyrans/chemistry , Hydrazones/pharmacology , Hypoglycemic Agents , PPAR gamma/agonists , Anti-Inflammatory Agents
11.
Trends Pharmacol Sci ; 45(1): 9-23, 2024 01.
Article in English | MEDLINE | ID: mdl-38065777

ABSTRACT

Peroxisome proliferator-activated receptors [PPARs; PPARα, PPARß/δ (also known as PPARδ), and PPARγ] widely recognized for their important role in glucose/lipid homeostasis, have recently received significant attention due to their additional anti-inflammatory and neuroprotective effects. Several newly developed PPAR agonists have shown high selectivity for specific PPAR isoforms in vitro and in vivo, offering the potential to achieve desired therapeutic outcomes while reducing the risk of adverse effects. In this review, we discuss the latest preclinical and clinical studies of the activation of PPARs by synthetic, natural, and isoform-specific (full, partial, and dual) agonists for the treatment of neuroinflammatory diseases, including HIV-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and cerebral ischemia.


Subject(s)
PPAR delta , PPAR-beta , Humans , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/physiology , Neuroinflammatory Diseases , PPAR delta/agonists , PPAR delta/physiology , PPAR-beta/physiology , PPAR alpha/agonists , PPAR alpha/physiology , PPAR gamma/agonists , PPAR gamma/physiology , Hypoglycemic Agents
12.
Leg Med (Tokyo) ; 67: 102335, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37951808

ABSTRACT

The effects of a PPAR-γ agonist, pioglitazone and Zataria multiflora (Z. multiflora) on inhaled paraquat (PQ)-induced lung oxidative stress, inflammation, pathological changes and tracheal responsiveness were examined. The study was carried out in control rats exposed to normal aerosol of saline, PQl and PQh groups exposed to aerosols of 27 and 54 mg/m3 PQ, groups exposed to high PQ concentration (PQh) and treated with 200 and 800 mg/kg/day Z. multiflora, 5 and 10 mg/kg/day pioglitazone, low doses of Z. multiflora + pioglitazone, and 0.03 mg/kg/day dexamethasone. Increased tracheal responsiveness, transforming growth factor beta (TGF-ß) and lung pathological changes due to PQh were significantly improved by high doses of Z. multiflora and pioglitazone, dexamethasone and extract + pioglitazone, (p < 0.05 to p < 0.001). In group treated with low doses of the extract + pioglitazone, the improvements of most measured variables were significantly higher than the low dose of two agents alone (p < 0.05 to p < 0.001). Z. multiflora improved lung injury induced by inhaled PQ similar to dexamethasone and pioglitazone which could be mediated by PPAR-γ receptor.


Subject(s)
Lung Injury , Paraquat , Animals , Rats , Dexamethasone/pharmacology , Lung/metabolism , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Paraquat/toxicity , Pioglitazone/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , PPAR gamma/agonists , PPAR gamma/metabolism
13.
Inflammation ; 47(2): 678-695, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38159176

ABSTRACT

Vitiligo is a skin disease characterized by selective loss of melanocytes, which seriously affects the appearance and causes great psychological stress to patients. In this study, we performed a comprehensive analysis of two vitiligo microarray datasets from the GEO database using bioinformatics tools to identify 297 up-regulated mRNAs and 186 down-regulated mRNAs, revealing important roles for pathways related to melanin synthesis, tyrosine metabolism, and inflammatory factors, such as "PPAR signaling pathway", "tyrosine metabolism", "nonalcoholic fatty liver disease (NAFLD) pathway", "melanogenesis", and "IL-17 signaling pathway". Combining the Search Tool for Interacting Chemicals (STITCH) database 5.0 and the drug-gene interaction database 3.0 (DGIdb), we identified that the PPAR-γ agonist rosiglitazone may promote melanin synthesis via EDNRB. Next, we investigated the mechanism of rosiglitazone and PPAR-γ pathway in promoting melanin production. Consistent with the results of bioinformatics analysis, the expression levels of PPAR-γ, EDNRB, and TYR were significantly reduced in human non-segmental vitiligo skin along with the reduction of MITF, a key gene for epidermal melanogenesis. Meanwhile, rosiglitazone increased melanin synthesis capacity in melanocytes and zebrafish by activating PPAR-γ and upregulating TYR, TYRP-1, and TYRP-2. Conversely, treatment of melanocytes with the PPAR-γ antagonist GW resulted in inhibition of melanin synthesis and expression of melanin-related factors. At the same time, simultaneous treatment of rosiglitazone with GW reversed the inhibitory effect of GW on melanin synthesis. In this study, we identified that rosiglitazone, an important insulin sensitizer, promotes melanin synthesis in melanocytes by increasing PPAR-γ activity and upregulating the expression levels of EDNRB and TYR. These findings may provide new ideas for exploring the pathogenesis and potential therapeutic targets of non-segmental vitiligo.


Subject(s)
Melanins , Melanocytes , PPAR gamma , Rosiglitazone , Vitiligo , Vitiligo/drug therapy , Vitiligo/metabolism , Vitiligo/genetics , Humans , PPAR gamma/metabolism , PPAR gamma/agonists , PPAR gamma/genetics , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Melanocytes/metabolism , Melanocytes/drug effects , Animals , Melanins/biosynthesis , Melanins/metabolism , Zebrafish , Receptor, Endothelin B/metabolism , Receptor, Endothelin B/genetics , Computational Biology/methods , Signal Transduction/drug effects
14.
J Nat Prod ; 86(11): 2435-2447, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37940359

ABSTRACT

An LC-MS/MS-guided analysis of the aerial parts of Glycyrrhiza foetida afforded new phenethyl (amorfrutin)- and alkyl (cannabis)-type phytocannabinoids (six and four compounds, respectively). The structural diversity of the new amorfrutins was complemented by the isolation of six known members and the synthesis of analogues modified on the aralkyl moiety. All of the compounds so obtained were assayed for agonist activity on PPARα and PPARγ nuclear receptors. Amorfrutin A (1) showed the highest agonist activity on PPARγ, amorfrutin H (7) selectively targeted PPARα, and amorfrutin E (4) behaved as a dual agonist, with the pentyl analogue of amorfrutin A (11) being inactive. Decarboxyamorfrutin A (2) was cytotoxic, and modifying its phenethyl moiety to a styryl or a phenylethynyl group retained this trait, suggesting an alternative biological scenario for these compounds. The putative binding modes of amorfrutins toward PPARα and PPARγ were obtained by a combined approach of molecular docking and molecular dynamics simulations, which provided insights on the structure-activity relationships of this class of compounds.


Subject(s)
Glycyrrhiza , Glycyrrhiza/chemistry , PPAR alpha/agonists , PPAR gamma/agonists , Molecular Docking Simulation , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Components, Aerial , Molecular Structure
15.
J Alzheimers Dis ; 96(3): 927-945, 2023.
Article in English | MEDLINE | ID: mdl-37927258

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia in older age. The prevalence of AD is growing worldwide, causing a tremendous burden to societies and families. Due to the complexity of its pathogenesis, the current treatment of AD is not satisfactory, and drugs acting on a single target may not prevent AD progression. This review summarizes the multi-target pharmacological effects of thiazolidinediones (TZDs) on AD. TZDs act as peroxisome proliferator-activated receptor gamma (PPARγ) agonists and long-chain acyl-CoA synthetase family member 4 (ACSL4) inhibitors. TZDs ameliorated neuroinflammation and ferroptosis in preclinical models of AD. Here, we discussed recent findings from clinical trials of pioglitazone in the treatment of AD, ischemic stroke, and atherosclerosis. We also dissected the major limitations in the clinical application of pioglitazone and explained the potential benefit of pioglitazone in AD. We recommend the use of pioglitazone to prevent cognitive decline and lower AD risk in a specific group of patients.


Subject(s)
Alzheimer Disease , Ferroptosis , Thiazolidinediones , Humans , Thiazolidinediones/therapeutic use , Pioglitazone/therapeutic use , Alzheimer Disease/drug therapy , Neuroinflammatory Diseases , Neuroprotection , PPAR gamma/agonists
16.
Chem Biodivers ; 20(9): e202300851, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37584103

ABSTRACT

In our search for peroxisome proliferator-activated receptor (PPAR) agonists, five undescribed compounds, namely two acyclic diterpenes (1 and 2; cladopsol A and cladopsol B), two sesquiterpenes (3 and 4; cladopsol C and cladopsol D), and one C21-ecdysteroid (5; cladopsol E), and 15 known compounds were isolated from the jellyfish-derived fungus - Cladosporium oxysporum. The structures of the undescribed compounds were defined using UV, NMR, HR-ESI-MS, and electronic circular dichroism (ECD) spectroscopy and a modified Mosher's method. Luciferase reporter assay and docking analysis suggested that cladopsol B may function as a PPAR-γ partial agonist with a potential antidiabetic lead which may evade the side effects of full agonists. Moreover, cladopsol B stimulated glucose uptake in HepG2 cells with an efficacy comparable to that of rosiglitazone, but with less side effect induced by lipid accumulation in 3T3-L1 cells. Therefore, cladopsol B could serve as a molecular skeleton in a study of advanced antidiabetic lead with less side effect.


Subject(s)
PPAR-gamma Agonists , Peroxisome Proliferator-Activated Receptors , Hypoglycemic Agents/pharmacology , Cladosporium , PPAR gamma/agonists
17.
J Cell Biochem ; 124(8): 1145-1154, 2023 08.
Article in English | MEDLINE | ID: mdl-37393598

ABSTRACT

As a master transcription factor, c-Myc plays an important role in promoting tumor immune escape. In addition, PPARγ (peroxisome proliferator-activated receptor γ) regulates cell metabolism, inflammation, and tumor progression, while the effect of PPARγ on c-Myc-mediated tumor immune escape is still unclear. Here we found that cells treated with PPARγ agonist pioglitazone (PIOG) reduced c-Myc protein expression in a PPARγ-dependent manner. qPCR analysis showed that PIOG had no significant effect on c-Myc gene levels. Further analysis showed that PIOG decreased c-Myc protein half-life. Moreover, PIOG increased the binding of c-Myc to PPARγ, and induced c-Myc ubiquitination and degradation. Importantly, c-Myc increased PD-L1 and CD47 immune checkpoint protein expression and promoted tumor immune escape, while PIOG inhibited this event. These findings suggest that PPARγ agonist inhibited c-Myc-mediated tumor immune escape by inducing its ubiquitination and degradation.


Subject(s)
Colorectal Neoplasms , Pioglitazone , Thiazolidinediones , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Gene Expression Regulation , Pioglitazone/pharmacology , PPAR gamma/agonists , PPAR gamma/metabolism , Thiazolidinediones/pharmacology , Tumor Escape , Proto-Oncogene Proteins c-myc/drug effects , Proto-Oncogene Proteins c-myc/metabolism
18.
J Am Chem Soc ; 145(27): 14802-14810, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37385602

ABSTRACT

The lipid-sensing transcription factor PPARγ is the target of antidiabetic thiazolidinediones (TZD). At two sites within its ligand binding domain, it also binds oxidized vitamin E metabolites and the vitamin E mimetic garcinoic acid. While the canonical interaction within the TZD binding site mediates classical PPARγ activation, the effects of the second binding on PPARγ activity remain elusive. Here, we identified an agonist mimicking dual binding of vitamin E metabolites and developed a selective ligand of the second site, unveiling potential noncanonical regulation of PPARγ activities. We found that this alternative binding event can simultaneously occur with orthosteric ligands and it exerted different effects on PPARγ-cofactor interactions compared to both orthosteric PPARγ agonists and antagonists, indicating the diverse roles of the two binding sites. Alternative site binding lacked the pro-adipogenic effect of TZD and mediated no classical PPAR signaling in differential gene expression analysis but markedly diminished FOXO signaling, suggesting potential therapeutic applications.


Subject(s)
PPAR gamma , Thiazolidinediones , PPAR gamma/agonists , PPAR gamma/genetics , PPAR gamma/metabolism , Ligands , Transcription Factors/metabolism , Thiazolidinediones/chemistry , Binding Sites
19.
Bioorg Med Chem ; 85: 117238, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37028120

ABSTRACT

Farnesoid X receptor (FXR) and peroxisome proliferator-activated receptor (PPAR)γ are nuclear receptor 1 superfamily of transcription factors. FXR and PPARγ agonists have been individually investigated in clinical trial of anti-diabetic agents in the patients with nonalcoholic fatty liver disease (NAFLD). Regarding recent agonist development, the partial agonists for FXR and PPARγ are drawing attention from the standpoint of avoiding overactive responses caused by full agonists. In this article, we report that 18 with a benzimidazole scaffold possesses FXR/PPARγ dual partial agonistic activity. In addition, 18 shares the ability to reduce cyclin-dependent kinase 5-mediated phosphorylation of PPARγ-Ser273 and the metabolic stability in mouse liver microsome assay. To date, there are no published reports on FXR/PPARγ dual partial agonists with biological profiles similar to 18. Thus, the analog would be a feasible candidate as an unprecedented approach to NAFLD associated with type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , PPAR gamma/agonists , Non-alcoholic Fatty Liver Disease/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Transcription Factors , Hypoglycemic Agents/pharmacology
20.
Pulm Pharmacol Ther ; 80: 102209, 2023 06.
Article in English | MEDLINE | ID: mdl-36907545

ABSTRACT

INTRODUCTION: Hyperoxia-induced lung injury is characterized by acute alveolar injury, disrupted epithelial-mesenchymal signaling, oxidative stress, and surfactant dysfunction, yet currently, there is no effective treatment. Although a combination of aerosolized pioglitazone (PGZ) and a synthetic lung surfactant (B-YL peptide, a surfactant protein B mimic) prevents hyperoxia-induced neonatal rat lung injury, whether it is also effective in preventing hyperoxia-induced adult lung injury is unknown. METHOD: Using adult mice lung explants, we characterize the effects of 24 and 72-h (h) exposure to hyperoxia on 1) perturbations in Wingless/Int (Wnt) and Transforming Growth Factor (TGF)-ß signaling pathways, which are critical mediators of lung injury, 2) aberrations of lung homeostasis and injury repair pathways, and 3) whether these hyperoxia-induced aberrations can be blocked by concomitant treatment with PGZ and B-YL combination. RESULTS: Our study reveals that hyperoxia exposure to adult mouse lung explants causes activation of Wnt (upregulation of key Wnt signaling intermediates ß-catenin and LEF-1) and TGF-ß (upregulation of key TGF-ß signaling intermediates TGF-ß type I receptor (ALK5) and SMAD 3) signaling pathways accompanied by an upregulation of myogenic proteins (calponin and fibronectin) and inflammatory cytokines (IL-6, IL-1ß, and TNFα), and alterations in key endothelial (VEGF-A and its receptor FLT-1, and PECAM-1) markers. All of these changes were largely mitigated by the PGZ + B-YL combination. CONCLUSION: The effectiveness of the PGZ + B-YL combination in blocking hyperoxia-induced adult mice lung injury ex-vivo is promising to be an effective therapeutic approach for adult lung injury in vivo.


Subject(s)
Hyperoxia , Lung Injury , Animals , Mice , Hyperoxia/complications , Hyperoxia/metabolism , Lung , Lung Injury/etiology , Lung Injury/prevention & control , Lung Injury/metabolism , Pioglitazone/pharmacology , Pioglitazone/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , PPAR-gamma Agonists , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...