Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 797
Filter
1.
Parasite ; 31: 45, 2024.
Article in English | MEDLINE | ID: mdl-39109982

ABSTRACT

Global changes in climate are contributing to modified Phlebotomine sand fly presence and activity, and the distribution of the pathogens they transmit (e.g., Leishmania and Phlebovirus), and are leading to their possible extension toward northern France. To predict the evolution of these pathogens and control their spread, it is essential to identify and characterize the presence and abundance of potential vectors. However, there are no recent publications describing sand fly species distribution in France. Consequently, we carried out a systematic review to provide distribution and abundance maps over time, along with a simplified dichotomous key for species in France. The review adhered to PRISMA guidelines, resulting in 172 relevant capture reports from 168 studies out of the 2646 documents retrieved, of which 552 were read and 228 analyzed. Seven species were recorded and categorized into three groups based on their abundance: low abundance species, abundant but little-studied species, and abundant vector species. Sand flies are certainly present throughout France but there is a greater diversity of species in the Mediterranean region. Phlebotomus perniciosus and Ph. ariasi are the most abundant and widely distributed species, playing a role as vectors of Leishmania. Sergentomyia minuta, though very abundant, remains under-studied, highlighting the need for further research. Phlebotomus papatasi, Ph. perfiliewi, Ph. sergenti, and Ph. mascittii are present in low numbers and are less documented, limiting understanding of their potential role as vectors. This work provides the necessary basis for comparison of field data generated in the future.


Title: Répartition et abondance des phlébotomes en France : revue systématique. Abstract: Les changements globaux du climat contribuent à modifier la présence et l'activité des phlébotomes, ainsi que la répartition des pathogènes qu'ils transmettent (par exemple Leishmania et Phlebovirus), et conduisent à leur éventuelle extension vers le nord de la France. Pour prédire l'évolution de ces pathogènes et contrôler leur propagation, il est essentiel d'identifier et de caractériser la présence et l'abondance des vecteurs potentiels. Il n'existe cependant aucune publication récente décrivant la répartition des espèces de phlébotomes en France. Par conséquent, nous avons réalisé une revue systématique pour fournir des cartes de répartition et d'abondance dans le temps, ainsi qu'une clé dichotomique simplifiée pour les espèces françaises. La revue a respecté les lignes directrices PRISMA, aboutissant à 172 rapports de capture pertinents provenant de 168 études sur les 2 646 documents récupérés, dont 552 ont été lus et 228 analysés. Sept espèces ont été recensées et classées en trois groupes en fonction de leur abondance : les espèces de faible abondance, les espèces abondantes mais peu étudiées et les espèces vectrices abondantes. Les phlébotomes sont certes présents partout en France mais on trouve une plus grande diversité d'espèces dans le bassin méditerranéen. Phlebotomus perniciosus et Ph. ariasi sont les espèces les plus abondantes et les plus largement réparties, jouant un rôle de vecteurs de Leishmania. Sergentomyia minuta, bien que très abondant, reste sous-étudié, ce qui souligne la nécessité de recherches plus approfondies. Phlebotomus papatasi, Ph. perfiliewi, Ph. sergenti et Ph. mascittii sont présents en faibles nombres et sont moins documentés, ce qui limite la compréhension de leur rôle potentiel en tant que vecteurs. Ce travail fournit la base nécessaire pour la comparaison des données de terrain générées à l'avenir.


Subject(s)
Insect Vectors , Phlebotomus , Psychodidae , France , Animals , Insect Vectors/parasitology , Phlebotomus/classification , Phlebotomus/parasitology , Psychodidae/parasitology , Psychodidae/classification , Animal Distribution , Leishmaniasis/transmission , Leishmaniasis/epidemiology , Population Density , Leishmania , Mediterranean Region , Climate Change
2.
Int J Parasitol Drugs Drug Resist ; 25: 100554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941845

ABSTRACT

Leishmania major is responsible for zoonotic cutaneous leishmaniasis. Therapy is mainly based on the use of antimony-based drugs; however, treatment failures and illness relapses were reported. Although studies were developed to understand mechanisms of drug resistance, the interactions of resistant parasites with their reservoir hosts and vectors remain poorly understood. Here we compared the development of two L. major MON-25 trivalent antimony-resistant lines, selected by a stepwise in vitro Sb(III)-drug pressure, to their wild-type parent line in the natural vector Phlebotomus papatasi. The intensity of infection, parasite location and morphological forms were compared by microscopy. Parasite growth curves and IC50 values have been determined before and after the passage in Ph. papatasi. qPCR was used to assess the amplification rates of some antimony-resistance gene markers. In the digestive tract of sand flies, Sb(III)-resistant lines developed similar infection rates as the wild-type lines during the early-stage infections, but significant differences were observed during the late-stage of the infections. Thus, on day 7 p. i., resistant lines showed lower representation of heavy infections with colonization of the stomodeal valve and lower percentage of metacyclic promastigote forms in comparison to wild-type strains. Observed differences between both resistant lines suggest that the level of Sb(III)-resistance negatively correlates with the quality of the development in the vector. Nevertheless, both resistant lines developed mature infections with the presence of infective metacyclic forms in almost half of infected sandflies. The passage of parasites through the sand fly guts does not significantly influence their capacity to multiply in vitro. The IC50 values and molecular analysis of antimony-resistance genes showed that the resistant phenotype of Sb(III)-resistant parasites is maintained after passage through the sand fly. Sb(III)-resistant lines of L. major MON-25 were able to produce mature infections in Ph. papatasi suggesting a possible circulation in the field using this vector.


Subject(s)
Antimony , Drug Resistance , Leishmania major , Leishmaniasis, Cutaneous , Phlebotomus , Phlebotomus/parasitology , Phlebotomus/drug effects , Leishmania major/drug effects , Leishmania major/genetics , Animals , Antimony/pharmacology , Drug Resistance/genetics , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/transmission , Insect Vectors/parasitology , Insect Vectors/drug effects , Phenotype , Antiprotozoal Agents/pharmacology , Inhibitory Concentration 50 , Female
3.
J Infect Dis ; 229(6): 1909-1912, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38713583

ABSTRACT

In an area endemic with Indian visceral leishmaniasis (VL), we performed direct xenodiagnosis to evaluate the transmission of Leishmania donovani from patients with VL-human immunodeficiency virus (HIV) coinfection to the vector sandflies, Phlebotomus argentipes. Fourteen patients with confirmed VL-HIV coinfection, with a median parasitemia of 42 205 parasite genome/mL of blood, were exposed to 732 laboratory-reared pathogen-free female P argentipes sandflies on their lower arms and legs. Microscopy revealed that 16.66% (122/732) of blood-fed flies were xenodiagnosis positive. Notably, 93% (13/14) of the VL-HIV group infected the flies, as confirmed by quantitative polymerase chain reaction and/or microscopy, and were 3 times more infectious than those who had VL without HIV.


Subject(s)
Coinfection , HIV Infections , Leishmania donovani , Leishmaniasis, Visceral , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/complications , Animals , Humans , India/epidemiology , HIV Infections/complications , HIV Infections/epidemiology , Female , Adult , Coinfection/virology , Coinfection/epidemiology , Coinfection/parasitology , Leishmania donovani/isolation & purification , Male , Phlebotomus/parasitology , Phlebotomus/virology , Endemic Diseases , Middle Aged , Young Adult , Xenodiagnosis , Insect Vectors/parasitology , Insect Vectors/virology , Adolescent
6.
BMC Microbiol ; 24(1): 117, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575882

ABSTRACT

BACKGROUND: Leishmaniasis as a neglected tropical disease (NTD) is caused by the inoculation of Leishmania parasites via the bite of phlebotomine sand flies. After an infected bite, a series of innate and adaptive immune responses occurs, among which neutrophils can be mentioned as the initiators. Among the multiple functions of these fighting cells, neutrophil extracellular traps (NETs) were studied in the presence of Leishmania major promastigotes and salivary gland homogenates (SGH) of Phlebotomus papatasi alone, and in combination to mimic natural conditions of transmission. MATERIAL & METHODS: The effect of L. major and SGH on NETs formation was studied in three different groups: neutrophils + SGH (NS), neutrophils + L. major (NL), neutrophils + L. major + SGH (NLS) along with negative and positive controls in 2, 4 and 6 h post-incubation. Different microscopic methods were used to visualize NETs comprising: fluorescence microscopy by Acridine Orange/ Ethidium Bromide staining, optical microscopy by Giemsa staining and scanning electron microscopy. In addition, the expression level of three different genes NE, MPO and MMP9 was evaluated by Real-Time PCR. RESULTS: All three microscopical methods revealed similar results, as in NS group, chromatin extrusion as a sign of NETosis, was not very evident in each three time points; but, in NL and especially NLS group, more NETosis was observed and the interaction between neutrophils and promastigotes in NL and also with saliva in NLS group, gradually increased over times. Real-time reveals that, the expression of MPO, NE and MMP9 genes increased during 2 and 4 h after exposure, and then decreased at 6 h in most groups. CONCLUSION: Hence, it was determined that the simultaneous presence of parasite and saliva in NLS group has a greater impact on the formation of NETs compared to NL and NS groups.


Subject(s)
Extracellular Traps , Leishmania major , Phlebotomus , Animals , Humans , Phlebotomus/genetics , Phlebotomus/parasitology , Matrix Metalloproteinase 9 , Neutrophils , Salivary Glands
7.
Front Immunol ; 15: 1335307, 2024.
Article in English | MEDLINE | ID: mdl-38633260

ABSTRACT

Introduction: Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods: To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results: A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion: Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.


Subject(s)
Insect Bites and Stings , Phlebotomus , Animals , Humans , Phlebotomus/parasitology , Leukocytes, Mononuclear , Immunity, Cellular , Antigens , Immunoglobulin G , Salivary Proteins and Peptides
8.
PLoS One ; 19(4): e0289578, 2024.
Article in English | MEDLINE | ID: mdl-38630746

ABSTRACT

In Nepal, visceral leishmaniasis (VL) has been targeted for elimination as a public health problem by 2026. Recently, increasing numbers of VL cases have been reported from districts of doubtful endemicity including hills and mountains, threatening the ongoing VL elimination program in Nepal. We conducted a multi-disciplinary, descriptive cross-sectional survey to assess the local transmission of Leishmania donovani in seven such districts situated at altitudes of up to 1,764 meters in western Nepal from March to December 2019. House-to-house surveys were performed for socio-demographic data and data on past and current VL cases. Venous blood was collected from all consenting individuals aged ≥2 years and tested with the rK39 RDT. Blood samples were also tested with direct agglutination test, and a titer of ≥1:1600 was taken as a marker of infection. A Leishmania donovani species-specific PCR (SSU-rDNA) was performed for parasite species confirmation. We also captured sand flies using CDC light traps and mouth aspirators. The house-to-house surveys documented 28 past and six new VL cases of which 82% (28/34) were without travel exposure. Overall, 4.1% (54/1320) of healthy participants tested positive for L. donovani on at least one serological or molecular test. Among asymptomatic individuals, 17% (9/54) were household contacts of past VL cases, compared to 0.5% (6/1266) among non-infected individuals. Phlebotomus argentipes, the vector of L. donovani, was found in all districts except in Bajura. L. donovani was confirmed in two asymptomatic individuals and one pool of sand flies of Phlebotomus (Adlerius) sp. We found epidemiological and entomological evidence for local transmission of L. donovani in areas previously considered as non-endemic for VL. The national VL elimination program should revise the endemicity status of these districts and extend surveillance and control activities to curb further transmission of the disease.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Phlebotomus , Psychodidae , Animals , Humans , Leishmaniasis, Visceral/epidemiology , Nepal/epidemiology , Cross-Sectional Studies , Leishmania donovani/genetics , Phlebotomus/parasitology
9.
Int J Parasitol ; 54(10): 485-495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38626865

ABSTRACT

The interaction between pathogens and vectors' physiology can impact parasite transmission. Studying this interaction at the molecular level can help in developing control strategies. We study leishmaniases, diseases caused by Leishmania parasites transmitted by sand fly vectors, posing a significant global public health concern. Lipophosphoglycan (LPG), the major surface glycoconjugate of Leishmania, has been described to have several roles throughout the parasite's life cycle, both in the insect and vertebrate hosts. In addition, the sand fly midgut possesses a rich microbiota expressing lipopolysaccharides (LPS). However, the effect of LPG and LPS on the gene expression of sand fly midgut proteins or immunity effectors has not yet been documented. We experimentally fed Lutzomyia longipalpis and Phlebotomus papatasi sand flies with blood containing purified LPG from Leishmania infantum, Leishmania major, or LPS from Escherichia coli. The effect on the expression of genes encoding gut proteins galectin and mucin, digestive enzymes trypsin and chymotrypsin, and antimicrobial peptides (AMPs) attacin and defensins was assessed by quantitative PCR (qPCR). The gene expression of a mucin-like protein in L. longipalpis was increased by L. infantum LPG and E. coli LPS. The gene expression of a galectin was increased in L. longipalpis by L. major LPG, and in P. papatasi by E. coli LPS. Nevertheless, the gene expression of trypsins and chymotrypsins did not significantly change. On the other hand, both L. infantum and L. major LPG significantly enhanced expression of the AMP attacin in both sand fly species and defensin in L. longipalpis. In addition, E. coli LPS increased the expression of attacin and defensin in L. longipalpis. Our study showed that Leishmania LPG and E. coli LPS differentially modulate the expression of sand fly genes involved in gut maintenance and defence. This suggests that the glycoconjugates from microbiota or Leishmania may increase the vector's immune response and the gene expression of a gut coating protein in a permissive vector.


Subject(s)
Antimicrobial Peptides , Insect Proteins , Leishmania infantum , Lipopolysaccharides , Psychodidae , Animals , Psychodidae/parasitology , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Leishmania infantum/genetics , Leishmania infantum/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Escherichia coli/genetics , Leishmania major/genetics , Leishmania major/metabolism , Glycosphingolipids/metabolism , Phlebotomus/genetics , Phlebotomus/parasitology , Phlebotomus/metabolism , Trypsin/metabolism , Trypsin/genetics , Chymotrypsin/metabolism , Chymotrypsin/genetics , Mucins/metabolism , Mucins/genetics , Insect Vectors/parasitology , Insect Vectors/microbiology , Insect Vectors/genetics , Gene Expression , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/parasitology , Gastrointestinal Tract/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Gene Expression Regulation , Female
10.
EMBO Rep ; 25(3): 1075-1105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38396206

ABSTRACT

Leishmania parasites undergo differentiation between various proliferating and non-dividing forms to adapt to changing host environments. The mechanisms that link environmental cues with the parasite's developmental changes remain elusive. Here, we report that Leishmania TORC1 is a key environmental sensor for parasite proliferation and differentiation in the sand fly-stage promastigotes and for replication of mammalian-stage amastigotes. We show that Leishmania RPTOR1, interacts with TOR1 and LST8, and identify new parasite-specific proteins that interact in this complex. We investigate TORC1 function by conditional deletion of RPTOR1, where under nutrient-rich conditions RPTOR1 depletion results in decreased protein synthesis and growth, G1 cell cycle arrest and premature differentiation from proliferative promastigotes to non-dividing mammalian-infective metacyclic forms. These parasites are unable to respond to nutrients to differentiate into proliferative retroleptomonads, which are required for their blood-meal induced amplification in sand flies and enhanced mammalian infectivity. We additionally show that RPTOR1-/- metacyclic promastigotes develop into amastigotes but do not proliferate in the mammalian host to cause pathology. RPTOR1-dependent TORC1 functionality represents a critical mechanism for driving parasite growth and proliferation.


Subject(s)
Leishmania , Phlebotomus , Psychodidae , Animals , Psychodidae/parasitology , Phlebotomus/parasitology , Nutrients , Cell Proliferation , Mammals
11.
Acta Parasitol ; 69(1): 549-558, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38231310

ABSTRACT

PURPOSE: Leishmania major is main causative agent and Phlebotomus papatasi is only proven vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Iran. Human leishmaniasis is mostly susceptible to climatic conditions and molecular variations of Leishmania parasites within sandflies. METHODS: L. major was analyzed based on geographical, environmental, climatic changes and haplotype variations within P. papatasi. Molecular tools and different geographical aspects were employed using Arc-GIS software for mapping the geographic distribution of samples and other statistics tests. Fragments of ITS-rDNA, k-DNA, and microsatellite genes of Leishmania were used for PCR, RFLP, sequencing, and phylogenetic analyses. RESULTS: Totally 81 out of 1083 female P. papatasi were detected with Leishmania parasites: 70 and five were L. major and L. turanica, respectively. Golestan and Fars provinces had the highest (13.64%) and lowest (4.55%) infection rates, respectively. The infection rate among female P. papatasi collected from gerbil burrows was significantly higher (15.15%) than animal shelters, yards, and inside houses (4.48%) (P < 0.0%). Microsatellite was more sensitive (22.72%) than k-DNA (18.8%) and ITS-rDNA (7.48%). More molecular variations of L. major were found in Isfahan province. CONCLUSIONS: Arc-GIS software and other statistics tests were employed to find Leishmania positive and haplotype variations among sand flies. Geographical situations, altitude, climate, precipitation, humidity, temperature, urbanization, migrations, regional divergences, deforestation, global warming, genome instability, ecology, and biology of the sand flies intrinsically, and the reservoir hosts and neighboring infected locations could be reasons for increasing or decreasing the rate of Leishmania infection and haplotype variations.


Subject(s)
Haplotypes , Leishmania major , Leishmaniasis, Cutaneous , Phlebotomus , Animals , Leishmania major/genetics , Leishmania major/isolation & purification , Phlebotomus/parasitology , Phlebotomus/genetics , Iran/epidemiology , Female , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/transmission , Phylogeny , Genetic Variation , Microsatellite Repeats , Insect Vectors/parasitology , Insect Vectors/genetics , DNA, Protozoan/genetics , Gerbillinae/parasitology , Humans
12.
Trans R Soc Trop Med Hyg ; 118(4): 273-286, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38055843

ABSTRACT

BACKGROUND: Cutaneous leishmaniasis (CL), an emerging vector-borne ailment in Khyber Pakhtunkhwa (KPK), Pakistan, exhibits diverse spread patterns and outbreaks. METHODS: To comprehend its epidemiology and identify parasite species, we conducted an active survey on suspected CL cases (n=8845) in KPK. RESULTS: Microscopy and internal transcribed spacer-1 PCR-restriction fragment length polymorphism (RFLP) molecular techniques detected Leishmania spp. in blood samples. Phylogenetic analysis gauged genetic affinities with other areas. District Bannu displayed the highest CL impact (14.58%), while Swat had the lowest impact (4.33%) among cases. Annual blood examination rate, parasite incidence and slide positivity rate were 4.96 per 1000 people, 0.0233 and 0.047%, respectively. CL infections were prevalent in 1- to 20-y-olds, with males (57.17%) more vulnerable than females (42.82%). Single lesions occurred in 43.73% of patients, while 31.2% people had two lesions, 17.31% had three lesions and 7.74% had more than three lesions. Most had sand-fly exposure but lacked preventive measures like repellents and bed nets. Leishmania tropica was confirmed via RFLP analysis in amplified samples. Phylogenetic analysis unveiled genetic parallels between L. tropica of KPK and isolates from China, Iran, Afghanistan, India, Syria and Morocco. CONCLUSIONS: Urgent comprehensive control measures are imperative. Early detection, targeted interventions and raising awareness of CL and sand-fly vectors are vital for reducing the disease's impact. International collaboration and monitoring are crucial to tackle Leishmania spp.'s genetic diversity and curtail its cross-border spread.


Subject(s)
Leishmania tropica , Leishmaniasis, Cutaneous , Phlebotomus , Psychodidae , Male , Female , Animals , Humans , Phylogeny , Pakistan/epidemiology , Sand , Polymerase Chain Reaction , Leishmaniasis, Cutaneous/epidemiology , Leishmania tropica/genetics , Phlebotomus/parasitology , Psychodidae/parasitology , Polymorphism, Restriction Fragment Length
13.
Zoonoses Public Health ; 71(3): 248-257, 2024 May.
Article in English | MEDLINE | ID: mdl-38105536

ABSTRACT

BACKGROUND AND AIMS: Leishmaniasis is a neglected tropical infection caused by Leishmania parasite that affect human and animal. In Morocco, the cutaneous leishmaniasis has spread substantially to the new areas. The surveillance limited to active foci may underestimate the occurrence of cutaneous leishmaniasis (CL). This study aims to investigate the local transmission of CL in rural districts of Youssoufia province, central Morocco, as a potential focus of CL. METHODS: For this purpose, parasitological, molecular and entomological investigations were carried out in this area. Data collection concerns potential vectors and human cases. Thus, 402 patients were examined for suspected leishmaniasis lesions in three localities of the province of Youssoufia. In these same localities, 983 sand flies were collected by CDC light traps and sticky paper during one-night per month during 6 months. These sand flies were all identified morphologically using the Moroccan identification key. RESULTS: The results showed that among the 25 skin lesions detected in a population of 402 individuals, 18 were confirmed by kDNA nested PCR as CL positive patients, of which only 25% were positive by direct examination. Leishmania tropica and Leishmania major were identified as causative agents of CL in the study area. Direct parasitological examination showed a low sensitivity (27.78%), especially for L. major, although its specificity was evaluated at 100%. Regarding entomological results, both genera of the Moroccan sand fly were collected in the study area: Genus/Phlebotomus (75.28%) and Sergentomyia (24.72%). Phlebotomus (P) papatasi, the proven vector of L. major, was the most abundant species (33.98%), followed by Paralongicollum sergenti (22.58%), the confirmed vector of L. tropica; while Sergentomyia (S) minuta, P. longicuspis, S. fallax and P. kazeruni were collected with, respectively, 17.60%, 16.99%, 7.12% and 1.73%. CONCLUSION: This study constitutes the first report of CL in the study areas, as well as the coexistence of L. tropica and L. major in these rural localities. Local transmission of CL is highly probable, as indicated by the prevalence of the two proven vectors of L. major and L. tropica. To control the spread of this disease, our results suggest the use of highly sensitive molecular methods to detect CL cases in potential leishmaniasis foci, which will improve surveillance.


Subject(s)
Leishmania tropica , Leishmaniasis, Cutaneous , Phlebotomus , Psychodidae , Humans , Animals , Morocco/epidemiology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/veterinary , Psychodidae/parasitology , Phlebotomus/parasitology , Leishmania tropica/genetics
14.
Am J Trop Med Hyg ; 110(1): 59-63, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38109764

ABSTRACT

The tribal population in and around the Western Ghats region of India is affected by both cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL) with typical clinical symptoms. In this study, we recorded and analyzed seven CL and three VL cases from this emerging belt. All the cases were found as autochthonous transmission. Multiple genetic markers (minicircle kinetoplast DNA polymerase chain reaction and restriction fragment length polymorphism of 3'untranslated region heat shock protein (HSP) 70, a larger segment of HSP 70, and 6-phosphogluconate dehydrogenase [PGDH] gene sequences) were used to identify and characterize the parasite. It was found that both clinical manifestations are caused by zymodeme MON-37 of Leishmania donovani. We have investigated the detailed entomological and epidemiological aspects of disease transmission. An abundant population of the proven vector Phlebotomus argentipes was observed in the study villages.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Phlebotomus , Animals , Humans , Leishmania donovani/genetics , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Skin/parasitology , Leishmaniasis, Cutaneous/diagnosis , Phlebotomus/parasitology , India/epidemiology
15.
Parasitol Res ; 123(1): 6, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052752

ABSTRACT

Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.


Subject(s)
Leishmania , Leishmaniasis , Parasites , Phlebotomus , Psychodidae , Animals , Humans , Psychodidae/parasitology , Phlebotomus/parasitology , Leishmaniasis/parasitology , Host-Parasite Interactions , Mammals
16.
Sci Rep ; 13(1): 21389, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049590

ABSTRACT

Sandflies (Diptera; Psychodidae) are medical and veterinary vectors that transmit diverse parasitic, viral, and bacterial pathogens. Their identification has always been challenging, particularly at the specific and sub-specific levels, because it relies on examining minute and mostly internal structures. Here, to circumvent such limitations, we have evaluated the accuracy and reliability of Wing Interferential Patterns (WIPs) generated on the surface of sandfly wings in conjunction with deep learning (DL) procedures to assign specimens at various taxonomic levels. Our dataset proves that the method can accurately identify sandflies over other dipteran insects at the family, genus, subgenus, and species level with an accuracy higher than 77.0%, regardless of the taxonomic level challenged. This approach does not require inspection of internal organs to address identification, does not rely on identification keys, and can be implemented under field or near-field conditions, showing promise for sandfly pro-active and passive entomological surveys in an era of scarcity in medical entomologists.


Subject(s)
Deep Learning , Phlebotomus , Psychodidae , Animals , Psychodidae/parasitology , Reproducibility of Results , Phlebotomus/parasitology , Entomology
17.
Parasit Vectors ; 16(1): 404, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932813

ABSTRACT

BACKGROUND: Visceral leishmaniasis (VL), a life-threatening neglected tropical disease, is targeted for elimination from Nepal by the year 2026. The national VL elimination program is still confronted with many challenges including the increasingly widespread distribution of the disease over the country, local resurgence and the questionable efficacy of the key vector control activities. In this study, we assessed the status and risk of Leishmania donovani transmission based on entomological indicators including seasonality, natural Leishmania infection rate and feeding behavior of vector sand flies, Phlebotomus argentipes, in three districts that had received disease control interventions in the past several years in the context of the disease elimination effort. METHODS: We selected two epidemiologically contrasting settings in each survey district, one village with and one without reported VL cases in recent years. Adult sand flies were collected using CDC light traps and mouth aspirators in each village for 12 consecutive months from July 2017 to June 2018. Leishmania infection was assessed in gravid sand flies targeting the small-subunit ribosomal RNA gene of the parasite (SSU-rRNA) and further sequenced for species identification. A segment (~ 350 bp) of the vertebrate cytochrome b (cytb) gene was amplified from blood-fed P. argentipes from dwellings shared by both humans and cattle and sequenced to identify the preferred host. RESULTS: Vector abundance varied among districts and village types and peaks were observed in June, July and September to November. The estimated Leishmania infection rate in vector sand flies was 2.2% (1.1%-3.7% at 95% credible interval) and 0.6% (0.2%-1.3% at 95% credible interval) in VL and non-VL villages respectively. The common source of blood meal was humans in both VL (52.7%) and non-VL (74.2%) villages followed by cattle. CONCLUSIONS: Our findings highlight the risk of ongoing L. donovani transmission not only in villages with VL cases but also in villages not reporting the presence of the disease over the past several years within the districts having disease elimination efforts, emphasize the remaining threats of VL re-emergence and inform the national program for critical evaluation of disease elimination strategies in Nepal.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Phlebotomus , Psychodidae , Adult , Humans , Animals , Cattle , Leishmania donovani/genetics , Nepal , Leishmaniasis, Visceral/parasitology , Phlebotomus/parasitology
18.
Parasitol Res ; 122(9): 2181-2191, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37449994

ABSTRACT

Phlebotomine sand flies (Diptera: Phlebotominae) belonging to the genus Phlebotomus are vectors of pathogens such as arboviruses, bacteria, and parasites (Leishmania). Species of the genus Sergentomyia (Se.) transmit Sauroleishmania (Reptile Leishmania) and feed on cold-blooded vertebrates; recently, they have been incriminated in mammalian Leishmania transmission. In addition, they have been reported to feed on warm-blooded vertebrates. This study aimed to (i) screen wild-caught Sergentomyia species for the detection of mammalian Leishmania and (ii) identify the blood meal origin of engorged females. The sand flies were collected using centers for disease control and prevention (CDC) traps, mounted and identified morphologically. Only females of the genus Sergentomyia were screened for Leishmania infection using PCR targeting the 18S ribosomal DNA locus. For positive specimens, Leishmania parasites were typed using nested PCR targeting ribosomal internal transcribed spacer 1 followed by digestion with HaeIII. The PCR-RFLP results were confirmed through sequencing. Blood meal identification was performed through PCR amplification of the vertebrate cytochrome b gene using degenerate primers followed by sequencing. In total, 6026 sand fly specimens were collected between 2009 and 2018. Among these, 511 belonged to five species of Sergentomyia genus: Se. minuta (58.51%), Se. fallax (18.01%), Se. clydei (14.68%), Se. dreyfussi (6.26%), and Se. antennata (2.54%). A total of 256 female Sergentomyia sp. specimens were screened for Leishmania infection. Seventeen (17) were positive (6.64%). Two Leishmania species were identified. Leishmania major DNA was detected in five specimens; this included three Se. fallax, one Se. minuta, and one Se. dreyfussi collected from Tunisia. Leishmania infantum/L. donovani complex was detected in four Se. minuta and three Se. dreyfussi specimens collected from Tunisia. In addition, we identified the blood meal origin of five engorged Se. minuta specimens collected from Tunisia. Sequencing results revealed two blood sources: humans (n = 4) and reptiles (n = 1) indicating possible role of Sergentomyia species in the transmission of human Leishmania. In addition, these species could be involved in the life cycle of L. infantum/L. donovani complex and L. major. The results of the blood meal origin showed that Sergentomyia fed on both cold- and warm-blooded vertebrates. These findings enable a better understanding of the behavior of this sand fly genus. Further studies should focus on the role of Sergentomyia in human Leishmania transmission and possible control of this disease.


Subject(s)
Leishmania major , Leishmaniasis , Phlebotomus , Psychodidae , Animals , Humans , Female , Psychodidae/parasitology , Tunisia , Saudi Arabia , Phlebotomus/parasitology , Leishmaniasis/parasitology , Vertebrates , Leishmania major/genetics , DNA, Ribosomal , Mammals
19.
Acta Trop ; 245: 106979, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37391025

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by protozoan parasites of genus Leishmania, and transmitted by different species of Phlebotomine sand flies. More than 20 species of Leishmania are known to cause disease in humans and other animals. Leishmania donovani species complex is known to have a vast diversity of clinical manifestations in humans, but underlying mechanisms for such diversity are yet unknown. Long believed to be strictly asexual, Leishmania have been shown to undergo a cryptic sexual cycle inside its sandfly vector. Natural populations of hybrid parasites have been associated with the rise of atypical clinical outcomes in the Indian subcontinent (ISC). However, formal demonstration of genetic crossing in the major endemic sandfly species in the ISC remain unexplored. Here, we investigated the ability of two distinct variants of L. donovani associated with strikingly different forms of the disease to undergo genetic exchange inside its natural vector, Phlebotomus argentipes. Clinical isolates of L. donovani either from a Sri Lankan cutaneous leishmaniasis (CL) patient or an Indian visceral leishmaniasis (VL) patient were genetically engineered to express different fluorescent proteins and drug-resistance markers and subsequently used as parental strains in experimental sandfly co-infection. After 8 days of infection, sand flies were dissected and midgut promastigotes were transferred into double drug-selective media. Two double drug-resistant, dual fluorescent hybrid cell lines were recovered, which after cloning and whole genome sequencing, were shown to be full genomic hybrids. This study provides the first evidence of L. donovani hybridization within its natural vector Ph. argentipes.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Phlebotomus , Psychodidae , Animals , Humans , Phlebotomus/parasitology , Leishmania donovani/genetics , Leishmaniasis, Visceral/epidemiology , Psychodidae/parasitology , Hybridization, Genetic
20.
Zoonoses Public Health ; 70(6): 555-567, 2023 09.
Article in English | MEDLINE | ID: mdl-37337345

ABSTRACT

Morphological and DNA-based complemented approaches were applied for characterization of sympatric populations of Phlebotomus longicuspis and Phlebotomus perniciosus in Morocco. Both sand fly species are generally recorded in sympatry in North Africa but on few occasions have been molecularly characterized. The diagnostic confusion of these species has led to errors in their geographical distribution and probably, in the assignment of their role in the transmission of L. infantum. Sand flies were caught inside households in El Borouj, central Morocco, in 2014-2015. For female sand flies, detection of L. infantum natural infection and blood meal identification were carried out. According to morphological identification, Phlebotomus longicuspis s.l. (34.7%) was the second most abundant Phlebotomus species after P. sergenti, followed by atypical Phlebotomus perniciosus (7.1%); 11.6% of the male specimens of P. longicuspis s.l. were identified as P. longicuspis LCx according to the number of coxite setae. The density of Larroussius species was very high (31 Larroussius/light trap/night) in the peripheral neighbourhood of Oulad Bouchair (p = 0.001) where the first case of cutaneous leishmaniasis due to Leishmania infantum was detected in 2017. Phylogenetic trees based on three independent genes highlighted three well-supported clusters within P. perniciosus complex that could be interpreted as corresponding to P. perniciosus, P. longicuspis s.s. and an undescribed species, all coexisting in sympatry. Some females with typical morphology of P. longicuspis were genetically homologous to P. perniciosus. The taxa cannot be differentiated by morphological methods but characterized by a distinctive genetic lineage for which the synapomorphic characters are described. Leishmania infantum was detected in females of all clusters with a low parasite load. Population genetics will help to assess the threat of the geographical spread of L. infantum in Morocco by determining the density, abundance and vector role of the species of the P. perniciosus complex identified correctly.


Subject(s)
Leishmania infantum , Phlebotomus , Psychodidae , Female , Animals , Phlebotomus/parasitology , Leishmania infantum/genetics , Morocco/epidemiology , Phylogeny , Psychodidae/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL