Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.490
Filter
1.
PLoS One ; 19(5): e0278957, 2024.
Article in English | MEDLINE | ID: mdl-38722986

ABSTRACT

BACKGROUND: Monkeypox is a viral zoonotic disease commonly reported in humans in parts of Central and West Africa. This protocol is for an Expanded Access Programme (EAP) to be implemented in the Central African Republic, where Clade I monkeypox virus diseases is primarily responsible for most monkeypox infections. The objective of the programme is to provide patients with confirmed monkeypox with access to tecovirimat, a novel antiviral targeting orthopoxviruses, and collect data on clinical and virological outcomes of patients to inform future research. METHODS: The study will be conducted at participating hospitals in the Central African Republic. All patients who provide informed consent to enrol in the programme will receive tecovirimat. Patients will remain in hospital for the duration of treatment. Data on clinical signs and symptoms will be collected every day while the patient is hospitalised. Blood, throat and lesion samples will be collected at baseline and then on days 4, 8, 14 and 28. Patient outcomes will be assessed on Day 14 -end of treatment-and at Day 28. Adverse event and serious adverse event data will be collected from the point of consent until Day 28. DISCUSSION: This EAP is the first protocolised treatment programme in Clade I MPXV. The data generated under this protocol aims to describe the use of tecovirimat for Clade I disease in a monkeypox endemic region of Central Africa. It is hoped that this data can inform the definition of outcome measures used in future research and contribute to the academic literature around the use of tecovirimat for the treatment of monkeypox. The EAP also aims to bolster research capacity in the region in order for robust randomised controlled trials to take place for monkeypox and other diseases. TRIAL REGISTRATION: {2a & 2b}: ISRCTN43307947.


Subject(s)
Antiviral Agents , Mpox (monkeypox) , Humans , Mpox (monkeypox)/drug therapy , Antiviral Agents/therapeutic use , Monkeypox virus/drug effects , Benzamides/therapeutic use , Male , Adult , Female , Isoindoles/therapeutic use , Adolescent , Treatment Outcome , Alanine/analogs & derivatives , Alanine/therapeutic use , Phthalimides
2.
Drug Dev Res ; 85(4): e22197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751223

ABSTRACT

Although various approaches exist for treating cancer, chemotherapy continues to hold a prominent role in the management of this disease. Besides, microtubules serve as a vital component of the cellular skeleton, playing a pivotal role in the process of cell division making it an attractive target for cancer treatment. Hence, the scope of this work was adapted to design and synthesize new anti-tubulin tetrabromophthalimide hybrids (3-17) with colchicine binding site (CBS) inhibitory potential. The conducted in vitro studies showed that compound 16 displayed the lowest IC50 values (11.46 µM) at the FaDu cancer cell lines, whereas compound 17 exhibited the lowest IC50 value (13.62 µM) at the PC3 cancer cell line. However, compound 7b exhibited the lowest IC50 value (11.45 µM) at the MDA-MB-468 cancer cell line. Moreover, compound 17 was observed to be the superior antitumor candidate against all three tested cancer cell lines (MDA-MB-468, PC3, and FaDu) with IC50 values of 17.22, 13.15, and 13.62 µM, respectively. In addition, compound 17 showed a well-established upregulation of apoptotic markers (Caspases 3, 7, 8, and 9, Bax, and P53). Moreover, compound 17 induced downregulation of the antiapoptotic markers (MMP2, MMP9, and BCL-2). Furthermore, the colchicine binding site inhibition assay showed that compounds 15a and 17 exhibited particularly significant inhibitory potentials, with IC50 values of 23.07 and 4.25 µM, respectively, compared to colchicine, which had an IC50 value of 3.89 µM. Additionally, cell cycle analysis was conducted, showing that compound 17 could prompt cell cycle arrest at both the G0-G1 and G2-M phases. On the other hand, a molecular docking approach was applied to investigate the binding interactions of the examined candidates compared to colchicine towards CBS of the ß-tubulin subunit. Thus, the synthesized tetrabromophthalimide hybrids can be regarded as outstanding anticancer candidates with significant apoptotic activity.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Design , Phthalimides , Tubulin Modulators , Humans , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Phthalimides/pharmacology , Phthalimides/chemistry , Phthalimides/chemical synthesis , Cell Line, Tumor , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin/metabolism , Molecular Docking Simulation , Cell Proliferation/drug effects , Structure-Activity Relationship , Drug Screening Assays, Antitumor
3.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38606915

ABSTRACT

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Subject(s)
Carbonic Anhydrases , Hydantoins , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase IX , Structure-Activity Relationship , Carbonic Anhydrase I , Carbonic Anhydrase II , Protein Isoforms/metabolism , Phthalimides/pharmacology , Hydantoins/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Molecular Structure
4.
Indian J Pharmacol ; 56(2): 129-135, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38687317

ABSTRACT

ABSTRACT: The virus known as monkeypox is the source of the zoonotic disease monkeypox, which was historically widespread in Central Africa and West Africa. The cases of monkeypox in humans are uncommon outside of West and Central Africa, but copious nonendemic nations outside of Africa have recently confirmed cases. People when interact with diseased animals, then, they may inadvertently contact monkeypox. There are two drugs in the market: brincidofovir and tecovirimat and both of these drugs are permitted for the cure of monkeypox by the US Food and Drug Administration. The present review summarizes the various parameters of monkeypox in context with transmission, signs and symptoms, histopathological and etiological changes, and possible treatment. Monkeypox is clinically similar to that of smallpox infection but epidemiologically, these two are different, the present study also signifies the main differences and similarities of monkeypox to that of other infectious diseases. As it is an emerging disease, it is important to know about the various factors related to monkeypox so as to control it on a very early stage of transmission.


Subject(s)
Antiviral Agents , Communicable Diseases, Emerging , Cytosine/analogs & derivatives , Mpox (monkeypox) , Phthalimides , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Humans , Animals , Antiviral Agents/therapeutic use , Communicable Diseases, Emerging/epidemiology , Cytosine/therapeutic use , Monkeypox virus , Isoindoles/therapeutic use , Organothiophosphorus Compounds , Organophosphonates/therapeutic use , Benzamides/therapeutic use
5.
Talanta ; 274: 126011, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574537

ABSTRACT

In this article, we have studied the potential of flexible microtube plasma (FµTP) as ionization source for the liquid chromatography high-resolution mass spectrometry detection of non-easily ionizable pesticides (viz. nonpolar and non-ionizable by acid/basic moieties). Phthalimide-related compounds such as dicofol, dinocap, o-phenylphenol, captan, captafol, folpet and their metabolites were studied. Dielectric barrier discharge ionization (DBDI) was examined using two electrode configurations, including the miniaturized one based on a single high-voltage (HV) electrode and a virtual ground electrode configuration (FµTP), and also the two-ring electrode DBDI configuration. Different ionization pathways were observed to ionize these challenging, non-easily ionizable nonpolar compounds, involving nucleophilic substitutions and proton abstraction, with subtle differences in the spectra obtained compared with APCI. An average sensitivity increase of 5-fold was attained compared with the standard APCI source. In addition, more tolerance with matrix effects was observed in both DBDI sources. The importance of the data reported is not just limited to the sensitivity enhancement compared to APCI, but, more notably, to the ability to effectively ionize nonpolar, late-eluting (in reverse-phase chromatography) non-ionizable compounds. Besides o-phenylphenol ([M - H]-), all the parent species were efficiently ionized through different mechanisms involving bond cleavages through the effect of plasma reagent species or its combination with thermal degradation and subsequent ionization. This tool can be used to figure out overlooked nonpolar compounds in different environmental samples of societal interest through non-target screening (NTS) strategies.


Subject(s)
Mass Spectrometry , Pesticides , Pesticides/analysis , Pesticides/chemistry , Pesticides/blood , Chromatography, Liquid/methods , Mass Spectrometry/methods , Phthalimides/chemistry , Phthalimides/analysis , Food Contamination/analysis , Miniaturization , Captan/analysis , Captan/blood , Captan/chemistry , Food Analysis/methods
6.
Sci Rep ; 14(1): 5338, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438437

ABSTRACT

Pesticides are indispensable tools in modern agriculture for enhancing crop productivity. However, the inherent toxicity of pesticides raises significant concerns regarding human exposure, particularly among agricultural workers. This study investigated the exposure and associated risks of two commonly used pesticides in open-field pepper cultivation, namely, chlorothalonil and flubendiamide, in the Republic of Korea. We used a comprehensive approach, encompassing dermal and inhalation exposure measurements in agricultural workers during two critical scenarios: mixing/loading and application. Results revealed that during mixing/loading, dermal exposure to chlorothalonil was 3.33 mg (0.0002% of the total active ingredient [a.i.]), while flubendiamide exposure amounted to 0.173 mg (0.0001% of the a.i.). Conversely, dermal exposure increased significantly during application to 648 mg (chlorothalonil) and 93.1 mg (flubendiamide), representing 0.037% and 0.065% of the total a.i., respectively. Inhalation exposure was also evident, with chlorothalonil and flubendiamide exposure levels varying across scenarios. Notably, the risk assessment using the Risk Index (RI) indicated acceptable risk of exposure during mixing/loading but raised concerns during application, where all RIs exceeded 1, signifying potential risk. We suggest implementing additional personal protective equipment (PPE) during pesticide application, such as gowns and lower-body PPE, to mitigate these risks.


Subject(s)
Fluorocarbons , Nitriles , Pesticides , Phthalimides , Piper nigrum , Sulfones , Humans , Farmers , Risk Assessment , Benzamides , Pesticides/toxicity
7.
Eur J Med Chem ; 269: 116336, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38520761

ABSTRACT

A series of triterpenoid pyrones was synthesized and subsequently modified to introduce phthalimide or phthalate moieties into the triterpenoid skeleton. These compounds underwent in vitro cytotoxicity screening, revealing that a subset of six compounds exhibited potent activity, with IC50 values in the low micromolar range. Further biological evaluations, including Annexin V and propidium iodide staining experiment revealed, that all compounds induce selective apoptosis in cancer cells. Measurements of mitochondrial potential, cell cycle analysis, and the expression of pro- and anti-apoptotic proteins confirmed, that apoptosis was mediated via the mitochondrial pathway. These findings were further supported by cell cycle modulation and DNA/RNA synthesis studies, which indicated a significant increase in cell accumulation in the G0/G1 phase and a marked reduction in S-phase cells, alongside a substantial inhibition of DNA synthesis. The activation of caspase-3 and the cleavage of PARP, coupled with a decrease in the expression of Bcl-2 and Bcl-XL proteins, underscored the induction of apoptosis through the mitochondrial pathway. Given their high activity and pronounced effect on mitochondria function, trifluoromethyl pyrones 1f and 2f, and dihydrophthalimide 2h have been selected for further development.


Subject(s)
Antineoplastic Agents , Neoplasms , Phthalic Acids , Triterpenes , Pyrones/pharmacology , Cell Line, Tumor , Triterpenes/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Mitochondria/metabolism , Phthalimides/pharmacology , DNA/metabolism , Membrane Potential, Mitochondrial , Neoplasms/drug therapy
8.
PLoS Negl Trop Dis ; 18(3): e0012050, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527083

ABSTRACT

Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 µM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmania , Leishmaniasis, Cutaneous , Humans , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Amphotericin B/therapeutic use , Leishmaniasis, Cutaneous/parasitology , Phthalimides/pharmacology , Phthalimides/therapeutic use
9.
PLoS One ; 19(2): e0295928, 2024.
Article in English | MEDLINE | ID: mdl-38394153

ABSTRACT

The fall armyworm (Spodoptera frugiperda) is one of the most destructive pests of corn. New infestations have been reported in the East Hemisphere, reaching India, China, Malaysia, and Australia, causing severe destruction to corn and other crops. In Puerto Rico, practical resistance to different mode of action compounds has been reported in cornfields. In this study, we characterized the inheritance of resistance to chlorantraniliprole and flubendiamide and identified the possible cross-resistance to cyantraniliprole and cyclaniliprole. The Puerto Rican (PR) strain showed high levels of resistance to flubendiamide (RR50 = 2,762-fold) and chlorantraniliprole (RR50 = 96-fold). The inheritance of resistance showed an autosomal inheritance for chlorantraniliprole and an X-linked inheritance for flubendiamide. The trend of the dominance of resistance demonstrated an incompletely recessive trait for H1 (♂ SUS × â™€ PR) × and an incompletely dominant trait for H2 (♀ SUS × â™‚ PR) × for flubendiamide and chlorantraniliprole. The PR strain showed no significant presence of detoxification enzymes (using synergists: PBO, DEF, DEM, and VER) to chlorantraniliprole; however, for flubendiamide the SR = 2.7 (DEM), SR = 3.2 (DEF) and SR = 7.6 (VER) indicated the role of esterases, glutathione S- transferases and ABC transporters in the metabolism of flubendiamide. The PR strain showed high and low cross-resistance to cyantraniliprole (74-fold) and cyclaniliprole (11-fold), respectively. Incomplete recessiveness might lead to the survival of heterozygous individuals when the decay of diamide residue occurs in plant tissues. These results highlight the importance of adopting diverse pest management strategies, including insecticide rotating to manage FAW populations in Puerto Rico and other continents.


Subject(s)
Fluorocarbons , Insecticides , Moths , Phthalimides , Pyrazoles , Sulfones , ortho-Aminobenzoates , Humans , Animals , Spodoptera/genetics , Diamide/pharmacology , Puerto Rico , Insecticide Resistance/genetics , Insecticides/pharmacology , Larva
10.
Infect Disord Drug Targets ; 24(4): 76-82, 2024.
Article in English | MEDLINE | ID: mdl-38243966

ABSTRACT

Monkeypox is a viral disease; its outbreak was recently declared a global emergency by the World Health Organization. For the first time, a monkeypox virus (MPXV)-infected patient was found in India. Various researchers back-to-back tried to find the solution to this health emergency just after COVID-19. In this review, we discuss the current outbreak status of India, its transmission, virulence factors, symptoms, treatment, and the preventive guidelines generated by the Indian Health Ministry. We found that monkeypox virus (MPXV) disease is different from smallpox, and the age group between 30-40 years old is more prone to MPXV disease. We also found that, besides homosexuals, gays, bisexuals, and non-vegetarians, it also affects normal straight men and women who have no history of travel. Close contact should be avoided from rats, monkeys and sick people who are affected by monkeypox. To date, there are no monkeypox drugs, but Tecovirimat is more effective than other drugs that are used for other viral diseases like smallpox. Therefore, we need to develop an effective antiviral agent against the virulence factor of MXPV.


Subject(s)
Antiviral Agents , Monkeypox virus , Mpox (monkeypox) , Animals , Female , Humans , Male , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Benzamides , Disease Outbreaks , India/epidemiology , Isoindoles , Monkeypox virus/pathogenicity , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Phthalimides , Virulence Factors , Adult
11.
Environ Sci Technol ; 58(6): 2672-2682, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38290497

ABSTRACT

Flubendiamide (FLU), a widely used diamide insecticide, has been observed to potentiate adipogenesis in 3T3-L1 preadipocytes in vitro. Whether exposure to FLU disrupts hepatic lipid homeostasis in mammals and induces visceral obesity, however, remains unclear. The aim of this study was to assess the effects of FLU when administered orally to male C57BL/6J mice under normal diet (ND) and high-fat diet (HFD) conditions. FLU accumulated at higher levels in the tissues of the HFD group than those of the ND group, indicating that an HFD contributed to the accumulation of lipophilic pesticides in vivo. Notably, FLU (logP = 4.14) is highly lipophilic and easily accumulates in fat. Exposure to FLU had opposing effects on the lipid metabolism of the liver in the ND and HFD groups. Liver triacylglycerol levels in the ND group were reduced, while those in the HFD group were increased, resulting in more severe hepatic steatosis. More lipid accumulation was also observed in HepG2 cells exposed to FLU. Changes in hepatic lipid deposition in vivo occurred as the enhanced transcriptional regulation of the genes involved in lipid uptake, de novo lipogenesis, and fatty acid ß-oxidation (FAO). Moreover, an excessive increase in FAO caused oxidative stress, which in turn exacerbated the inflammation of the liver. This study revealed the disruptive effect of FLU exposure on hepatic lipid homeostasis, which may facilitate the triggering of nonalcoholic fatty liver disease in HFD-fed mice.


Subject(s)
Fluorocarbons , Non-alcoholic Fatty Liver Disease , Phthalimides , Sulfones , Male , Animals , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Mice, Inbred C57BL , Liver/metabolism , Lipid Metabolism , Lipids , Mammals
12.
Cell Death Dis ; 15(1): 27, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38199990

ABSTRACT

Intestinal epithelial renewal, which depends on the proliferation and differentiation of intestinal stem cells (ISCs), is essential for epithelial homoeostasis. Understanding the mechanism controlling ISC activity is important. We found that death receptor 5 (DR5) gene deletion (DR5-/-) mice had impaired epithelial absorption and barrier function, resulting in delayed weight gain, which might be related to the general reduction of differentiated epithelial cells. In DR5-/- mice, the expression of ISC marker genes, the number of Olfm4+ ISCs, and the number of Ki67+ and BrdU+ cells in crypt were reduced. Furthermore, DR5 deletion inhibited the expression of lineage differentiation genes driving ISC differentiation into enterocytes, goblet cells, enteroendocrine cells, and Paneth cells. Therefore, DR5 gene loss may inhibit the intestinal epithelial renewal by dampening ISC activity. The ability of crypts from DR5-/- mice to form organoids decreased, and selective DR5 activation by Bioymifi promoted organoid growth and the expression of ISC and intestinal epithelial cell marker genes. Silencing of endogenous DR5 ligand TRAIL in organoids down-regulated the expression of ISC and intestinal epithelial cell marker genes. So, DR5 expressed in intestinal crypts was involved in the regulation of ISC activity. DR5 deletion in vivo or activation in organoids inhibited or enhanced the activity of Wnt, Notch, and BMP signalling through regulating the production of Paneth cell-derived ISC niche factors. DR5 gene deletion caused apoptosis and DNA damage in transit amplifying cells by inhibiting ERK1/2 activity in intestinal crypts. Inhibition of ERK1/2 with PD0325901 dampened the ISC activity and epithelial regeneration. In organoids, when Bioymifi's effect in activating ERK1/2 activity was completely blocked by PD0325901, its role in stimulating ISC activity and promoting epithelial regeneration was also eliminated. In summary, DR5 in intestinal crypts is essential for ISC activity during epithelial renewal under homoeostasis.


Subject(s)
Benzamides , Diphenylamine , Phthalimides , Receptors, TNF-Related Apoptosis-Inducing Ligand , Stem Cells , Thiazolidines , Animals , Mice , Diphenylamine/analogs & derivatives , Homeostasis
13.
Blood ; 143(15): 1513-1527, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38096371

ABSTRACT

ABSTRACT: Small molecules that target the menin-KMT2A protein-protein interaction (menin inhibitors) have recently entered clinical trials in lysine methyltransferase 2A (KMT2A or MLL1)-rearranged (KMT2A-r) and nucleophosmin-mutant (NPM1c) acute myeloid leukemia (AML) and are demonstrating encouraging results. However, rationally chosen combination therapy is needed to improve responses and prevent resistance. We have previously identified IKZF1/IKAROS as a target in KMT2A-r AML and shown in preclinical models that IKAROS protein degradation with lenalidomide or iberdomide has modest single-agent activity yet can synergize with menin inhibitors. Recently, the novel IKAROS degrader mezigdomide was developed with greatly enhanced IKAROS protein degradation. In this study, we show that mezigdomide has increased preclinical activity in vitro as a single-agent in KMT2A-r and NPM1c AML cell lines, including sensitivity in cell lines resistant to lenalidomide and iberdomide. Further, we demonstrate that mezigdomide has the greatest capacity to synergize with and induce apoptosis in combination with menin inhibitors, including in MEN1 mutant models. We show that the superior activity of mezigdomide compared with lenalidomide or iberdomide is due to its increased depth, rate, and duration of IKAROS protein degradation. Single-agent mezigdomide was efficacious in 5 patient-derived xenograft models of KMT2A-r and 1 NPM1c AML. The combination of mezigdomide with the menin inhibitor VTP-50469 increased survival and prevented and overcame MEN1 mutations that mediate resistance in patients receiving menin inhibitor monotherapy. These results support prioritization of mezigdomide for early phase clinical trials in KMT2A-r and NPM1c AML, either as a single agent or in combination with menin inhibitors.


Subject(s)
Leukemia, Myeloid, Acute , Morpholines , Myeloid-Lymphoid Leukemia Protein , Phthalimides , Piperidones , Humans , Lenalidomide/therapeutic use , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation
14.
Arch Pharm (Weinheim) ; 357(3): e2300599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100160

ABSTRACT

Humanity is currently facing various diseases with significant mortality rates, particularly those associated with malignancies. Numerous enzymes and proteins have been identified as highly promising targets for the treatment of cancer. The poly(ADP-ribose) polymerases (PARPs) family comprises 17 members which are essential in DNA damage repair, allowing the survival of cancer cells. Unlike other PARP family members, PARP-1 and, to a lesser extent, PARP-2 show more than 90% activity in response to DNA damage. PARP-1 levels were shown to be elevated in various tumor cells, including breast, lung, ovarian, and prostate cancer and melanomas. Accordingly, novel series of phthalimide-tethered isatins (6a-n, 10a-e, and 11a-e) were synthesized as potential PARP-1 inhibitors endowed with anticancer activity. All the synthesized molecules were assessed against PARP-1, where compounds 6f and 10d showed nanomolar activities with IC50 = 15.56 ± 2.85 and 13.65 ± 1.42 nM, respectively. Also, the assessment of the antiproliferative effects of the synthesized isatins was conducted on four cancer cell lines: leukemia (K-562), liver (HepG2), and breast (MCF-7 and HCC1937) cancers. Superiorly, compounds 6f and 10d demonstrated submicromolar IC50 values against breast cancer MCF-7 (IC50 = 0.92 ± 0.18 and 0.67 ± 0.12 µM, respectively) and HCC1937 (IC50 = 0.88 ± 0.52 and 0.53 ± 0.11 µM, respectively) cell lines. In addition, compounds 6f and 10d induced arrest in the G2/M phase of the cell cycle as compared to untreated cells. Finally, in silico studies, including docking and molecular dynamic simulations, were performed to justify the biological results.


Subject(s)
Isatin , Poly(ADP-ribose) Polymerase Inhibitors , Male , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Structure-Activity Relationship , Phthalimides/pharmacology , Cell Line, Tumor
15.
Chembiochem ; 25(4): e202300685, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38116854

ABSTRACT

Thalidomide, pomalidomide and lenalidomide, collectively referred to as immunomodulatory imide drugs (IMiDs), are frequently employed in proteolysis-targeting chimeras (PROTACs) as cereblon (CRBN) E3 ligase-recruiting ligands. However, their molecular glue properties that co-opt the CRL4CRBN to degrade its non-natural substrates may lead to undesired off-target effects for the IMiD-based PROTAC degraders. Herein, we reported a small library of potent and cell-permeable CRBN ligands, which exert high selectivity over the well-known CRBN neo-substrates of IMiDs by structure-based design. They were further utilized to construct bromodomain-containing protein 4 (BRD4) degraders, which successfully depleted BRD4 in the tested cells. Overall, we reported a series of functionalized CRBN recruiters that circumvent the promiscuity from traditional IMiDs, and this study is informative to the development of selective CRBN-recruiting PROTACs for many other therapeutic targets.


Subject(s)
Nuclear Proteins , Peptide Hydrolases , Phthalimides , Proteolysis , Peptide Hydrolases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Immunomodulating Agents , Benzimidazoles , Ligands
16.
Analyst ; 148(23): 5882-5888, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37917054

ABSTRACT

A novel mitochondrion-targeted Hg2+-specific fluorescent probe 1 based on ESIPT phthalimide was designed and synthesized for the first time. Owing to the blockage of the ESIPT process between the hydroxy group and the carbonyl oxygen of the imide by the diphenylphosphinothioate group, 1 was almost nonfluorescent. After reacting with Hg2+, 1 exhibited a dramatic fluorescence enhancement due to the recovery of the ESIPT process through Hg2+-induced desulfurization-hydrolysis of the diphenylphosphinothioate moiety and the cleavage of the P-O bond. 1 showed a large Stokes shift, rapid response and high sensitivity and selectivity for Hg2+ over other metal ions. Moreover, 1 was successfully employed to image Hg2+ in the mitochondria of living cells.


Subject(s)
Fluorescent Dyes , Mercury , Phthalimides , Mitochondria
17.
Carbohydr Res ; 534: 108965, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852130

ABSTRACT

An efficient one-pot synthesis of a new series of mannosyl triazoles has been achieved through CuAAC reaction where the alkyl chain spacer between the phthalimide moiety and the triazole ring in the aglycone backbone is varied from one methylene to six methylene units. The target compounds were evaluated in terms of their inhibitory potency against FimH using hemagglutination inhibition (HAI) assay. It was found that the length of four methylene units was the optimum for the fitting/binding of the compound to FimH as exemplified by compound 11 (HAI = 1.9 µM), which was approximately 200 times more potent than the reference ligand 1(HAI = 385 µM). The successful implementation of one-pot protocol with building blocks 1-7 and the architecture of ligand 11 will be the subject of our future work for developing more potent FimH inhibitors.


Subject(s)
Hemagglutination , Triazoles , Triazoles/chemistry , Ligands , Click Chemistry , Phthalimides/pharmacology
18.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762369

ABSTRACT

This work aims to study the epigenetic mechanisms of regulating long-term context memory in the gastropod mollusk: Helix. We have shown that RG108, an inhibitor of DNA methyltransferase (DNMT), impaired long-term context memory in snails, and this impairment can be reversed within a limited time window: no more than 48 h. Research on the mechanisms through which the long-term context memory impaired by DNMT inhibition could be reinstated demonstrated that this effect depends on several biochemical mechanisms: nitric oxide synthesis, protein synthesis, and activity of the serotonergic system. Memory recovery did not occur if at least one of these mechanisms was impaired. The need for the joint synergic activity of several biochemical systems for a successful memory rescue confirms the assumption that the memory recovery process depends on the process of active reconsolidation, and is not simply a passive weakening of the effect of RG108 over time. Finally, we showed that the reactivation of the impaired memory by RG108, followed by administration of histone deacetylase inhibitor sodium butyrate, led to memory recovery only within a narrow time window: no more than 48 h after memory disruption.


Subject(s)
DNA Methylation , Memory, Long-Term , Phthalimides , Memory , DNA Modification Methylases/genetics
19.
Sci Rep ; 13(1): 15093, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699954

ABSTRACT

In this study, we aimed to develop hybrid antitumor compounds by synthesizing and characterizing novel N-substituted acrididine-1,8-dione derivatives, designed as hybrids of phthalimide and acridine-1,8-diones. We employed a three-step synthetic strategy and characterized all compounds using IR, 1H NMR, 13C NMR, and LC-MS. The cytotoxicity and antitumor activity of five compounds (8c, 8f, 8h, 8i, and 8L) against four cancer cell lines (H460, A431, A549, and MDA-MB-231) compared to human skin fibroblast cells were evaluated. Among the synthesized compounds, compound 8f showed promising activity against skin and lung cancers, with favorable IC50 values and selectivity index. The relative changes in mRNA expression levels of four key genes (p53, TOP2B, p38, and EGFR) in A431 cells treated with the five synthesized compounds (8c, 8f, 8h, 8i, and 8L) were also investigated. Additionally, molecular docking studies revealed that compound 8f exhibited high binding affinity with TOP2B, p38, p53, and EGFR, suggesting its potential as a targeted anticancer therapy. The results obtained indicate that N-substituted acrididine-1,8-dione derivatives have the potential to be developed as novel antitumor agents with a dual mechanism of action, and compound 8f is a promising candidate for further investigation.


Subject(s)
Antineoplastic Agents , Tumor Suppressor Protein p53 , Humans , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Phthalimides/pharmacology , ErbB Receptors
20.
Bioorg Chem ; 141: 106817, 2023 12.
Article in English | MEDLINE | ID: mdl-37690318

ABSTRACT

A novel series of phthalimide-hydroxypyridinone derivatives were rationally designed and evaluated as potential anti-Alzheimer's disease (AD) agents. Bioactivity tests showed that all compounds displayed great iron ions-chelating activity (pFe3+ = 17.07-19.52), in addition to potent inhibition of human monoamine oxidase B (hMAO-B). Compound 11n emerged as the most effective anti-AD lead compound with a pFe3+ value of 18.51, along with selective hMAO-B inhibitory activity (IC50 = 0.79 ± 0.05 µM, SI > 25.3). The results of cytotoxicity assays demonstrated that 11n showed extremely weak toxicity in PC12 cell line at 50 µM. Additionally, compound 11n displayed a cytoprotective effect against H2O2-induced oxidative damage. Moreover, compound 11n exhibited ideal blood-brain barrier (BBB) permeability in the parallel artificial membrane permeation assay (PAMPA), and significantly improved scopolamine-induced cognitive and memory impairment in mice behavioral experiments. In conclusion, these favorable experimental results suggested compound 11n deserved further investigation as an anti-AD lead compound.


Subject(s)
Alzheimer Disease , Mice , Humans , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Hydrogen Peroxide , Structure-Activity Relationship , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Drug Design , Monoamine Oxidase/metabolism , Phthalimides/pharmacology , Amyloid beta-Peptides , Acetylcholinesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...