Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Sci Rep ; 14(1): 5156, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431749

ABSTRACT

We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.


Subject(s)
DNA-Directed RNA Polymerases , Polyadenylation , Animals , Humans , Mice , DNA-Directed RNA Polymerases/genetics , RNA, Messenger/metabolism , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , Poly A/genetics , Poly A/metabolism
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167080, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364942

ABSTRACT

Star-PAP is a non-canonical poly(A) polymerase that is down regulated in breast cancer. While Star-PAP down regulation impairs target mRNA polyadenylation, paradoxically, we see up regulation of a large number of oncogenes on Star-PAP knockdown. Using two breast cancer cells (MCF7 with high Star-PAP, and MDA-MB-231 with negligible Star-PAP level), we discover that Star-PAP negatively regulates oncogene expression and subsequently cellular proliferation. This regulation is compromised with Star-PAP mutant of 3'-end processing function (serine 6 to alanine, S6A phospho-mutation). Concomitantly, xenograft mice model using MDA-MB-231 cells reveals a reduction in the tumour formation on ectopic Star-PAP expression that is ameliorated by S6A mutation. We find that Star-PAP control of target oncogene expression is independent of Star-PAP-mediated alternative polyadenylation or target mRNA 3'-end formation. We demonstrate that Star-PAP regulates target oncogenes through cellular miRNAs (miR-421, miR-335, miR-424, miR-543, miR-205, miR-34a, and miR-26a) that are down regulated in breast cancer. Analysis of various steps in miRNA biogenesis pathway reveals that Star-PAP regulates 3'-end formation and synthesis of primary miRNA (host) transcripts that is dependent on S6 phosphorylation thus controlling mature miRNA generation. Using mimics and inhibitors of two target miRNAs (miR-421 and miR-424) after Star-PAP depletion in MCF7 or ectopic expression in MDA-MB-231 cells, we demonstrate that Star-PAP controls oncogene expression and cellular proliferation through targeting miRNAs that regulates tumour formation. Our study establishes a novel mechanism of oncogene expression independent of alternative polyadenylation through Star-PAP-mediated miRNA host transcript polyadenylation that regulates breast cancer progression.


Subject(s)
Breast Neoplasms , MicroRNAs , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger/metabolism
3.
Spine (Phila Pa 1976) ; 48(17): 1253-1258, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37141460

ABSTRACT

STUDY DESIGN: A genetic case-control study. OBJECTIVE: To replicate recently reported genetic loci associated with adolescent idiopathic scoliosis (AIS) in the Chinese Han population, and to determine the relationship between gene expression and the clinical features of the patients. SUMMARY OF BACKGROUND DATA: A recent study conducted in the Japanese population identified several novel susceptible loci, which might provide new insights into the etiology of AIS. However, the association of these genes with AIS in other populations remains unclear. MATERIALS AND METHODS: A total of 1210 AIS and 2500 healthy controls were recruited for the genotyping of 12 susceptibility loci. Paraspinal muscles used for gene expression analysis were obtained from 36 AIS and 36 patients with congenital scoliosis. The difference regarding genotype and allele frequency between patients and controls was analyzed by χ 2 analysis. The t test was performed to compare the target gene expression level between controls and AIS patients. Correlation analysis was performed between gene expression and phenotypic data, including Cobb angle, bone mineral density, lean mass, height, and body mass index. RESULTS: Four SNPs, including rs141903557, rs2467146, rs658839, and rs482012, were successfully validated. Allele C of rs141903557, allele A of rs2467146, allele G of rs658839, and allele T of single nucleotide polymorphism rs482012 showed significantly higher frequency in patients. Allele C of rs141903557, allele A of rs2467146, allele G of rs658839, and allele T of rs482012 could notably increase the risk of AIS patients, with an odds ratio of 1.49, 1.16, 1.11, and 1.25, respectively. Moreover, tissue expression of FAM46A was significantly lower in AIS patients as compared with controls. Moreover, FAM46A expression was remarkably correlated with bone mineral density of patients. CONCLUSION: Four SNPs were successfully validated as novel susceptibility loci associated with AIS in the Chinese population. Moreover, FAM46A expression was associated with the phenotype of AIS patients.


Subject(s)
Kyphosis , Polynucleotide Adenylyltransferase , Scoliosis , Humans , Case-Control Studies , East Asian People , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Scoliosis/diagnosis , Scoliosis/genetics , Scoliosis/epidemiology , Polynucleotide Adenylyltransferase/genetics
4.
Nat Commun ; 14(1): 772, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774373

ABSTRACT

The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.


Subject(s)
Polynucleotide Adenylyltransferase , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA/metabolism , RNA Precursors/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
5.
Plant J ; 114(3): 651-667, 2023 05.
Article in English | MEDLINE | ID: mdl-36811355

ABSTRACT

Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Pollen Tube/metabolism , Arabidopsis Proteins/metabolism , Polynucleotide Adenylyltransferase/genetics , Protein Isoforms/metabolism , Mutation
6.
Cell Rep ; 41(4): 111548, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288708

ABSTRACT

Translation of 5' terminal oligopyrimidine (TOP) mRNAs encoding the protein synthesis machinery is strictly regulated by an amino-acid-sensing mTOR pathway. However, its regulatory mechanism remains elusive. Here, we demonstrate that TOP mRNA translation positively correlates with its poly(A) tail length under mTOR active/amino-acid-rich conditions, suggesting that TOP mRNAs are post-transcriptionally controlled by poly(A) tail-length regulation. Consistent with this, the tail length of TOP mRNAs dynamically fluctuates in response to amino acid availability. The poly(A) tail shortens under mTOR active/amino-acid-rich conditions, whereas the long-tailed TOP mRNAs accumulate under mTOR inactive/amino-acid-starved (AAS) conditions. An RNA-binding protein, LARP1, is indispensable for the process. LARP1 interacts with non-canonical poly(A) polymerases and induces post-transcriptional polyadenylation of the target. Our findings illustrate that LARP1 contributes to the selective accumulation of TOP mRNAs with long poly(A) tails under AAS, resulting in accelerated ribosomal loading onto TOP mRNAs for the resumption of translation after AAS.


Subject(s)
Autoantigens , Ribonucleoproteins , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Autoantigens/metabolism , TOR Serine-Threonine Kinases/metabolism , Ribosomes/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Polynucleotide Adenylyltransferase/genetics , Amino Acids/metabolism , Protein Biosynthesis
7.
Nat Commun ; 13(1): 5260, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071058

ABSTRACT

TENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination. Together with rescue experiments, we characterize TENT-specific effects by deep sequencing, Northern blot and in vitro assays. We find that 3' tailing is not random but highly specific. In addition to its known adenylation, TENT2 contributes to guanylation and uridylation on mature miRNAs. TUT4 uridylates most miRNAs whereas TUT7 is dispensable. Removing adenylation has a marginal impact on miRNA levels. By contrast, abolishing uridylation leads to dysregulation of a set of miRNAs. Besides let-7, miR-181b and miR-222 are negatively regulated by TUT4/7 via distinct mechanisms while the miR-888 cluster is upregulated specifically by TUT7. Our results uncover the selective actions of TENTs in generating 3' isomiRs and pave the way to investigate their functions.


Subject(s)
DNA-Binding Proteins , MicroRNAs , Polynucleotide Adenylyltransferase , RNA Nucleotidyltransferases , mRNA Cleavage and Polyadenylation Factors , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , MicroRNAs/genetics , Polynucleotide Adenylyltransferase/genetics , RNA Nucleotidyltransferases/genetics , Uridine Monophosphate/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics
8.
Life Sci Alliance ; 5(12)2022 09 16.
Article in English | MEDLINE | ID: mdl-36114004

ABSTRACT

Cytoplasmic polyadenylation is a mechanism to promote mRNA translation in a wide variety of biological contexts. A canonical complex centered around the conserved RNA-binding protein family CPEB has been shown to be responsible for this process. We have previously reported evidence for an alternative noncanonical, CPEB-independent complex in <i>Drosophila</i>, of which the RNA-interference factor Dicer-2 is a component. Here, we investigate Dicer-2 mRNA targets and protein cofactors in cytoplasmic polyadenylation. Using RIP-Seq analysis, we identify hundreds of potential Dicer-2 target transcripts, ∼60% of which were previously found as targets of the cytoplasmic poly(A) polymerase Wispy, suggesting widespread roles of Dicer-2 in cytoplasmic polyadenylation. Large-scale immunoprecipitation revealed Ataxin-2 and Twenty-four among the high-confidence interactors of Dicer-2. Complex analyses indicated that both factors form an RNA-independent complex with Dicer-2 and mediate interactions of Dicer-2 with Wispy. Functional poly(A)-test analyses showed that Twenty-four and Ataxin-2 are required for cytoplasmic polyadenylation of a subset of Dicer-2 targets. Our results reveal components of a novel cytoplasmic polyadenylation complex that operates during <i>Drosophila</i> early embryogenesis.


Subject(s)
Ataxin-2 , Polyadenylation , Animals , Ataxin-2/genetics , Ataxin-2/metabolism , Drosophila/genetics , Drosophila/metabolism , Polyadenylation/genetics , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
PLoS One ; 17(4): e0267117, 2022.
Article in English | MEDLINE | ID: mdl-35482720

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies. A growing number of studies have shown that competitive endogenous RNA (ceRNA) regulatory networks might play important roles during HCC process. The present study aimed to identify a regulatory axis of the ceRNA network associated with the development of HCC. The roles of SNX16 and PAPOLG in HCC were comprehensively analyzed using bioinformatics tools. Subsequently, the "mRNA-miRNA-lncRNA" model was then used to predict the upstream miRNAs and lncRNAs of SNX16 and PAPOLG using the miRNet database, and the miRNAs with low expression and good prognosis in HCC and the lncRNAs with high expression and poor prognosis in HCC were screened by differential expression and survival analysis. Finally, the risk-prognosis models of ceRNA network axes were constructed by univariate and multifactorial Cox proportional risk analysis, and the immune correlations of ceRNA network axes were analyzed using the TIMER and GEPIA database. In this study, the relevant ceRNA network axis GSEC/miR-101-3p/SNX16/PAPOLG with HCC prognosis was constructed, in which GSEC, SNX16, and PAPOLG were highly expressed in HCC with poor prognosis, while miR-101-3p was lowly expressed in HCC with good prognosis. The risk-prognosis model predicted AUC of 0.691, 0.623, and 0.626 for patient survival at 1, 3, and 5 years, respectively. Immuno-infiltration analysis suggested that the GSEC/miR-101-3p/SNX16/PAPOLG axis might affect macrophage polarization. The GSEC/miR-101-3p/SNX16/PAPOLG axis of the ceRNA network axis might be an important factor associated with HCC prognosis and immune infiltration.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinoma, Hepatocellular/genetics , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Polynucleotide Adenylyltransferase/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism
10.
Science ; 373(6562): 1499-1505, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554798

ABSTRACT

Many human proteins contain domains that vary in size or copy number because of variable numbers of tandem repeats (VNTRs) in protein-coding exons. However, the relationships of VNTRs to most phenotypes are unknown because of difficulties in measuring such repetitive elements. We developed methods to estimate VNTR lengths from whole-exome sequencing data and impute VNTR alleles into single-nucleotide polymorphism haplotypes. Analyzing 118 protein-altering VNTRs in 415,280 UK Biobank participants for association with 786 phenotypes identified some of the strongest associations of common variants with human phenotypes, including height, hair morphology, and biomarkers of health. Accounting for large-effect VNTRs further enabled fine-mapping of associations to many more protein-coding mutations in the same genes. These results point to cryptic effects of highly polymorphic common structural variants that have eluded molecular analyses to date.


Subject(s)
Genome, Human , Minisatellite Repeats/genetics , Phenotype , Polymorphism, Genetic , Aggrecans/genetics , Antigens/genetics , Black People , Body Height/genetics , Genetic Association Studies , Hair , Haplotypes , Humans , Intermediate Filament Proteins/genetics , Kidney/physiology , Lipoprotein(a)/blood , Lipoprotein(a)/genetics , Mucin-1/genetics , Polymorphism, Single Nucleotide , Polynucleotide Adenylyltransferase/genetics , White People/genetics , Exome Sequencing
11.
RNA ; 27(12): 1497-1511, 2021 12.
Article in English | MEDLINE | ID: mdl-34446532

ABSTRACT

Understanding transcriptomes requires documenting the structures, modifications, and abundances of RNAs as well as their proximity to other molecules. The methods that make this possible depend critically on enzymes (including mutant derivatives) that act on nucleic acids for capturing and sequencing RNA. We tested two 3' nucleotidyl transferases, Saccharomyces cerevisiae poly(A) polymerase and Schizosaccharomyces pombe Cid1, for the ability to add base and sugar modified rNTPs to free RNA 3' ends, eventually focusing on Cid1. Although unable to polymerize ΨTP or 1meΨTP, Cid1 can use 5meUTP and 4thioUTP. Surprisingly, Cid1 can use inosine triphosphate to add poly(I) to the 3' ends of a wide variety of RNA molecules. Most poly(A) mRNAs efficiently acquire a uniform tract of about 50 inosine residues from Cid1, whereas non-poly(A) RNAs acquire longer, more heterogeneous tails. Here we test these activities for use in direct RNA sequencing on nanopores, and find that Cid1-mediated poly(I)-tailing permits detection and quantification of both mRNAs and non-poly(A) RNAs simultaneously, as well as enabling the analysis of nascent RNAs associated with RNA polymerase II. Poly(I) produces a different current trace than poly(A), enabling recognition of native RNA 3' end sequence lost by in vitro poly(A) addition. Addition of poly(I) by Cid1 offers a broadly useful alternative to poly(A) capture for direct RNA sequencing on nanopores.


Subject(s)
Nanopores , Nucleotides/chemistry , Nucleotidyltransferases/metabolism , Polymers/chemistry , Polynucleotide Adenylyltransferase/metabolism , Saccharomyces cerevisiae/enzymology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Sequence Analysis, RNA/methods , Nucleotidyltransferases/genetics , Polynucleotide Adenylyltransferase/genetics , Schizosaccharomyces pombe Proteins/genetics
12.
Nat Commun ; 12(1): 4951, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400637

ABSTRACT

The polyadenosine tail (poly[A]-tail) is a universal modification of eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). In budding yeast, Pap1-synthesized mRNA poly(A) tails enhance export and translation, whereas Trf4/5-mediated polyadenylation of ncRNAs facilitates degradation by the exosome. Using direct RNA sequencing, we decipher the extent of poly(A) tail dynamics in yeast defective in all relevant exonucleases, deadenylases, and poly(A) polymerases. Predominantly ncRNA poly(A) tails are 20-60 adenosines long. Poly(A) tails of newly transcribed mRNAs are 50 adenosine long on average, with an upper limit of 200. Exonucleolysis by Trf5-assisted nuclear exosome and cytoplasmic deadenylases trim the tails to 40 adenosines on average. Surprisingly, PAN2/3 and CCR4-NOT deadenylase complexes have a large pool of non-overlapping substrates mainly defined by expression level. Finally, we demonstrate that mRNA poly(A) tail length strongly responds to growth conditions, such as heat and nutrient deprivation.


Subject(s)
Poly A/metabolism , Polynucleotide Adenylyltransferase/metabolism , RNA/metabolism , Saccharomyces cerevisiae/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Exosomes/metabolism , Polyadenylation , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
13.
Hereditas ; 158(1): 29, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34404481

ABSTRACT

BACKGROUND: The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. RESULTS: We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15th nuclear cycle by means of the maternal haploid (mh) mutation showed no effect, neither on the appearance of the gradient nor on the control of downstream target. This suggests that the segmental anlagen are determined during the first 14 nuclear cycles. Finally, we identify the Cyclin B (CycB) gene as a trans-acting factor that modulates the movement of Bcd such that Bcd movement is allowed to move through the interior of the egg. CONCLUSIONS: Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Homeodomain Proteins/genetics , Trans-Activators/genetics , Animals , Cyclin B/genetics , Drosophila/embryology , Gene Expression Regulation, Developmental , Poly A/genetics , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/genetics
14.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203408

ABSTRACT

TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show that TENT4A regulates mRNA stability and/or translation of DNA polymerase η and RAD18 E3 ligase, which guides the polymerase to replication stalling sites and monoubiquitinates PCNA, thereby enabling recruitment of error-prone DNA polymerases to damaged DNA sites. Remarkably, in addition to the effect on RAD18 mRNA stability via controlling its poly(A) tail, TENT4A indirectly regulates RAD18 via the tumor suppressor CYLD and via the long non-coding antisense RNA PAXIP1-AS2, which had no known function. Knocking down the expression of TENT4A or CYLD, or overexpression of PAXIP1-AS2 led each to reduced amounts of the RAD18 protein and DNA polymerase η, leading to reduced TLS, highlighting PAXIP1-AS2 as a new TLS regulator. Bioinformatics analysis revealed that TLS error-prone DNA polymerase genes and their TENT4A-related regulators are frequently mutated in endometrial cancer genomes, suggesting that TLS is dysregulated in this cancer.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA Repair/physiology , DNA-Directed DNA Polymerase/metabolism , Endometrial Neoplasms/metabolism , Mutation/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger/metabolism , Blotting, Western , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Computational Biology , DNA Damage/genetics , DNA Damage/physiology , DNA Repair/genetics , DNA Replication/genetics , DNA Replication/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/genetics , Endometrial Neoplasms/genetics , Female , HEK293 Cells , Humans , Immunoprecipitation , MCF-7 Cells , Polymerase Chain Reaction , Polynucleotide Adenylyltransferase/genetics , RNA Stability/genetics , RNA Stability/physiology , RNA, Messenger/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics , Ubiquitination/physiology
15.
RNA Biol ; 18(sup1): 397-408, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34288801

ABSTRACT

In the cell, RNA abundance is dynamically controlled by transcription and decay rates. Posttranscriptional nucleotide addition at the RNA 3' end is a means of regulating mRNA and RNA stability and activity, as well as marking RNAs for degradation. The human nucleotidyltransferase Gld2 polyadenylates mRNAs and monoadenylates microRNAs, leading to an increase in RNA stability. The broad substrate range of Gld2 and its role in controlling RNA stability make the regulation of Gld2 activity itself imperative. Gld2 activity can be regulated by post-translational phosphorylation via the oncogenic kinase Akt1 and other kinases, leading to either increased or almost abolished enzymatic activity, and here we confirm that Akt1 phosphorylates Gld2 in a cellular context. Another means to control Gld2 RNA specificity and activity is the interaction with RNA binding proteins. Known interactors are QKI-7 and CPEB, which recruit Gld2 to specific miRNAs and mRNAs. We investigate the interplay between five phosphorylation sites in the N-terminal domain of Gld2 and three RNA binding proteins. We found that the activity and RNA specificity of Gld2 is dynamically regulated by this network. Binding of QKI-7 or phosphorylation at S62 relieves the autoinhibitory function of the Gld2 N-terminal domain. Binding of QKI-7 to a short peptide sequence within the N-terminal domain can also override the deactivation caused by Akt1 phosphorylation at S116. Our data revealed that Gld2 substrate specificity and activity can be dynamically regulated to match the cellular need of RNA stabilization and turnover.


Subject(s)
Adenine/chemistry , Gene Expression Regulation , MicroRNAs/metabolism , Polynucleotide Adenylyltransferase/metabolism , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Adenine/metabolism , HEK293 Cells , Humans , MicroRNAs/genetics , Phosphorylation , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Substrate Specificity , mRNA Cleavage and Polyadenylation Factors/genetics
16.
Nucleic Acids Res ; 49(10): 5867-5880, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34048556

ABSTRACT

Mammalian oocyte maturation is driven by strictly regulated polyadenylation and translational activation of maternal mRNA stored in the cytoplasm. However, the poly(A) polymerase (PAP) that directly mediates cytoplasmic polyadenylation in mammalian oocytes has not been determined. In this study, we identified PAPα as the elusive enzyme that catalyzes cytoplasmic mRNA polyadenylation implicated in mouse oocyte maturation. PAPα was mainly localized in the germinal vesicle (GV) of fully grown oocytes but was distributed to the ooplasm after GV breakdown. Inhibition of PAPα activity impaired cytoplasmic polyadenylation and translation of maternal transcripts, thus blocking meiotic cell cycle progression. Once an oocyte resumes meiosis, activated CDK1 and ERK1/2 cooperatively mediate the phosphorylation of three serine residues of PAPα, 537, 545 and 558, thereby leading to increased activity. This mechanism is responsible for translational activation of transcripts lacking cytoplasmic polyadenylation elements in their 3'-untranslated region (3'-UTR). In turn, activated PAPα stimulated polyadenylation and translation of the mRNA encoding its own (Papola) through a positive feedback circuit. ERK1/2 promoted Papola mRNA translation in a 3'-UTR polyadenylation signal-dependent manner. Through these mechanisms, PAPα activity and levels were significantly amplified, improving the levels of global mRNA polyadenylation and translation, thus, benefiting meiotic cell cycle progression.


Subject(s)
Meiosis , Oocytes/metabolism , Oogenesis , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger, Stored/metabolism , Animals , Cell Cycle , Cytoplasm/metabolism , Cytoplasmic Vesicles/metabolism , HeLa Cells , Humans , Meiosis/genetics , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oogenesis/genetics , Phosphorylation , Polyadenylation , Polynucleotide Adenylyltransferase/antagonists & inhibitors , Polynucleotide Adenylyltransferase/genetics , Protein Biosynthesis , RNA, Messenger, Stored/genetics , RNA, Small Interfering , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Up-Regulation
17.
Cell Rep ; 35(3): 109015, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882302

ABSTRACT

Osteoblasts orchestrate bone formation through the secretion of type I collagen and other constituents of the matrix on which hydroxyapatite crystals mineralize. Here, we show that TENT5A, whose mutations were found in congenital bone disease osteogenesis imperfecta patients, is a cytoplasmic poly(A) polymerase playing a crucial role in regulating bone mineralization. Direct RNA sequencing revealed that TENT5A is induced during osteoblast differentiation and polyadenylates mRNAs encoding Col1α1, Col1α2, and other secreted proteins involved in osteogenesis, increasing their expression. We postulate that TENT5A, possibly together with its paralog TENT5C, is responsible for the wave of cytoplasmic polyadenylation of mRNAs encoding secreted proteins occurring during bone mineralization. Importantly, the Tent5a knockout (KO) mouse line displays bone fragility and skeletal hypomineralization phenotype resulting from quantitative and qualitative collagen defects. Thus, we report a biologically relevant posttranscriptional regulator of collagen production and, more generally, bone formation.


Subject(s)
Calcification, Physiologic/genetics , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Osteogenesis/genetics , Polynucleotide Adenylyltransferase/genetics , RNA, Messenger/genetics , Animals , Cell Differentiation , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mice, Knockout , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Osteoblasts/pathology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Osteonectin/genetics , Osteonectin/metabolism , Polyadenylation , Polynucleotide Adenylyltransferase/metabolism , Protein Isoforms/deficiency , Protein Isoforms/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Serpins/genetics , Serpins/metabolism , Signal Transduction
18.
Microb Genom ; 7(2)2021 02.
Article in English | MEDLINE | ID: mdl-33502308

ABSTRACT

Poly(A) polymerases (PAPs) and tRNA nucleotidyltransferases belong to a superfamily of nucleotidyltransferases and modify RNA 3'-ends. The product of the pcnB gene, PAP I, has been characterized in a few ß-, γ- and δ-Proteobacteria. Using the PAP I signature sequence, putative PAPs were identified in bacterial species from the α- and ε-Proteobacteria and from four other bacterial phyla (Firmicutes, Actinobacteria, Bacteroidetes and Aquificae). Phylogenetic analysis, alien index and G+C content calculations strongly suggest that the PAPs in the species identified in this study arose by horizontal gene transfer from the ß- and γ-Proteobacteria.


Subject(s)
Betaproteobacteria/enzymology , Gammaproteobacteria/enzymology , Polynucleotide Adenylyltransferase/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Base Composition , Betaproteobacteria/classification , Betaproteobacteria/genetics , Evolution, Molecular , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gene Transfer, Horizontal , Phylogeny
19.
Clin Neurol Neurosurg ; 201: 106421, 2021 02.
Article in English | MEDLINE | ID: mdl-33370626

ABSTRACT

OBJECTIVE: To study the expression of FAM46A in glioblastoma (GBM) and analyze its significance in predicting the prognosis of patients. MATERIALS AND METHODS: mRNA expression and clinical data of patients with GBM were retrieved from ONCOMINE databases and The Cancer Genome Atlas (TCGA) database. Immunohistochemistry was performed in a tissue microarray including 110 GBM cases and 12 normal controls to determine the expression of FAM46A protein. Then, Kaplan-Meier curve and Cox regression model were used to investigate the relationship between FAM46A expression and clinical outcome. Coexpressed genes of FAM46A were analyzed by Linked Omics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS: Upregulated expression of FAM46A was found in both TCGA and our cohort. High FAM46A expression was associated with the poor prognosis of patients with GBM and could be identified as an independent risk factor for overall survival (HR = 1.652, p = 0.022). Further bioinformatics analysis revealed that FAM46A might be involved in cell motility and endoplasmic reticulum proteostasis and stress to promote GBM progression. CONCLUSION: Our findings suggest that increased expression of FAM46A in GBM is a novel biomarker for predicting poor outcome of patients and that targeting FAM46A may serve as a potential therapy for this disease.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/metabolism , Polynucleotide Adenylyltransferase/metabolism , Brain Neoplasms/mortality , Cohort Studies , Computational Biology/methods , Female , Glioblastoma/mortality , Humans , Male , Middle Aged , Polynucleotide Adenylyltransferase/genetics , Prognosis
20.
RNA Biol ; 18(7): 962-971, 2021 07.
Article in English | MEDLINE | ID: mdl-32954964

ABSTRACT

Noncanonical poly(A) polymerases are frequently tethered to mRNA 3' untranslated regions and regulate poly(A) tail length and resulting translation. In the brain, one such poly(A) polymerase is Gld2, which is anchored to mRNA by the RNA-binding protein CPEB1 to control local translation at postsynaptic regions. Depletion of CPEB1 or Gld2 from the mouse hippocampus results in a deficit in long-term potentiation (LTP), but only depletion of CPEB1 alters animal behaviour. To test whether a related enzyme, Gld4, compensates for the lack of Gld2, we separately or simultaneously depleted both proteins from hippocampal area CA1 and again found little change in animal behaviour, but observed a deficit in LTP as well as an increase in long-term depression (LTD), two forms of protein synthesis-dependent synaptic plasticity. RNA-seq data from Gld2, Gld4, and Gld2/Gld4-depleted hippocampus show widespread changes in steady state RNA levels, alternative splicing, and alternative poly(A) site selection. Many of the RNAs subject to these alterations encode proteins that mediate synaptic function, suggesting a molecular foundation for impaired synaptic plasticity.


Subject(s)
CA1 Region, Hippocampal/metabolism , Long-Term Potentiation/genetics , Polynucleotide Adenylyltransferase/genetics , RNA Processing, Post-Transcriptional , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , 3' Untranslated Regions , Animals , Avoidance Learning/physiology , CA1 Region, Hippocampal/pathology , Gene Expression Regulation , Injections, Intraventricular , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Obsessive Behavior/genetics , Obsessive Behavior/metabolism , Obsessive Behavior/physiopathology , Polynucleotide Adenylyltransferase/antagonists & inhibitors , Polynucleotide Adenylyltransferase/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic , mRNA Cleavage and Polyadenylation Factors/antagonists & inhibitors , mRNA Cleavage and Polyadenylation Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...